JPS63108790A - Semiconductor laser with optical output monitor - Google Patents

Semiconductor laser with optical output monitor

Info

Publication number
JPS63108790A
JPS63108790A JP61255158A JP25515886A JPS63108790A JP S63108790 A JPS63108790 A JP S63108790A JP 61255158 A JP61255158 A JP 61255158A JP 25515886 A JP25515886 A JP 25515886A JP S63108790 A JPS63108790 A JP S63108790A
Authority
JP
Japan
Prior art keywords
light
layer
laser
semiconductor laser
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61255158A
Other languages
Japanese (ja)
Inventor
Mitsuo Fukuda
光男 福田
Etsuo Noguchi
野口 悦男
Nobuyori Tsuzuki
都築 信頼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP61255158A priority Critical patent/JPS63108790A/en
Publication of JPS63108790A publication Critical patent/JPS63108790A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • H01S5/0262Photo-diodes, e.g. transceiver devices, bidirectional devices
    • H01S5/0264Photo-diodes, e.g. transceiver devices, bidirectional devices for monitoring the laser-output

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)
  • Photo Coupler, Interrupter, Optical-To-Optical Conversion Devices (AREA)

Abstract

PURPOSE:To form one layer in buried layers in a photodetector corresponding to the buried layer limiting a light-emitting section in upper and lower electrodes having different conductivity, to increase a light-receiving area and to reduce dark currents resulting from the buried layers by giving energy smaller than the band gap energy of a light-emitting layer to one layer in the buried layers in the photodetector. CONSTITUTION:A laser section 53 and a light-receiving section 54 isolated by an isola tion trench 52 are formed onto an N-type InP substrate 44, and P-type InGaAsP layers 41, 41' are shaped to each of the sections 53 and 54. P-type InP clad layers 42, 42' are formed, and an InGaAsP light-emitting layer 43 is shaped to the section 53 and an InGaAsP layer 43 to the light-receiving section 54. P-type InP layers 49, 49', N-type InP layers 48, 48' and a P-type InGaAsP gap layer 47 and a P-type InGaAsP light- receiving layer 47 are formed to each of the sections 53, 54. A laser electrode+45 and a laser electrode-46 are shaped to the light-emitting layer 43 emitting laser beams 50, and a light-receiving section electrode+51 and a light-receiving section electrode-45 are formed to the light-receiving section 54. The band gap energy of one layer in the light-receiving section is made smaller than that of the light-emitting layer 43.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は高安定で経済的な光フアイバ伝送用モノリシッ
ク発光・受光装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a highly stable and economical monolithic light emitting/light receiving device for optical fiber transmission.

〔従来の技術〕[Conventional technology]

従来、同一ウェハから、モノリシックにレーザとレーザ
光出力のモニタ用受光器が形成された例として、第5図
に示すようなモニタ付半導体レーザがある(伊賀他、”
 GaInAsP/InP lamar withmo
nolithically  lntegrated 
 monltorlng  d@tector”。
Conventionally, a semiconductor laser with a monitor as shown in FIG. 5 is an example in which a laser and a receiver for monitoring the laser light output are monolithically formed from the same wafer (Iga et al., "
GaInAsP/InP lamar withmo
Nolithically integrated
monltorlng d@tector”.

Electron Lett、、 vot、 16. 
P、 342.1980 )。
Electron Lett, vot, 16.
P, 342.1980).

