JPS5931872B2 - Optical semiconductor device - Google Patents

Optical semiconductor device

Info

Publication number
JPS5931872B2
JPS5931872B2 JP51083872A JP8387276A JPS5931872B2 JP S5931872 B2 JPS5931872 B2 JP S5931872B2 JP 51083872 A JP51083872 A JP 51083872A JP 8387276 A JP8387276 A JP 8387276A JP S5931872 B2 JPS5931872 B2 JP S5931872B2
Authority
JP
Japan
Prior art keywords
light
semiconductor
photodiode
receiving surface
emitting element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51083872A
Other languages
Japanese (ja)
Other versions
JPS539491A (en
Inventor
直人 茂木
陽一 海野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP51083872A priority Critical patent/JPS5931872B2/en
Publication of JPS539491A publication Critical patent/JPS539491A/en
Publication of JPS5931872B2 publication Critical patent/JPS5931872B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 この発明は半導体発光素子とその発光をモニタするため
の半導体光検出素子とを一体化してなる光半導体装置に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical semiconductor device that integrates a semiconductor light emitting element and a semiconductor photodetector element for monitoring the light emission thereof.

半導体発光素子と半導体光検出素子とを一体化した半導
体装置として、いわゆるホトカプラーがある。
2. Description of the Related Art A so-called photocoupler is a semiconductor device that integrates a semiconductor light emitting element and a semiconductor photodetecting element.

これは半導体発光素子からの光を可能な限り半導体検出
素子で受光すべく画素子が配置され、かつ二つの電気回
路を電気回路を電気的に分離するために用いられること
からも明らかなよ5に、画素子は完全に電気的に分離さ
れるべく配置されている。この発明はホトカプラーとは
異なり、出力光が外部に取出されて所望の用途に供され
る半導体発光素子とその発光状態を単にモニタするため
の半導体光検出素子とを一体化しよラといラもので、こ
の種の半導体装置は未だ作られていない。
This is clear from the fact that the pixel element is arranged so that the semiconductor detection element receives as much light as possible from the semiconductor light emitting element, and is also used to electrically separate two electric circuits. In addition, the pixel elements are arranged to be completely electrically isolated. This invention differs from a photocoupler in that it integrates a semiconductor light-emitting element whose output light is extracted to the outside and is used for a desired purpose, and a semiconductor light-detecting element for simply monitoring its light-emitting state. , this type of semiconductor device has not yet been produced.

発光素子と光検出素子をパッケージの基台に一体的にマ
ウントしよラとすれば、常識的には発光素子からの光に
対して光検出素子の受光面が垂直になるように画素子を
配置することになる。例えば発光素子がpn接合素子で
かつそのpn接合面に平行に光を放射するものであり、
光検出素子がやはりpn接合素子であるとすると、画素
子はpn接合面が互いに直交するようにマウントするこ
とになる。しかし、平坦なマウント基台上に発光素子チ
ップと光検出素子チップとを互に直交させてマウントす
ることは容易ではなく、またマウントできたとしてもリ
ード線の取出しが難しい。一方、半導体レーザや高輝度
発光ダイオードのような場合には光出力として100m
Wを超すものがあるが、シリコンpn接合ダイオードや
シリコンpinホトダイオードのような場合、受光面積
が10mmφのものでも光電変換特性の直線が保持され
るのは、たかだか10mW程度である。
If the light-emitting element and the photo-detecting element are to be mounted integrally on the base of the package, common sense suggests that the pixel element should be mounted so that the light-receiving surface of the photo-detecting element is perpendicular to the light from the light-emitting element. It will be placed. For example, the light emitting element is a pn junction element and emits light parallel to the pn junction surface,
If the photodetector element is also a pn junction element, the pixel elements will be mounted so that the pn junction planes are orthogonal to each other. However, it is not easy to mount the light emitting element chip and the photodetecting element chip on a flat mounting base so that they are perpendicular to each other, and even if they can be mounted, it is difficult to take out the lead wires. On the other hand, in the case of semiconductor lasers and high-intensity light emitting diodes, the optical output is 100m.
Although there are some devices that exceed W, in the case of silicon pn junction diodes and silicon pin photodiodes, even if the light receiving area is 10 mmφ, the straight line of the photoelectric conversion characteristic is maintained at about 10 mW at most.

