JPS63111110A - Direct reduction apparatus for iron ore - Google Patents

Direct reduction apparatus for iron ore

Info

Publication number
JPS63111110A
JPS63111110A JP61256996A JP25699686A JPS63111110A JP S63111110 A JPS63111110 A JP S63111110A JP 61256996 A JP61256996 A JP 61256996A JP 25699686 A JP25699686 A JP 25699686A JP S63111110 A JPS63111110 A JP S63111110A
Authority
JP
Japan
Prior art keywords
soot
furnace
iron
gas
reduced iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61256996A
Other languages
Japanese (ja)
Inventor
Katsuaki Nishida
西田 勝亮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP61256996A priority Critical patent/JPS63111110A/en
Publication of JPS63111110A publication Critical patent/JPS63111110A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/10Reduction of greenhouse gas [GHG] emissions
    • Y02P10/143Reduction of greenhouse gas [GHG] emissions of methane [CH4]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture Of Iron (AREA)

Abstract

PURPOSE:To improve the using efficiency of soot and to facilitate the production of briquette of sponge iron by removing and recovering the soot sticking to the sponge iron after using to prevent the development of cluster in a shaft furnace by the furnace exhaust gas at the time of producing the sponge iron by reducing iron ore in the shaft furnace. CONSTITUTION:The granular iron ore 1 is charged in the shaft furnace 2 and by blowing the high temp. reducing gas generated from natural gas as raw material in a reducing gas generator 7 from a tuyere 14, the iron ore is made to the sponge iron 1a by solid reduction. In this case, by incompletely burning the natural gas in soot generator 20 to generate the soot, and the soot is blown in the furnace to prevent the development of cluster by sticking to the iron ore. As the soot is stuck to the surface of reduced sponge iron 1a, by blowing a part of the furnace exhaust gas from a nozzle 21a to the granular sponge iron 1b flowing down from the outlet 17a of the upper discharging hopper 16a, the soot is removed and recovered, for reuse in the shaft furnace. The sponge iron removing soot is sent to the briquetting machine by a container 6, to easily produce the sponge iron briquette.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は鉄鉱石の直接還元装置のうち、主としてシャフ
ト炉式還元装置における還元鉄中の煤(微粒カーボン)
除去装置及び煤のリサイクルに関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is directed to reducing soot (fine carbon particles) in reduced iron in a shaft furnace type reduction device among direct reduction devices for iron ore.
It concerns removal equipment and soot recycling.

〔従来の技術〕[Conventional technology]

本発明の対象とするシャフト炉式直接還元装置の概要を
第2図に示す略示的全体構成説明図によって説明する。
An overview of the shaft furnace type direct reduction apparatus to which the present invention is applied will be explained with reference to a schematic overall configuration explanatory diagram shown in FIG.

本装置は、粒状又はペレット状の鉄鉱石1をシャフト炉
(以下、炉と略称)2へ供給する原料コンはヤ3と原料
装入袋[t4と、還元鉄1aを炉2外へ排出する排出装
置5と、排出された還元鉄1aをブリケラティングプラ
ントあるいは貯蔵ヤード(いずれも図示せず)へ搬送す
るコンテナ6と、例えば、水素(H2)等の還元ガス発
生炉7と、ガス圧縮機9、脱炭酸設備10加熱炉8等か
らカるリサイクル還元ガス系統11の主要部材で構成さ
れている。
This device supplies granular or pelleted iron ore 1 to a shaft furnace (hereinafter referred to as the furnace) 2, and discharges a raw material container 3, a raw material charging bag [t4, and reduced iron 1a] to the outside of the furnace 2. A discharge device 5, a container 6 for transporting the discharged reduced iron 1a to a briquetting plant or a storage yard (none of which are shown), a reducing gas generating furnace 7 such as hydrogen (H2), and a gas compressor. It is comprised of the main components of the recycled reducing gas system 11, which includes a decarboxylation equipment 9, a decarboxylation equipment 10, a heating furnace 8, and the like.