第5図において、1はレーザ部分、2はモニタ・ダイオ
ード部分、3はレーザ電極(+)、、y’はモ二タ・ダ
イオード電極(−)、4はp型InPクラッド層、5は
InGaAsP発光層、6はn型InPクラッド層、7
はn型1nP基板、81′i共通電極(アース)、9は
エツチング溝部分、10 、10’は放出光、11は光
検出層である。これらのモニタ付半導体レーザを製作す
る場合には、レーザのストライプ状ノ注入領域と直角に
、ウェハ上面(通常Vi(100)面)よシ、はぼ垂直
に化学的か物理的にエツチングし、素子分離と同時にレ
ーザ共振器端面の形成をしていた。故に、レーザと受光
器の素子構造は同一であり、受光器の受光層はレーザの
発光層に対応していた。しかし、当該層は0.1〜0.
2μmと薄く、発光幅も数μであり、通常のレーザでは
放出光は光の回折現象によシ、上下左右に数十度の角度
に拡かりている。しかるに放出光を受光する層は0.1
〜0.27aの厚さ、幅も数μmであり、光を受ける面
積が非常に小さく、レーザ光のモニタ用受光器として十
分な機能を得るのは困難であり九・ 一方、レーザ動作に端面を必要としない分布帰還W(D
FB)レーザでは、レーザの発光層をモニタ部分にまで
延長し、あるいはレーザ端面をストライプに対して斜め
にし、レーザ放出光のモニタ用受光器への結合効率を上
げる方法がとられている(村田他、’ DFBレーザ/
PDモノリシック集積素子”、昭和60年度電子通信学
会総合全国大会予稿集、 931. P、4−55 :
特開昭59−125659号公報、モ二り集積型半導体
発光素子)。しかし、これらの方法は素子分離のための
エツチング工程、素子のグロセス工程が複雑になる上に
、DFB型のレーザにしか適用できないという欠点があ
った。
In Fig. 5, 1 is a laser part, 2 is a monitor diode part, 3 is a laser electrode (+), y' is a monitor diode electrode (-), 4 is a p-type InP cladding layer, 5 is InGaAsP Light emitting layer, 6 is n-type InP cladding layer, 7
1 is an n-type 1nP substrate, 81'i is a common electrode (earth), 9 is an etching groove portion, 10 and 10' are emitted light, and 11 is a photodetection layer. When manufacturing these semiconductor lasers with a monitor, etching is performed by chemically or physically perpendicular to the laser stripe-shaped implantation region, approximately perpendicular to the top surface of the wafer (usually the Vi (100) plane). The laser resonator end face was formed at the same time as element isolation. Therefore, the device structures of the laser and the photoreceiver were the same, and the light-receiving layer of the photoreceiver corresponded to the light-emitting layer of the laser. However, the layer is between 0.1 and 0.
It is as thin as 2 μm, and its emission width is several μm. In a normal laser, the emitted light spreads over an angle of several tens of degrees vertically and horizontally due to the phenomenon of light diffraction. However, the layer that receives the emitted light is 0.1
The thickness and width of ~0.27a are several μm, and the area that receives light is extremely small, making it difficult to obtain a sufficient function as a receiver for monitoring laser light. Distributed feedback W(D
FB) For lasers, methods are used to increase the coupling efficiency of the laser emitted light to the monitoring receiver by extending the laser's light-emitting layer to the monitor part or by slanting the laser end face with respect to the stripe (Murata) Others,' DFB laser/
"PD Monolithic Integrated Device", Proceedings of the 1985 National Conference of the Institute of Electronics and Communication Engineers, 931. P, 4-55:
JP-A-59-125659, Moni integrated semiconductor light emitting device). However, these methods have the disadvantage that the etching process for element isolation and the element grossing process are complicated, and they can only be applied to DFB type lasers.