この点を考えると、発光素子の光をモニタするためには
、ホトカプラーにおけるように光検出素子を可能な限り
の光を受光するように配置することは必ずしも必要では
なく、発光の一部を確実に検出することができればよい
。この発明は上記した点に鑑み、マウント工程およびリ
ード線取出し工程が容易で、出力光が所望の用途に供さ
れる半導体発光素子とその発光状態をモニタする半導体
光検出素子とをパッケージ内に小型に一体化した光半導
体装置を提供するものでめる。
Considering this point, in order to monitor the light of a light emitting element, it is not necessarily necessary to arrange the photodetector element so that it receives as much light as possible, as in a photocoupler, but to ensure that only a portion of the emitted light is received. It is sufficient if it can be detected. In view of the above-mentioned points, the present invention provides a compact package in which a semiconductor light emitting element whose mounting process and lead wire extraction process are easy, and whose output light is used for a desired purpose, and a semiconductor photodetector element which monitors its light emitting state. The Company provides an optical semiconductor device integrated with the above.

即ち、この発明に係る光半導体装置は、パツケ−ジ基台
上に、端面放射型の半導体発光素子とその発光状態をモ
ニタするための半導体光検出素子とを前記発光素子から
放射される光の中心軸が前記光検出素子の受光面と平行
になるように層状に重ねてマウントし、前記発光素子か
ら一定の広がりをもつて放射される光の一部を前記光検
出素子に入射させるようにしたことを特徴としている。
That is, in the optical semiconductor device according to the present invention, an edge-emitting type semiconductor light emitting element and a semiconductor photodetecting element for monitoring the light emission state of the semiconductor light emitting element are mounted on a package base, and the light emitted from the light emitting element is disposed on the package base. Mounted in layers so that the central axis is parallel to the light-receiving surface of the photodetection element, and a part of the light emitted from the light emitting element with a certain spread is incident on the photodetection element. It is characterized by what it did.