原料装入装置4は炉2頂に取付けた上部ホッパ12aと
下部ホッパ12bと上、下2個のシール弁13a。
The raw material charging device 4 has an upper hopper 12a and a lower hopper 12b attached to the top of the furnace 2, and two upper and lower seal valves 13a.

13bからなシ、上、下ホッパ12a、12b間はシー
ル弁13aによシ、下部ホラ、z 12 bと炉2間は
シール弁13bによシ、それぞれ、ガス気密に仕切られ
ておシ、コンイア3から、所定のタイムスケジュールに
従って供給される原料1を大気に対し気密を保持しなが
ら炉2内へ供給可能である。炉2内には。
13b, the upper and lower hoppers 12a and 12b are separated by a seal valve 13a, and the lower hopper and the furnace 2 are separated by a seal valve 13b, respectively, in a gas-tight manner. It is possible to feed the raw material 1 from the container 3 into the furnace 2 according to a predetermined time schedule while keeping it airtight from the atmosphere. Inside Furnace 2.

後述する切出装置15を介して、常に所定のレベルに鉄
鉱石1を滞留せしめると共に、炉体下部の外周に設けた
多数の羽口14から高温の還元ガス(H2等)を炉内へ
供給し、その排ガスを炉頂の管路11aから排出せしめ
ることによシ、鉄鉱石1を還元鉄la、すなわち海綿法
(Sponge Iron)に還元可能に構成されてい
る。前記炉頂の排ガスは管路11aからガス圧縮機9で
吸引、加圧されて脱炭酸設備10に送られこ\で所要純
度に、さらに加熱炉8で高温の還元ガスに再生された後
管路11b、調整弁11c及び管路11dから環状管l
ieを経て羽口14へ循環供給される。この場合、脱炭
酸設備10等における還元ガスの消耗分は還元ガス発生
炉7の新鮮ガスで補給する。一方還元鉄排出装置5は、
炉2の底部に取付けた、例えばテーブルフィーダ等の切
出装置15と、上部及び下部排出ホッパ16a + 1
6t)と、上部及び下部の2重シール弁17a、17b
で構成されておシ、上部排出ホッパ16aは炉2と一体
構造をなし、上部2重シール弁17aを介して、該排出
ホッパ16a内、す々わち、炉2内が下部排出ホッパに
対しガス気密に仕切られている。下部排出ホッパ16b
は下部シール弁17bで大気に対しガス気密に仕切られ
ている。また、上・下ホンパ16a。
Iron ore 1 is always retained at a predetermined level through a cutting device 15, which will be described later, and high-temperature reducing gas (H2, etc.) is supplied into the furnace from a large number of tuyeres 14 provided on the outer periphery of the lower part of the furnace body. By discharging the exhaust gas from the pipe 11a at the top of the furnace, the iron ore 1 can be reduced to reduced iron la, that is, sponge iron. The exhaust gas at the top of the furnace is sucked through the pipe 11a by the gas compressor 9, pressurized, and sent to the decarboxylation equipment 10 to the required purity, and further regenerated into high-temperature reducing gas in the heating furnace 8. An annular pipe l is connected to the pipe 11b, the regulating valve 11c and the pipe 11d.
It is circulated and supplied to the tuyere 14 via the ie. In this case, the amount of reducing gas consumed in the decarboxylation equipment 10 and the like is replenished with fresh gas from the reducing gas generating furnace 7. On the other hand, the reduced iron discharge device 5 is
A cutting device 15, such as a table feeder, attached to the bottom of the furnace 2, and an upper and lower discharge hopper 16a + 1
6t) and upper and lower double seal valves 17a, 17b.
The upper discharge hopper 16a has an integral structure with the furnace 2, and the inside of the discharge hopper 16a, that is, the inside of the furnace 2, is connected to the lower discharge hopper through the upper double seal valve 17a. Gas-tight partitioned. Lower discharge hopper 16b
is gas-tightly partitioned off from the atmosphere by a lower seal valve 17b. Also, upper and lower hoods 16a.