さらに、これらのDFBレーザに限らず現在の通信用レ
ーザには一般に第6図に示した様な埋め込み構造が用い
られている。第6図において、2ノはInGaAsPキ
’ryプ層、22はp型InPクラッド層、23はIn
GaAsP発光層、24はn型InPクラッド層、25
はn型InP基板、26はレーザ電極(+)、27#i
レーザ電極(−)、28はn型InGaAsP層、29
はn型InP層、30はp型InP層である。当該レー
ザは先ず、n型InP基板25上に21から24の各層
を結晶成長させた後、メサ状にエツチングし、さらに2
8〜30の各層を結晶成長させて製作される。本埋め込
み構造をそのまま受光部として用いると、埋め込み構造
に起因し九漏れ電流が大きく、受光器としての雑音(暗
電流)が大きくなり、高感度な受光器を得にくく、歩留
シも低いという欠点があった・ 〔発明が解決しようとする問題点〕 本発明は、従来技術ではモニタ用受光器の受光面積が小
さいため検出感度が低い、暗電流増大による受光器の雑
音が大きいという問題を解決した光フアイバ伝送用光源
を高歩留シに提供することを目的とする。
Furthermore, not only these DFB lasers but also current communication lasers generally use an embedded structure as shown in FIG. In FIG. 6, 2 is an InGaAsP cap layer, 22 is a p-type InP cladding layer, and 23 is an InGaAsP cap layer.
GaAsP light emitting layer, 24 is n-type InP cladding layer, 25
is an n-type InP substrate, 26 is a laser electrode (+), 27#i
Laser electrode (-), 28 is n-type InGaAsP layer, 29
is an n-type InP layer, and 30 is a p-type InP layer. The laser first grows crystals of each layer 21 to 24 on an n-type InP substrate 25, and then etches them into a mesa shape.
It is fabricated by crystal growth of 8 to 30 layers. If this buried structure is used as it is as a light receiving section, leakage current will be large due to the buried structure, noise (dark current) as a light receiver will be large, it will be difficult to obtain a highly sensitive light receiver, and the yield will be low. Disadvantages - [Problems to be Solved by the Invention] The present invention solves the problems in the prior art, such as low detection sensitivity due to the small light-receiving area of the monitor light receiver, and large noise in the light receiver due to increased dark current. The purpose of this invention is to provide a light source for optical fiber transmission with high yield.

〔問題点を解決する次めの手段〕[Next method to solve the problem]

本発明は上記目的を達成するために、半導体レーザと該
半導体レーザの光出力モニタ用の半導体受光器を同一ウ
ェハ基板上に形成した光出力モニタ付半導体レーザにお
りて、レーザ発光部を限定する埋め込み層に対応する受
光器の埋め込み層の少なくとも一層は発光層のバンドギ
ャップエネルギ以下のパンドプヤツデエネルギをもち、
この発光層のバンドギャップエネルギ以下のバンドギャ
ップエネルギをもつ層はその上又は下の層の導電形と異
なる導電形であることを特徴とするものであ少、ま九、
他の発明はこれらの特徴に加えて、前記半導体レーザと
前記受光器間に前記半導体レーザからのモニタ光を前記
受光器へ導波する反射鏡又は/若しくはプリズムを設け
たことを特徴とするものである。
In order to achieve the above object, the present invention provides a semiconductor laser with an optical output monitor in which a semiconductor laser and a semiconductor photodetector for monitoring the optical output of the semiconductor laser are formed on the same wafer substrate, and the laser emitting part is limited. At least one layer of the buried layer of the photodetector corresponding to the buried layer has a bandgap energy less than or equal to the bandgap energy of the light emitting layer,
A layer having a bandgap energy lower than that of the light-emitting layer is characterized in that it has a conductivity type different from that of the layer above or below it.
Another invention is characterized in that, in addition to these features, a reflecting mirror and/or a prism is provided between the semiconductor laser and the light receiver for guiding monitor light from the semiconductor laser to the light receiver. It is.

〔作用〕 第1の発明は、■レーザ発光部を限定するための埋め込
み層のうち、少なくとも一層(受光層)のバンドギャッ
プエネルギを発光層よシ小さくし、厚くすることで、受
光面積を大きくし、受光量を高め、■当該層と当該層と
導伝型の異なる牛導体層のみを光検出に用いることで、
埋め込み構造に起因し九l1lf電流を低減するもので
ある。
[Function] The first invention is: (1) Among the buried layers for limiting the laser emitting part, the band gap energy of at least one layer (light receiving layer) is made smaller and thicker than that of the light emitting layer, thereby increasing the light receiving area. By increasing the amount of light received and using only the relevant layer and the conductor layer with a different conductivity type from the relevant layer for light detection,
This reduces the 9l1lf current due to the buried structure.

又、第2の発明は第1の発明に加え、レーザと受光器間
に反射鏡及び/あるいはプリズムを形成、し、レーザか
らの光を効率良く受光器に導くことによシ、受光量をよ
シ一層高めるものである。
Moreover, in addition to the first invention, the second invention forms a reflecting mirror and/or a prism between the laser and the light receiver, and efficiently guides the light from the laser to the light receiver, thereby increasing the amount of light received. It will further enhance your well-being.