この発明の一実施例を第1図に示す。これは半導体発光
素子としてGaAs−GaAtAsダブルヘテロ接合構
造の半導体レーザ素子を、半導体光検出素子としてシリ
コンPn接合ホトダイオードをそれぞれ用いた場合の一
例である。即ち、シリコンPn接合ホトダイオード1は
その受光面11側に浅いPn接合面12が形成されてお
り、n側オーミツク電極12は全面に設けられ、このn
側オーミツク電極13を下にしてパツケージ基台3にマ
ウントされている。このホトダイオード1のp側オーミ
ツク電極14はp層表面の一部に配設?れ、このp側オ
ーミツク電極14の上にGaAs一GaAtAsダブル
ヘテロ接合半導体レーザ素子2がそのPn接合面21が
前記ホトダイオード1の受光面11と平行になるように
マウントされている。この場合、半導体レーザ素子2の
p側オーミツク電極22を下にし、これがダイオード1
のp側オーミツク電極14と接するような極性でマウン
トされる。そして、ホトダイオード1のp側オーミツク
電極14からホトダイオード1於よび半導体レーザ素子
2の共通p側リード線41を取り出し、半導体レーザ素
子2の表面のn側オーミツク電極23からそのn側リー
ド線42を取り出している。つまり、ホトダイオード1
と半導体レーザ素子2とを両者のPn接合面が互いに平
行になるように、かつ一方の電極を実質的に共有するよ
うに層状に重ねてマウントしたものである。このように
半導体レーザ素子2とホトダイオード1とを一体化して
、半導体レーザ素子2に電流注入を行うと、レーザ素子
2の相対する2つの端面からレーザ光51,52が、そ
れぞれPn接合面21に垂直な方向には50度の広がり
角をもち、Pn接合面21に平行な方向には10度の広
がり角をもつて放射される。これらレーザ光51,52
のうち一方のレーザ光51の一部は6大きな広がり角を
もつためにレーザ51の中心軸と平行に配置されたホト
ダイオード1の受光面11に入射する。放射されたレー
ザ光51のうちホトダイオード1に受光される割合は、
ホトダイオード1の受光面11のレーザ光放射方向の長
さ、受光面11から半導体レーザ素子2のPn接合面2
1までの高さ等を変えることによつて任意に設定するこ
とができ、この光検出出力により半導体レーザ素子2の
発光出力強度をモニタすることができる。半導体レーザ
素子2からのレーザ光51,52の大部分はそのまま光
出力として外部に取出され,所望の用途に供せられる。
以上のように、半導体レーザ素子とホトダイオードを層
状に重ねてマウントすれば、例えば一方を他方に対して
垂直になるようにマウントする場合に比べてマウント工
程は明らかに簡単になる。
An embodiment of this invention is shown in FIG. This is an example in which a semiconductor laser element with a GaAs-GaAtAs double heterojunction structure is used as a semiconductor light emitting element, and a silicon Pn junction photodiode is used as a semiconductor photodetector element. That is, the silicon Pn junction photodiode 1 has a shallow Pn junction surface 12 formed on its light-receiving surface 11 side, and the n-side ohmic electrode 12 is provided on the entire surface.
It is mounted on the package base 3 with the side ohmic electrode 13 facing down. Is the p-side ohmic electrode 14 of this photodiode 1 disposed on a part of the p-layer surface? A GaAs-GaAtAs double heterojunction semiconductor laser device 2 is mounted on the p-side ohmic electrode 14 so that its Pn junction surface 21 is parallel to the light-receiving surface 11 of the photodiode 1. In this case, the p-side ohmic electrode 22 of the semiconductor laser device 2 is placed downward, and this
It is mounted with such polarity that it comes into contact with the p-side ohmic electrode 14 of. Then, the common p-side lead wire 41 of the photodiode 1 and the semiconductor laser device 2 is taken out from the p-side ohmic electrode 14 of the photodiode 1, and the n-side lead wire 42 is taken out from the n-side ohmic electrode 23 on the surface of the semiconductor laser device 2. ing. In other words, photodiode 1
and a semiconductor laser element 2 are stacked and mounted in layers so that their Pn junction surfaces are parallel to each other and one electrode is substantially shared. When the semiconductor laser element 2 and the photodiode 1 are integrated in this way and current is injected into the semiconductor laser element 2, laser beams 51 and 52 are emitted from the two opposing end faces of the laser element 2 to the Pn junction surface 21, respectively. It is emitted with a spread angle of 50 degrees in the vertical direction and with a spread angle of 10 degrees in the direction parallel to the Pn junction surface 21. These laser beams 51, 52
A portion of one of the laser beams 51 has a large spread angle and therefore enters the light receiving surface 11 of the photodiode 1 arranged parallel to the central axis of the laser 51. The proportion of the emitted laser light 51 that is received by the photodiode 1 is:
The length of the light-receiving surface 11 of the photodiode 1 in the laser beam emission direction, from the light-receiving surface 11 to the Pn junction surface 2 of the semiconductor laser element 2
It can be set arbitrarily by changing the height etc. up to 1, and the light emission output intensity of the semiconductor laser element 2 can be monitored by this photodetection output. Most of the laser beams 51 and 52 from the semiconductor laser element 2 are directly extracted to the outside as optical output and used for desired purposes.
As described above, if the semiconductor laser element and the photodiode are mounted in a layered manner, the mounting process is obviously simpler than, for example, when one is mounted perpendicular to the other.

また、それぞれの素子電極にワイヤボンデイング等によ
りリード線をとりつける作業も、画素子の電極面が平行
になるため簡単になる。2つの素子が層状に種み重ねら
れるため、全体として小型になるという効果もある。
Furthermore, the work of attaching lead wires to each element electrode by wire bonding or the like becomes easier because the electrode surfaces of the pixel elements are parallel. Since the two elements are stacked on top of each other in a layered manner, there is also the effect that the overall size can be reduced.