16℃底部は、それぞれ還元鉄1bの重力による排出を
円滑にするため、適当な傾斜角を持つ逆円すい筒又は角
すい筒体をなしている。ここで、前記炉2内及び上部排
出ホッパ16a内は、通常、大気圧以上の所定の圧力に
保持される。煤発生炉20は天然ガスNGを圧縮空気、
または酸素富化空気Aによシネ完全燃焼させ媒含有還元
ガスを発生する。
The 16° C. bottom portions each form an inverted conical cylinder or a square pyramidal cylinder with an appropriate inclination angle in order to smoothly discharge the reduced iron 1b by gravity. Here, the inside of the furnace 2 and the inside of the upper discharge hopper 16a are normally maintained at a predetermined pressure equal to or higher than atmospheric pressure. The soot generating furnace 20 converts natural gas NG into compressed air,
Alternatively, the cine is completely combusted with oxygen-enriched air A to generate a medium-containing reducing gas.

なお、図中、18は排圧弁、19は媒含有還元ガス供給
管、25は予熱炉を示す。
In the figure, 18 is an exhaust pressure valve, 19 is a medium-containing reducing gas supply pipe, and 25 is a preheating furnace.

以上の構成であるから、鉄鉱石1は炉2内を降下する間
に、羽口14から吹き込まれる還元ガスと接触して高純
度の海綿法1aに還元され、切出装置15を介して順次
、上部排出ホッノQ6aへ排出される。前記ホツzet
6a内の海綿法1aは、一定量に達すると、上部2重シ
ール弁17aを開閉して重力によシ下部排出ホンパ16
bへ排出される。この場合、排圧弁18は閉とする。つ
ぎに、下部ホッパ16b内の海綿法1aをコンテナ6へ
排出する場合は、上部2重シール弁17aが閉状態で排
圧弁18を大気へ開放しホラ/1!16 b内の圧力(
炉内圧に等しい)を大気圧とした後、下部2重シール弁
171)を開くことによシ重力で容易に排出できる。こ
\で、コンテナ6内の海綿法1aは粒状で、かつ高温(
例えば約5ooC)であるため、次の処理工程である製
鋼工場、あるいは貯蔵ヤード等への搬送を容易にすると
共に、搬送、ならびに貯蔵期間中に大気によって生じる
表面の酸化を防止するため、通常、炉2に隣接したブリ
ケラティングプラントへ搬送し、ここで所要の形状のブ
リケットに圧縮成形した仮、冷却し貯蔵ヤード、あるい
は製鋼工場へ移送される。
With the above configuration, while the iron ore 1 descends in the furnace 2, it comes into contact with the reducing gas blown in from the tuyere 14 and is reduced to high-purity sponge 1a, which is sequentially passed through the cutting device 15. , is discharged to the upper discharge hole Q6a. Said Hotzet
When the sponge method 1a in 6a reaches a certain amount, the upper double seal valve 17a is opened and closed, and the lower discharge pump 16 is discharged by gravity.
It is discharged to b. In this case, the exhaust pressure valve 18 is closed. Next, when discharging the sponge 1a in the lower hopper 16b to the container 6, the upper double seal valve 17a is closed and the exhaust pressure valve 18 is opened to the atmosphere to reduce the pressure in the hopper 1!16b (
After bringing the furnace pressure (equal to the furnace internal pressure) to atmospheric pressure, it can be easily discharged by gravity by opening the lower double seal valve 171). Here, the sponge material 1a in the container 6 is granular and has a high temperature (
For example, about 5ooC), it is usually used to facilitate transportation to the next processing step, such as a steel factory or storage yard, and to prevent surface oxidation caused by the atmosphere during transportation and storage. The briquettes are transported to a briquetting plant adjacent to the furnace 2, where they are compression-molded into briquettes of a desired shape, cooled, and then transported to a storage yard or steel factory.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

前述のような従来の直接還元装置においては。 In conventional direct reduction equipment as described above.