〔実施例〕〔Example〕

以下図面を参照して本発明の実施例を詳細に説明する。 Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図(器)は本発明の第1特許請求の範囲記載発明の
実施例のうち、受光層の下に受光層と異なる導電性を有
する層を設けた場合を説明する斜視図であって、発光器
としてInGaAsP結晶中P埋め込み型レーザを有す
る場合の例である。第1図6)において%41および4
1′はp型I nGaAsP層、42および42’ F
ip型InPクラッド層、43はrnGaAsP発光層
、43′はInGaA+sP層、44はn型InP基板
、45はレーザ電極(→、45′は受光部電極(へ)、
46はレーザ電極(→、47はp型1 nGaA@Pキ
ャップ層、47′はp型InGaAsP受光層、48お
よび48′はn型InP層、49および49′はp型I
thP層、50はレーザ光、5)は受光部電極(→、5
2は分離溝、53はレーザ部分、54は受光部分である
FIG. 1 (container) is a perspective view illustrating a case in which a layer having a conductivity different from that of the light-receiving layer is provided below the light-receiving layer among the embodiments of the invention described in the first claim of the present invention. , is an example in which a P-embedded laser in an InGaAsP crystal is used as a light emitter. %41 and 4 in Figure 1 6)
1' is a p-type I nGaAsP layer, 42 and 42' F
ip type InP cladding layer, 43 rnGaAsP light emitting layer, 43' InGaA+sP layer, 44 n type InP substrate, 45 laser electrode (→, 45' light receiving part electrode (to),
46 is a laser electrode (→, 47 is a p-type 1 nGaA@P cap layer, 47' is a p-type InGaAsP light-receiving layer, 48 and 48' are n-type InP layers, 49 and 49' are p-type I
thP layer, 50 is a laser beam, 5) is a light receiving part electrode (→, 5
2 is a separation groove, 53 is a laser portion, and 54 is a light receiving portion.

ここでp@N極4極上5@電極46間に電圧を印加し1
発光部のp@電極45よりInGaAsP発光層43に
電流を注入すると上下左右に20’〜40゜程度の角度
でレーザ光50が放射される。この放射光はレーザ部分
53の両面よシ外部に放出されるため、実施例の素子配
置でレーザ光が受光部分54に入射される。ここでレー
ザ光は上記の如く拡がる之め、受光器のレーザ発光層よ
シもバンドギャップエネルギの小さい、p型InGaA
aP受光層47′へ入射する。この層47′メ\入射し
た光は十分に吸収されるまで電極45′での反射と受光
層47′とn型InP層48′間の屈折率差によシ、効
率良く受光層47′中に閉じ込められ、電子−正孔対を
発生する。ここで受光層47′はp型であt) 、 I
nGaAsP結晶中の電子の拡散長は通常2〜3μmで
あるから、受光層47′中において47′と48′間の
p−n接合より21a′n程度内で発生し九篭子はp−
n接合に到達し、光誘起電流となる。この様に本実施例
によればモニタ用受光器の受光量を増大させることが可
能である。素子分離@ 52 i 1Jアクテイブイオ
ンエツチング等で容易に形成可能である。さらに、本実
施例によれば、47′と48′層間にp−n接合を設け
ることで、電極配置が45′と51になp、レーザを構
成する各層41’ 、 42’ 、 4 j’と埋め込
み層に対応する各層47’ 、 4 g’ 、 49’
間での漏れ電流の影響が除去され、受光器の暗電流によ
る雑音を一桁以上減少せしめることが可能となると同時
に高歩留シ化も可能となる。
Here, a voltage is applied between the p@N electrode 4 and the upper 5@electrode 46.
When a current is injected into the InGaAsP light emitting layer 43 from the p@electrode 45 of the light emitting part, laser light 50 is emitted at an angle of about 20' to 40° vertically and horizontally. Since this emitted light is emitted to the outside from both sides of the laser portion 53, the laser light is incident on the light receiving portion 54 with the element arrangement of the embodiment. Here, since the laser light spreads as described above, the laser emitting layer of the receiver is also made of p-type InGaA, which has a small band gap energy.
The light is incident on the aP light-receiving layer 47'. The light incident on this layer 47' is efficiently absorbed into the light receiving layer 47' by reflection at the electrode 45' and the refractive index difference between the light receiving layer 47' and the n-type InP layer 48'. , and generates electron-hole pairs. Here, the light-receiving layer 47' is p-type, t), I
Since the diffusion length of electrons in nGaAsP crystal is usually 2 to 3 μm, the electron diffusion length occurs within about 21a'n from the p-n junction between 47' and 48' in the light-receiving layer 47', and the
It reaches the n-junction and becomes a photo-induced current. In this way, according to this embodiment, it is possible to increase the amount of light received by the monitoring light receiver. Element isolation @ 52 i It can be easily formed by 1J active ion etching or the like. Further, according to this embodiment, by providing a p-n junction between layers 47' and 48', the electrode arrangement is changed to 45' and 51p, and each layer 41', 42', 4j' constituting the laser is and each layer 47', 4g', 49' corresponding to the buried layer
This eliminates the influence of leakage current between the photodetectors, making it possible to reduce the noise due to the dark current of the photoreceiver by more than an order of magnitude, and at the same time making it possible to achieve high yields.