具体例として、第1図の構成でGaAs−GaAtAs
ダブルヘテロ接合半導体レーザ素子2の光出力を10m
Wとし、シリコンPn接合ホトダイオード1の受光面1
1の面積を2mmX51Lmとしたとき、ホトダイオー
ド1の出力として0.8mAの電流が得られた。
As a specific example, in the configuration shown in FIG. 1, GaAs-GaAtAs
Optical output of double heterojunction semiconductor laser device 2 is 10m
W, and the light-receiving surface 1 of the silicon Pn junction photodiode 1
When the area of photodiode 1 was 2 mm x 51 Lm, a current of 0.8 mA was obtained as the output of photodiode 1.

また、レーザ光51を後方で観測した結果、放射パター
ンには受光面11からの反射によつて生じた干渉縞が現
われていたが、レーザ光51のビーム広がり角にはもと
もとの広がり角に比べて変化は見られず、その光出力は
8mWであつた。このように、ホトダイオード1には半
導体レーザ素子2の発光強度のモニタとして十分な出力
が得られ、また半導体レーザ素子2のホトダイオード受
光面11側に放射されたレーザ光51を単にモニタ用と
してではなく、充分大きなレーザ光出力として取出すこ
とができた。第2図はこの発明の別の実施例で、第1図
と相対応する部分には第1図と同一符号を付してある。
この例ではホトダイオード1のPn接合面12を受光面
11の下部のみに形成し、半導体レーザ素子2をホトダ
イオード1のn型導電層上のn側オーミツク電極13″
の上に設けている。従つて、第1図のホトダイオード1
のp側オーミツク電極14に相当するp側オーミツク電
極145は受光面11の周辺部に配置している。この構
造により、ホトダイオード1のn側オーミツク電極13
,13′と半導体レーザ素子2のp側オーミツク電極2
2を電気的に基台3と共通にして接地することができる
。第3図は第2図の変形例で、第2図と相対応する部分
には第2図と同一符号を付してある。
Furthermore, as a result of observing the laser beam 51 from behind, interference fringes caused by reflection from the light-receiving surface 11 appeared in the radiation pattern, but the beam spread angle of the laser beam 51 was larger than the original spread angle. No change was observed, and the optical output was 8 mW. In this way, the photodiode 1 can obtain sufficient output to monitor the emission intensity of the semiconductor laser element 2, and the laser beam 51 emitted to the photodiode light receiving surface 11 side of the semiconductor laser element 2 can be used not only for monitoring purposes. , it was possible to extract a sufficiently large laser light output. FIG. 2 shows another embodiment of the invention, in which parts corresponding to those in FIG. 1 are given the same reference numerals as in FIG.
In this example, the Pn junction surface 12 of the photodiode 1 is formed only on the lower part of the light receiving surface 11, and the semiconductor laser element 2 is formed on the n-side ohmic electrode 13'' on the n-type conductive layer of the photodiode 1.
It is placed on top of the . Therefore, photodiode 1 in FIG.
A p-side ohmic electrode 145 corresponding to the p-side ohmic electrode 14 is arranged at the periphery of the light-receiving surface 11. With this structure, the n-side ohmic electrode 13 of the photodiode 1
, 13' and the p-side ohmic electrode 2 of the semiconductor laser element 2.
2 can be electrically connected to the base 3 and grounded. FIG. 3 is a modification of FIG. 2, and parts corresponding to those in FIG. 2 are given the same reference numerals as in FIG. 2.

これはホトダイオード1の受光面11と半導体レーザ素
子2をマウントする面の間に、メサエツチングによる段
差を設けたものである。ホトダイオード1の検出感度が
高い場合にはレーザ光51のごく一部が受光面11に吸
収されわばよく、このように段差をつけることにより受
光面11VC吸収される割合を少なく1,て、レーザ光
51を十分大きな光出力として取出すことができる。こ
の場合、段差を変えることにより、受光面11に人射す
る割合を任意に設定することができる。第4図は更に別
の実施例であり、第1図に示したホトダイオード1と半
導体レーザ素子2のマウント順を変えたものである。
This is a step formed by mesa etching between the light receiving surface 11 of the photodiode 1 and the surface on which the semiconductor laser element 2 is mounted. When the detection sensitivity of the photodiode 1 is high, only a small portion of the laser beam 51 is absorbed by the light-receiving surface 11, and by providing a step in this way, the proportion of the light-receiving surface 11VC absorbed can be reduced. The light 51 can be extracted as a sufficiently large optical output. In this case, by changing the level difference, the proportion of human radiation onto the light receiving surface 11 can be arbitrarily set. FIG. 4 shows still another embodiment, in which the mounting order of the photodiode 1 and the semiconductor laser element 2 shown in FIG. 1 is changed.