処理する鉄鉱石の銘柄に適応した還元ガスの性状、なら
びに、炉内ガス温度等の極めて高精度な操業条件の管理
を行う必要があシ、これら諸条件のバラツキによシ、し
ばしば、炉2内で鉄鉱石同志が結合し、いわゆる、クラ
スタ(C1ust、er)が発生し易く、このクラスタ
は順次大きさが拡大し、その結果炉内に鉱石が閉塞する
、いわゆる棚吊シ現象が発生し、遂には操業不能という
重大事故につながるという問題点がある。
It is necessary to control extremely precise operating conditions such as the properties of the reducing gas adapted to the brand of iron ore to be processed and the gas temperature in the furnace.Due to variations in these conditions, the furnace 2 Iron ore tends to combine with each other in the furnace, forming so-called clusters (C1ust, er), and these clusters gradually expand in size, resulting in the so-called hanging phenomenon in which the ore becomes blocked in the furnace. However, there is a problem in that it can lead to serious accidents such as the inability to operate.

そのだめ、前述の従来装置では、煤(Soot)を管路
19から環状管11eへ供給し、還元ガス(H2等)と
共に羽口14から炉2内へ吹き込み、炉内の鉄鉱石1及
び還元鉄1aの表面に煤を付着させることによυクラス
タの発生を防止している。ところが、このように炉2内
に煤を吹き込むと、コンテナ6へ排出される海綿法1a
の表面には、前記煤が付着しており、このまま、例えば
、ロール形のブリケットマシンで圧縮成形を行うに、付
着煤のため海綿法1a同志の圧着が阻害され、所定の形
状のブリケットに成形できないという大きな問題が発生
する。
Therefore, in the conventional apparatus described above, soot is supplied from the pipe line 19 to the annular pipe 11e, and is blown into the furnace 2 from the tuyere 14 together with the reducing gas (H2 etc.), so that the iron ore 1 in the furnace and the reduced The generation of υ clusters is prevented by adhering soot to the surface of the iron 1a. However, when soot is blown into the furnace 2 in this way, the sponge method 1a is discharged into the container 6.
The soot adheres to the surface of the briquette, and if compression molding is performed as it is, for example, in a roll-type briquette machine, the adhering soot will prevent the compression of the sponge method 1a, and the briquettes will not be formed into a predetermined shape. A big problem arises that it cannot be done.

また海綿鉄は表面に煤を付着したま\ブリケットマシン
へ送られるため煤(スーツ)はリサイクルすることなく
、従って煤発生炉で生産する必要がある。このため原料
たる天然ガスが多量に必要となる。
Also, since the sponge iron is sent to the briquetting machine with soot attached to its surface, the soot (suit) cannot be recycled, and therefore it must be produced in a soot generating furnace. Therefore, a large amount of natural gas is required as a raw material.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は前述のような問題を解決するために(イ)還元
鉄排出装置の下部排出ホッパ内の上部に該ホッパへ落下
流入する還元鉄の流路に沿って周囲から還元鉄の流れに
対して連続的に吹き付は可能なノズルを有する環状の吹
込7−ドを装着する。(ロ)シャフト炉内へ供給するリ
サイクル還元ガスの一部をバイパスさせて前記吹込フー
ドへ導入する管路を設ける。(ハ)下部還元鉄排出ホッ
パの上部を前記シャフト炉に至るリサイクル還元ガス供
給管路に連通させる。
In order to solve the above-mentioned problems, the present invention has been proposed (a) to prevent the flow of reduced iron from the surroundings from flowing into the upper part of the lower discharge hopper of the reduced iron discharge device along the flow path of the reduced iron falling into the hopper; An annular blowing rod with a nozzle capable of continuous spraying is installed. (b) A pipe line is provided to bypass a portion of the recycled reducing gas supplied into the shaft furnace and introduce it into the blow hood. (c) The upper part of the lower reduced iron discharge hopper is communicated with the recycled reducing gas supply pipe leading to the shaft furnace.