第1図(b)は本発明の第1vf許請求の範囲記載発明
の実施例のうち、受光層の上に受光層と異なる導電性を
有する層を設けた場合を説明する受光器(レーザ)の断
面図である。埋め込み各層の順序および受光器の電極配
置が異なっているが、動作は第1図(&)の実施例と同
じである。第1図(b)中、55はn型InGaA、s
P層である。
FIG. 1(b) shows a light receiver (laser) in which a layer having a conductivity different from that of the light-receiving layer is provided on the light-receiving layer among the embodiments of the invention described in the first vf of the present invention. FIG. Although the order of the buried layers and the electrode arrangement of the photodetector are different, the operation is the same as the embodiment shown in FIG. 1(&). In FIG. 1(b), 55 is n-type InGaA, s
This is the P layer.

なお、第1図(a)、第1図(b)はそれぞれ3層構造
、4層宿造になっているが、PN接合に逆バイアスがか
かるような構造になっていれば、例えば2層だけでもよ
い。
Note that Figures 1(a) and 1(b) have a three-layer structure and a four-layer structure, respectively, but if the structure is such that a reverse bias is applied to the PN junction, for example, a two-layer structure may be used. It's fine just by itself.

但し、積層されたレーザ部分と受光部分は同じ層の構造
をしている。
However, the laminated laser part and light receiving part have the same layer structure.

もちろん、異なる導電形を有するf”;i 47’はと
の位置に入ってもよい。
Of course, f'';i 47' having different conductivity types may be placed in the position.

以上の説明はn型基板を用いた場合の例であるが、p型
基板を用−ても本発明が適用できること、受光層はp型
でもn型でも本発明が有効であることは言うまでもない
Although the above explanation is an example using an n-type substrate, it goes without saying that the present invention can be applied even if a p-type substrate is used, and that the present invention is effective regardless of whether the light-receiving layer is a p-type or an n-type. .

第2図から第4図は本発明の第2特許請求の範囲記載発
明の実施例であり、レーザ部分53からのモニタ光を反
射面58で反射あるいはプリズム入射面59で屈折させ
ることによシ、効率良く第1図における受光層47′に
入射させるものである。
2 to 4 show embodiments of the invention described in the second claim of the present invention, in which the monitor light from the laser portion 53 is reflected by the reflective surface 58 or refracted by the prism entrance surface 59. , the light is efficiently incident on the light-receiving layer 47' in FIG.