この例ではホトダイオード1の受光面11と基台3の間
にホトダイオード1を安定に保持するため光透過性絶縁
物6を介在させている。この場合も、レーザ光51のう
ち光透過性絶縁物6より漏洩する光は広がり角の大きな
成分でろつて、受光面11に対し平行な面を直進するレ
ーザ光成分は光透過性絶縁物6を通り抜けるがゆえに、
レーザ光51のうち一定の割合をホイダイオード1に受
光させることができる。光透過性絶縁物6としてはスラ
ブ導波路、光学フアイバのように導波路構造を有するも
のであつても、単なるガラス板の如きものであつてもよ
い。また、このような光透過性絶縁物を第1図〜第3図
の実施例の受光面11上に置いてもよい。なお・、以上
の実施例では半導体発光素子としてGaAs−GaAt
Asダブルヘテロ接合半導体レーザ素子を用いたが、電
極面に平行な方向に光が放射されるいわゆる端面放射型
構造であればどのような発光素子であつてもよい。また
半導体光検出素子としてもシリコンPn接合ホトダイオ
ードに限らず、Pinホトダイオード、シヨツトキーバ
リア・ホトダイオード、アバランシエ・ホトダイオード
等、他の素子を用いることができる。以上詳細に説明し
たように、この発明によればマウント工程訃よびリード
線取出し工程が容易で、出力光が所望の用途に供される
端面放射型の半導体発光素子とその発光状態をモニタす
る半導体光検出素子とをパツケージ内に小型に一体化し
た光半導体装置を提供することができる。
In this example, a light-transmitting insulator 6 is interposed between the light-receiving surface 11 of the photodiode 1 and the base 3 in order to stably hold the photodiode 1. In this case as well, the light that leaks from the light-transmissive insulator 6 out of the laser light 51 is a component with a large spread angle and is lost, and the laser light component that travels straight on a plane parallel to the light-receiving surface 11 passes through the light-transparent insulator 6. Because it passes through,
A certain proportion of the laser beam 51 can be received by the Hoy diode 1. The light-transmitting insulator 6 may have a waveguide structure such as a slab waveguide or an optical fiber, or may be a simple glass plate. Further, such a light-transmitting insulator may be placed on the light-receiving surface 11 of the embodiments shown in FIGS. 1 to 3. Note that in the above embodiments, GaAs-GaAt is used as the semiconductor light emitting device.
Although an As double heterojunction semiconductor laser device is used, any light emitting device may be used as long as it has a so-called edge-emitting structure in which light is emitted in a direction parallel to the electrode surface. Further, the semiconductor photodetecting element is not limited to a silicon Pn junction photodiode, but other elements such as a pin photodiode, a shot key barrier photodiode, an avalanche photodiode, etc. can be used. As explained in detail above, according to the present invention, the mounting process and the lead wire extraction process are easy, and the edge-emitting type semiconductor light emitting element whose output light can be used for a desired purpose and the semiconductor device that monitors its light emitting state are provided. It is possible to provide an optical semiconductor device in which a photodetecting element is integrated into a compact package.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明に係る光半導体装置の一例を示す模式
的斜視図、第2図は他の実施例を示す模式的斜視図、第
3図は第2図の変形例を示す模式的斜視図、第4図は更
に他の実施例を示す模式的断面図である。 1・・・シリコンPn接合ホトダイオード、11・・・
受光面、12・・・Pn接合面、13,13′・・・n
側オーミツク電極、14,14″・・・p側オーミツク
電極、2・・・GaAs−GaAtAsダブルヘテロ接
合半導体レーザ素子、21・・・Pn接合、22・・・
p側オーミツク電極、23・・・n側オーミツク電極、
3・・・パツケージ基台、41,42・・・リード線、
51,52・・・レージ光、6・・・光透過性絶縁物。
FIG. 1 is a schematic perspective view showing an example of an optical semiconductor device according to the present invention, FIG. 2 is a schematic perspective view showing another embodiment, and FIG. 3 is a schematic perspective view showing a modification of FIG. 2. FIG. 4 is a schematic sectional view showing still another embodiment. 1... Silicon Pn junction photodiode, 11...
Light receiving surface, 12...Pn junction surface, 13, 13'...n
Side ohmic electrode, 14,14''...p side ohmic electrode, 2...GaAs-GaAtAs double heterojunction semiconductor laser element, 21...Pn junction, 22...
p-side ohmic electrode, 23...n-side ohmic electrode,
3... Package cage base, 41, 42... Lead wire,
51, 52... Ray light, 6... Light-transmitting insulator.