〔作用〕[Effect]

排出ホッパ内に落下する還元鉄の流れにリサイクルガス
を吹き込み、還元鉄表面に付着した煤を除去する。排出
ホラノミ内で還元鉄表面から除去された煤は、該ホッパ
上部のリサイクルガスバイパス管を通シ、再びシャフト
炉内に供給される。
Recycling gas is blown into the flow of reduced iron falling into the discharge hopper to remove soot adhering to the surface of the reduced iron. The soot removed from the surface of the reduced iron in the discharge funnel passes through the recycle gas bypass pipe in the upper part of the hopper and is again supplied into the shaft furnace.

〔実施例〕〔Example〕

以下、図面によって具体的に説明する。 A detailed explanation will be given below with reference to the drawings.

第1図は本発明シャフト炉式面接還元装置の略示的全体
構成説明図であるが、前述した従来装置(第2図)と同
一あるいは類似部材は同一符号を付し、重複する構成説
明は省略する。
FIG. 1 is a schematic overall configuration explanatory diagram of the shaft furnace type surface reduction apparatus of the present invention. The same or similar members as those of the conventional apparatus (FIG. 2) described above are given the same reference numerals, and overlapping explanations of the configuration are omitted. Omitted.

本発明装置では、図示の如く還元鉄排出装置5の下部排
出ホッパ16b内において、上部排出ホン/’ 16 
aから重力で落下装入される還元鉄の流入通路1bの周
囲に沿って周方向にほぼ等ピッチで、かつ、上下方向に
配列された複数のガスノズル21aを有するほぼ環状の
吹込ツー)”21を取付ける。
In the apparatus of the present invention, as shown in the figure, in the lower discharge hopper 16b of the reduced iron discharge device 5, an upper discharge horn /' 16
A substantially annular blowing tool (21) having a plurality of gas nozzles 21a arranged vertically and at substantially equal pitches in the circumferential direction along the periphery of the inlet passage 1b for reduced iron that is charged by gravity from a. Install.

これらのノズル21aは、管路24a、調整弁24bを
介して、加熱炉8出口と調整弁11c間の管路11bに
連通され、該ガスノズル21aから落下中の還元鉄1a
にその周囲からリサイクル還元ガスを吹きつけて、還元
鉄1aに付着あるいは混入した煤を分離飛散させる。
These nozzles 21a are connected to a pipe line 11b between the outlet of the heating furnace 8 and the regulating valve 11c via a pipe line 24a and a regulating valve 24b, and the reduced iron 1a falling from the gas nozzle 21a is
Recycled reducing gas is blown from around the reduced iron 1a to separate and scatter soot attached to or mixed in the reduced iron 1a.