これらの図は受光部の形状以外は第1図の上面図に対応
している。ここで反射面58での反射光56あるいは入
射面59での屈折光57を、第2図と第3図に示した様
な受光部の形状および電極配置とし、別々に検出するの
と、受光器部分の形状を第4図に示した様にし、同時に
利用するのが第2の発明である。レーザからの放出光は
上下左右に拡がるが最も光強度が大きいのは発光層43
の直線外挿上にある。しかし、受光層47′はこの外挿
上にはない。故に、58.59の面を設けてレーザ光を
発光層43の直線外挿上から曲げることにより、受光層
47′の受光量をよシ一層増加させることができる。さ
らに、面58および59を設け、レーザ光の当該面への
入射角度を調整することによシ、受光器からレーザ発光
層43への戻り光を除去することが可能であり、本実施
例によれば戻り光による雑音のなり光出力モニタ付半導
体レーザの提供が可能である。実施例では反射鏡および
プリズムを受光器に組み込んだ形に記述したが、反射鏡
あるいはプリズムを溝52中に独立して形成しても同じ
効果が得られる。
These figures correspond to the top view of FIG. 1 except for the shape of the light receiving section. Here, the reflected light 56 on the reflective surface 58 or the refracted light 57 on the incident surface 59 can be detected separately by using the shape and electrode arrangement of the light receiving section as shown in FIGS. 2 and 3. The second invention is to make the shape of the container part as shown in FIG. 4 and to use them at the same time. The light emitted from the laser spreads vertically and horizontally, but the light intensity is highest in the light emitting layer 43.
is on the linear extrapolation of . However, the light-receiving layer 47' is not on this extrapolation. Therefore, by providing a plane of 58.59 and bending the laser light from the linear extrapolation of the light emitting layer 43, the amount of light received by the light receiving layer 47' can be further increased. Furthermore, by providing surfaces 58 and 59 and adjusting the angle of incidence of the laser beam on the surfaces, it is possible to remove the return light from the light receiver to the laser emitting layer 43. According to the present invention, it is possible to provide a semiconductor laser with a light output monitor that eliminates noise due to returned light. In the embodiment, the reflecting mirror and prism are incorporated into the light receiver, but the same effect can be obtained even if the reflecting mirror or prism is formed independently in the groove 52.