一方、排出ホッパ16bの頂部の適宜位置に排ガス管路
24eを取付け、前記ガスノズル21aから吹込まれた
リサイクルガスと煤の混合ガスを、弁24c、管路24
dを経て、調整弁11cと環状管lie間の管路11d
に°導入する。管路24a、吹込フード21、ガスノズ
ル21a、下部排出ホッパ16b、排ガス管路24e、
管路24dはリサイクル還元ガスのバイパス管路を構成
する。なお、前記吹込フード21の内寸は、フード21
内面が落下中の還元鉄1aと接触しないていどに近接さ
せると共に、その高さは、ホッパ16b内に滞留する還
元鉄1aの頂部と、ホッパ頂部間に適当な空間部を設け
、ノズル21aから吹込まれるガスによって、還元鉄1
aに付着及び混入した煤を効率よく分離・飛散せしめる
と共に、ガスと共に容易に排ガス管路24eへ吸引・排
出し得る如く設定される。
On the other hand, an exhaust gas pipe 24e is installed at an appropriate position on the top of the discharge hopper 16b, and a mixed gas of recycle gas and soot blown from the gas nozzle 21a is passed through the valve 24c and the pipe 24e.
d, the pipe line 11d between the regulating valve 11c and the annular pipe lie
°Introduce to. Pipe line 24a, blow hood 21, gas nozzle 21a, lower discharge hopper 16b, exhaust gas pipe line 24e,
The pipe line 24d constitutes a bypass pipe line for the recycled reducing gas. Note that the inner dimensions of the blowing hood 21 are as follows:
The inner surface of the reduced iron 1a is placed close to the falling reduced iron 1a without coming into contact with it, and its height is determined by providing an appropriate space between the top of the reduced iron 1a staying in the hopper 16b and the top of the hopper, so that the reduced iron 1a does not come into contact with the falling iron 1a. Due to the injected gas, reduced iron 1
It is set so that the soot adhering to and mixed in the air can be efficiently separated and scattered, and it can be easily sucked and discharged together with the gas into the exhaust gas pipe 24e.

つぎに、以上の構成から成る本発明装置の作用を述べる
。なお第1図は、下部排出ホッパ16b内へ還元鉄1a
を排出中の状態を示しておシ、リサイクル還元ガスは循
環供給中である。
Next, the operation of the apparatus of the present invention having the above configuration will be described. In addition, FIG. 1 shows reduced iron 1a into the lower discharge hopper 16b.
Indicates that the gas is being discharged, and the recycled reducing gas is being circulated.

先づ、上部排出ホッパ16aから還元鉄1aを下部ホッ
パ16bへ排出するに先立って、弁24b。
First, prior to discharging the reduced iron 1a from the upper discharge hopper 16a to the lower hopper 16b, the valve 24b.

24cを開いて、ガスを吹込フード21へ吹き込み、リ
サイクルさせた後、上部2重シール弁17aを開く。か
くて下部ホッパ16b内へ重力落下する還元鉄1aは吹
込フード21を通過する間に付着あるいは混在した煤が
ガスで分離・飛散されてガスと共に管路24e、24a
+ lidを経て、炉2内へ再度吹込まれる。この場合
、管路24aから吹込フート”21を経て、管路24d
にいたる通気抵抗に応じて調整弁24bによシリサイク
ルガス系統の管路11dとバイパス管路24d間のガス
流量及び圧力のバランスを適宜制御する。
24c is opened to blow the gas into the blow hood 21 and recycled, and then the upper double seal valve 17a is opened. Thus, while the reduced iron 1a falling by gravity into the lower hopper 16b passes through the blowing hood 21, the soot attached or mixed therein is separated and scattered by the gas, and the reduced iron 1a passes through the pipes 24e and 24a together with the gas.
+lid, and is blown into the furnace 2 again. In this case, the pipe 24d passes from the pipe 24a through the blowing foot "21".
The gas flow rate and pressure balance between the silicycle gas system pipe line 11d and the bypass pipe line 24d are appropriately controlled by the regulating valve 24b according to the ventilation resistance reached.

ホッパ16bへの還元鉄1aの排出が完了後、上部2重
シール弁17aを閉とし、完全にホッパ16b内の煤が
除去された後、弁24b、24cを閉じ次回の排出作業
に備える。以下従来装置(第2図)における手順に従っ
て、コンテナ6へ還元鉄1aを排出し、ブリケンティン
グプラントへ搬送し、ブリケットに成形する。
After the discharge of the reduced iron 1a to the hopper 16b is completed, the upper double seal valve 17a is closed, and after the soot in the hopper 16b is completely removed, the valves 24b and 24c are closed in preparation for the next discharge operation. Following the procedure of the conventional apparatus (FIG. 2), the reduced iron 1a is discharged into the container 6, transported to a briquenting plant, and formed into briquettes.

なお、以上例示の装置では、下部排出ホッパ16b内の
ガス吹込ノズルをほぼ環状の吹込7−ドとしたが、ノズ
ルの形式は、これに限定するものではなく、要は、排出
ホッパ16bから排出される還元鉄1aの流下を阻害す
ることなく、かつ、還元鉄の落下中にガスが通過し得る
構造であれば良いことは勿論である。
In the device illustrated above, the gas blowing nozzle in the lower discharge hopper 16b is a substantially annular blowing nozzle, but the nozzle type is not limited to this. Of course, any structure may be used as long as it does not obstruct the flow of the reduced iron 1a and allows gas to pass through while the reduced iron is falling.

〔発明の効果〕〔Effect of the invention〕

f内の還元鉄を上部排出ホッパから下部排出ホッパへ排
出する際に、下部ホッパ内へ重力落下中の還元鉄に該還
元鉄の流路の周囲に取付けた、環状の吹込7−ト9から
リサイクル還元ガスを吹きつけて、還元鉄1aに付着及
び混入した煤を分離・飛散せしめることによシ、コンテ
ナへ排出される還元鉄には従来装置のようなカーボン煤
の付着あるいは混入がなくなシ、その結果、後段のブリ
ケットマシンにおいて、ズリケラトを極めて容易、かつ
安定的に所期の形状に成形することができ、生産能率向
上を図ることができる。
When the reduced iron in f is discharged from the upper discharge hopper to the lower discharge hopper, the reduced iron falling by gravity into the lower hopper is passed from the annular blower 7 to 9 installed around the flow path of the reduced iron. By spraying recycled reducing gas to separate and scatter the soot adhering to and mixing with the reduced iron 1a, the reduced iron discharged into the container is free from adhering to or mixing with carbon soot, unlike conventional equipment. As a result, in the subsequent briquetting machine, it is possible to form the zuricherato into a desired shape extremely easily and stably, and production efficiency can be improved.

また、排出ホッパ内で還元鉄よシ分離された煤をシャフ
ト炉内に再度吹込み使用するため、従来装置に比べて、
煤製作の原料の消費量を大巾に低下することが可能にな
る。
In addition, the soot that has been separated from the reduced iron in the discharge hopper is blown into the shaft furnace again, so compared to conventional equipment,
It becomes possible to significantly reduce the consumption of raw materials for soot production.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明装置の一実施例に係るシャフト炉式直接
還元装置の全体構成説明図、第2図は従来のシャフト炉
式直接還元装置の全体構成説明図を示す。 1・・・鉄鉱石原料    1a・・・還元鉄1b・・
・還元鉄の流路   2・・・シャフト炉訃・・還元鉄
排出装置  16a、16b・・・排出ホッパξ20・
・・煤発生炉     21・・・吹込フード21a・
・・ガスノズル 復代理人  弁理士  岡 本  重 文(外2名)
FIG. 1 is an explanatory diagram of the overall configuration of a shaft furnace type direct reduction apparatus according to an embodiment of the present invention, and FIG. 2 is an explanatory diagram of the overall configuration of a conventional shaft furnace type direct reduction apparatus. 1...Iron ore raw material 1a...Reduced iron 1b...
-Reduced iron flow path 2...Shaft furnace...Reduced iron discharge device 16a, 16b...Discharge hopper ξ20.
...Soot generating furnace 21...Blowing hood 21a.
...Gas nozzle sub-agent Patent attorney Shigefumi Okamoto (2 others)

Claims (1)