以上、InGaAsP/InP系の7アプリペロー型埋
め込みレーザを例に説明し次が、本発明は他の材料から
成るレーザおよび他の構造の素子にっbても当然有効で
あるし、光フアイバ伝送用以外の光源にも適用可能であ
る。さらに、第2図と第3図に示し次実施例を組合せる
ことにより2つの受光器を同時に動作させることも可能
である。
The above explanation uses an InGaAsP/InP-based 7-apple-Perot type buried laser as an example.Next, the present invention is of course effective for lasers made of other materials and elements of other structures, It is also applicable to light sources other than those for use. Furthermore, by combining the following embodiments shown in FIGS. 2 and 3, it is also possible to operate two light receivers simultaneously.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明はレーザからのモニタ光を
効率良く受光でき、暗電流の小さい受光器を有する光出
力モニタ付半導体レーザであるから、光フアイバ伝送用
モノリシック光源として利用が可能である。さらに埋め
込みレーザ用ウェハよシ、レーザおよび構造の単純な受
光器を作製することができ、素子製作、プロセスも簡便
であるから、歩留シ良く、経済的な素子提供が可能であ
る。
As explained above, the present invention is a semiconductor laser with an optical output monitor that can efficiently receive monitor light from a laser and has a light receiver with a small dark current, so it can be used as a monolithic light source for optical fiber transmission. . Furthermore, it is possible to manufacture a wafer for an embedded laser, a laser, and a light receiver with a simple structure, and the device manufacturing and process are simple, so it is possible to provide an economical device with a high yield.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(&)は本発明の一実施例の概要を示す斜視図、
第1図(b) Fi本発明の他の実施例の概要を示す断
面図、第2図〜第4図は本発明に係る他の発明の実施例
の概要を示す断面図、第5図は従来のモニタ付レーザの
概要を示す斜視図、第6図は従来の埋め込み型レーザの
概要を示す断面図である。 41および41’ = p型InGaAsP層、42お
よび42’ = p型InPクラッド層、43 ・・・
InGaAsP発光層、43’ = InGaAsP層
、44− n型1nP基板、45・・・レーザ電極(+
)、45′・・・受光部電極(−)、46−・・レーザ
発光層(−)、47 = p型InGaAsPギ−yツ
ブ層、47’ ・・・p型1nGaAsP受光層、48
および419’ ・n型InP層、49および49’ 
・・・p型1nP層、50・・・レーザ光、51・・・
受光部電極(+)、52・・・分離溝、53・・・レー
ザ部分、54・・・受光部分。 出願人代理人  弁理士 鈴 江 武 彦41 41’
: PiInGaAsP層            4
7:  P’l!InGaAsPty−ノフ81%42
.42: Pi InP 7フツとJ        
    47’: Pt1nGaAsρ受光・−43:
InGaAsP発光層          48.48
’: n型1nP愚45 :  t−t ’Eji)F
 (+)            51麦% ’r15
を層(十)45′二玄尤並を抽(−)        
52:介雛溝第1図 第2図 第3図 第5図
FIG. 1 (&) is a perspective view showing an outline of an embodiment of the present invention;
Fig. 1(b) is a sectional view showing an outline of another embodiment of the present invention, Figs. 2 to 4 are sectional views showing an outline of another embodiment of the invention, and Fig. FIG. 6 is a perspective view schematically showing a conventional laser with a monitor, and FIG. 6 is a cross-sectional view schematically showing a conventional embedded laser. 41 and 41' = p-type InGaAsP layer, 42 and 42' = p-type InP cladding layer, 43...
InGaAsP light emitting layer, 43' = InGaAsP layer, 44- n-type 1nP substrate, 45... laser electrode (+
), 45'... Light-receiving part electrode (-), 46-... Laser emitting layer (-), 47 = p-type InGaAsP gear layer, 47'... p-type 1nGaAsP light-receiving layer, 48
and 419' - n-type InP layer, 49 and 49'
...p-type 1nP layer, 50...laser light, 51...
Light receiving part electrode (+), 52... Separation groove, 53... Laser part, 54... Light receiving part. Applicant's agent Patent attorney Takehiko Suzue 41 41'
: PiInGaAsP layer 4
7: P'l! InGaAsPty-Nof 81%42
.. 42: Pi InP 7 Futu and J
47': Pt1nGaAsρ light reception・-43:
InGaAsP light emitting layer 48.48
': n-type 1nP gu45: t-t 'Eji)F
(+) 51% wheat 'r15
Draw the layer (10) 45' two xuanyu average (-)
52:Kaibinomizo Figure 1 Figure 2 Figure 3 Figure 5

Claims (2)

【特許請求の範囲】[Claims] (1)半導体レーザと該半導体レーザの光出力モニタ用
の半導体受光器を同一ウェハ基板上に形成した光出力モ
ニタ付半導体レーザにおいて、レーザ発光部を限定する
埋め込み層に対応する受光器の埋め込み層の少なくとも
一層は発光層のバンドギャップエネルギ以下のバンドギ
ャップエネルギをもち、この発光層のバンドギャップエ
ネルギ以下のバンドギャップエネルギをもつ層はその上
又は下の層の導電形と異なる導電形であることを特徴と
する光出力モニタ付半導体レーザ。
(1) In a semiconductor laser with an optical output monitor in which a semiconductor laser and a semiconductor optical receiver for monitoring the optical output of the semiconductor laser are formed on the same wafer substrate, the buried layer of the optical receiver corresponds to the buried layer that limits the laser emitting part. At least one layer of the layer has a bandgap energy less than or equal to the bandgap energy of the light emitting layer, and the layer having a bandgap energy less than or equal to the bandgap energy of the light emitting layer has a conductivity type different from that of the layer above or below it. A semiconductor laser with an optical output monitor featuring:
(2)半導体レーザと該半導体レーザの光出力モニタ用
の半導体受光器を同一ウェハ基板上に形成した光出力モ
ニタ付半導体レーザにおいて、レーザ発光部を限定する
埋め込み層に対応する受光器の埋め込み層の少なくとも
一層は発光層のバンドギャップエネルギ以下のバンドギ
ャップエネルギをもち、この発光層のバンドギャップエ
ネルギ以下のバンドギャップをもつ層はその上又は下の
層の導電形と異なる導電形であり、前記半導体レーザと
前記受光器間に前記半導体レーザからのモニタ光を前記
受光器へ導波する反射鏡又は/若しくはプリズムを設け
たことを特徴とする光出力モニタ付半導体レーザ。
(2) In a semiconductor laser with an optical output monitor in which a semiconductor laser and a semiconductor optical receiver for monitoring the optical output of the semiconductor laser are formed on the same wafer substrate, the buried layer of the optical receiver corresponds to the buried layer that limits the laser emitting part. At least one layer of the layer has a bandgap energy less than or equal to the bandgap energy of the light-emitting layer, and the layer having a bandgap less than or equal to the bandgap energy of the light-emitting layer has a conductivity type different from that of the layer above or below it, and A semiconductor laser with an optical output monitor, characterized in that a reflecting mirror and/or a prism for guiding monitor light from the semiconductor laser to the light receiver is provided between the semiconductor laser and the light receiver.
JP61255158A 1986-10-27 1986-10-27 Semiconductor laser with optical output monitor Pending JPS63108790A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61255158A JPS63108790A (en) 1986-10-27 1986-10-27 Semiconductor laser with optical output monitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61255158A JPS63108790A (en) 1986-10-27 1986-10-27 Semiconductor laser with optical output monitor