【特許請求の範囲】[Claims] 微粒カーボン(スーツ)を添加した還元ガスをシャフト
炉内に供給して、粒状又はペレット状の鉄鉱石を還元鉄
に還元し、該還元鉄を高温状態で炉外へ排出する鉄鉱石
の直接還元装置において、排出ホッパ内に流入する還元
鉄の流路の周囲にガスノズルを具えた環状の吹込フード
を設置し、前記シャフト炉内へ供給するリサイクル還元
ガスの一部をバイパスさせて前記吹込フードへ導入し、
更に前記排出ホッパの上部を前記シャフト炉に至るリサ
イクル還元ガス供給管路に連通させたことを特徴とする
鉄鉱石の直接還元装置。
Direct reduction of iron ore, in which granular or pelleted iron ore is reduced to reduced iron by supplying reducing gas added with fine carbon (suit) into the shaft furnace, and the reduced iron is discharged outside the furnace in a high temperature state. In the apparatus, an annular blowing hood equipped with a gas nozzle is installed around the flow path of the reduced iron flowing into the discharge hopper, and a part of the recycled reducing gas supplied to the shaft furnace is bypassed to the blowing hood. introduced,
Furthermore, the iron ore direct reduction apparatus is characterized in that the upper part of the discharge hopper is connected to a recycled reducing gas supply pipe leading to the shaft furnace.
JP61256996A 1986-10-30 1986-10-30 Direct reduction apparatus for iron ore Pending JPS63111110A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61256996A JPS63111110A (en) 1986-10-30 1986-10-30 Direct reduction apparatus for iron ore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61256996A JPS63111110A (en) 1986-10-30 1986-10-30 Direct reduction apparatus for iron ore

Publications (1)

Publication Number Publication Date
JPS63111110A true JPS63111110A (en) 1988-05-16

Family

ID=17300270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61256996A Pending JPS63111110A (en) 1986-10-30 1986-10-30 Direct reduction apparatus for iron ore

Country Status (1)

Country Link
JP (1) JPS63111110A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017501300A (en) * 2013-11-20 2017-01-12 プライメタルズ・テクノロジーズ・オーストリア・ゲーエムベーハー Method and apparatus for supplying reducing gas under certain conditions

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017501300A (en) * 2013-11-20 2017-01-12 プライメタルズ・テクノロジーズ・オーストリア・ゲーエムベーハー Method and apparatus for supplying reducing gas under certain conditions

Similar Documents

Publication Publication Date Title
EP0629708A1 (en) Method and apparatus for the pneumatic transport of large iron-bearing particles
KR101036640B1 (en) An apparatus for manufacturing compacted irons of reduced materials comprising fine direct reduced irons and an apparatus for manufacturing molten irons using the same
RU2294967C2 (en) Melt cast iron producing plant providing drying and transporting iron ores and additives, melt cast iron production method with use of such plant
JPS63111110A (en) Direct reduction apparatus for iron ore
JP2009521604A (en) Molten iron manufacturing equipment
JPS63111112A (en) Direct reduction apparatus for iron ore
JP2004538363A (en) Method and apparatus for performing carbon-based metallurgy
JPH03247716A (en) Device for removing dust sticking to rear surface of dispersing board of prereduction furnace of smelting reduction equipment
JPS63111109A (en) Direct reduction apparatus for iron ore
JPS63111111A (en) Direct reduction apparatus for iron ore
EP0515744A1 (en) Method for the transport of sponge iron
US3558118A (en) Apparatus for the gaseous reduction of pelletized and lump iron ores
JPH01111809A (en) Method for stopping operation of iron ore fluidized bed reduction apparatus
JPS6330016Y2 (en)
KR100391914B1 (en) Process for coal based ironmaking to reduce loss of fine ore
CA1178060A (en) Method for achieving low sulfur levels in the dri product from iron oxide reducing kilns
JPS6311609A (en) Prereduction device for iron ore
JPS624444B2 (en)
JPH01242708A (en) Fluidized-bed reducing equipment for iron ore
JPS63140019A (en) Fluidized bed reduction device for iron ore
KR20000038828A (en) Apparatus and method of manufacturing molten iron for falling ores
JPH01129917A (en) Device for preheating and charging material in reduction furnace
JPH0134075Y2 (en)
JPH0718308A (en) Method for charging fine grain sintered ore into blast furnace
JPS62228889A (en) Preheater in iron-ore spare reduction facility