Publications (1)

Publication Number Publication Date
JPS63108790A true JPS63108790A (en) 1988-05-13

Family

ID=17274867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61255158A Pending JPS63108790A (en) 1986-10-27 1986-10-27 Semiconductor laser with optical output monitor

Country Status (1)

Country Link
JP (1) JPS63108790A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0389577A (en) * 1989-08-31 1991-04-15 Nec Corp Semiconductor optical device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5474688A (en) * 1977-11-26 1979-06-14 Sharp Corp Manufacture for photo semiconducdtor device with monitor
JPS58162090A (en) * 1982-03-23 1983-09-26 Nippon Telegr & Teleph Corp <Ntt> Semiconductor laser

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5474688A (en) * 1977-11-26 1979-06-14 Sharp Corp Manufacture for photo semiconducdtor device with monitor
JPS58162090A (en) * 1982-03-23 1983-09-26 Nippon Telegr & Teleph Corp <Ntt> Semiconductor laser

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0389577A (en) * 1989-08-31 1991-04-15 Nec Corp Semiconductor optical device

Similar Documents

Publication Publication Date Title
US4493113A (en) Bidirectional fiber optic transmission systems and photodiodes for use in such systems
US4709413A (en) Bidirectional fiber optic systems
US5838708A (en) Integration of surface emitting laser and photodiode for monitoring power output of surface emitting laser
US6104047A (en) Avalanche photodiode with thin built-in depletion region
JP3221916B2 (en) Optoelectronic device with integrated optical guide and photodetector
JPS58186986A (en) Distributed feedback semiconductor laser with monitor
US4577209A (en) Photodiodes having a hole extending therethrough
US5281829A (en) Optical semiconductor device having semiconductor laser and photodetector
JP2710070B2 (en) Semiconductor light receiving element and optical semiconductor device using this semiconductor light receiving element
JPH06268196A (en) Optical integrated device
JPS63108790A (en) Semiconductor laser with optical output monitor
CN114365359B (en) Semiconductor laser device
JP2965139B2 (en) Waveguide type semiconductor photo detector
JPS5931872B2 (en) Optical semiconductor device
JP2633234B2 (en) Optical semiconductor device
JPS6380590A (en) Semiconductor laser with optical output monitor
US4937638A (en) Edge emitting light emissive diode
JPS62143486A (en) Surface light emitting type luminous element
JPH09135049A (en) Integration of surface-luminescence-laser with photodiode for monitoring its power output
KR100289043B1 (en) Vertical fluorescent integrated circuit
JPS6320398B2 (en)
JP3272060B2 (en) Semiconductor element
JP2002305319A (en) Semiconductor light receiving element and module for optical communication
JPH0562472B2 (en)
JPS6338269A (en) End face type photodiode