Claims (1)

【特許請求の範囲】[Claims] 1 パッケージ基台上に、出力光が所望の用途に供され
る端面放射型の半導体発光素子とその発光状態をモニタ
するための半導体光検出素子とを前記発光素子から放射
される光の中心軸が前記光検出素子の受光面と平行にな
るように層状に重ねてマウントし、前記発光素子から一
定の広がりをもつて放射される光の一部を前記光検出素
子に入射させるようにしたことを特徴とする光半導体装
置。
1. On a package base, an edge-emitting semiconductor light emitting element whose output light is used for a desired purpose and a semiconductor photodetector element for monitoring its light emission state are placed on a central axis of light emitted from the light emitting element. are mounted in layers so as to be parallel to the light-receiving surface of the light-detecting element, and a part of the light emitted from the light-emitting element with a certain spread is made to enter the light-detecting element. An optical semiconductor device characterized by:
JP51083872A 1976-07-14 1976-07-14 Optical semiconductor device Expired JPS5931872B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP51083872A JPS5931872B2 (en) 1976-07-14 1976-07-14 Optical semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51083872A JPS5931872B2 (en) 1976-07-14 1976-07-14 Optical semiconductor device

Publications (2)

Publication Number Publication Date
JPS539491A JPS539491A (en) 1978-01-27
JPS5931872B2 true JPS5931872B2 (en) 1984-08-04

Family

ID=13814737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51083872A Expired JPS5931872B2 (en) 1976-07-14 1976-07-14 Optical semiconductor device

Country Status (1)

Country Link
JP (1) JPS5931872B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61193778U (en) * 1985-05-27 1986-12-02
JPH0327431Y2 (en) * 1986-11-18 1991-06-13

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56110286A (en) * 1980-02-05 1981-09-01 Matsushita Electric Ind Co Ltd Semiconductor laser device
JPS6139980A (en) * 1984-07-31 1986-02-26 Sharp Corp Audio signal processing device
JPS61151365U (en) * 1985-03-11 1986-09-18
JPS6219772U (en) * 1985-07-18 1987-02-05
US4695859A (en) * 1986-10-20 1987-09-22 Energy Conversion Devices, Inc. Thin film light emitting diode, photonic circuit employing said diode imager employing said circuits

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61193778U (en) * 1985-05-27 1986-12-02
JPH0327431Y2 (en) * 1986-11-18 1991-06-13

Also Published As

Publication number Publication date
JPS539491A (en) 1978-01-27

Similar Documents

Publication Publication Date Title
US11973320B2 (en) VCSEL device for an SMI sensor for recording three-dimensional pictures
US4297653A (en) Hybrid semiconductor laser/detectors
JP2001015849A5 (en)
JPS5931872B2 (en) Optical semiconductor device
US4954853A (en) Optical semiconductor device
CA2081020A1 (en) Photo detectors
CN112514181A (en) Optoelectronic semiconductor device with a first and a second optoelectronic component
JP2002314116A (en) Lateral semiconductor photodetector of pin structure
JP3427125B2 (en) Semiconductor device with optical lens function
JPS6195580A (en) Photoreceptor and photoelectric device containing the same photoreceptor
KR100830605B1 (en) Optical device with photo detector
CN111697100A (en) Single-chip transceiving photoelectric component, single-chip transceiving module, photoelectric system and electronic equipment
CN110888139A (en) Discontinuous layout for photosensitive devices
JP3831639B2 (en) Light receiving element and light receiving module
JPH0710509Y2 (en) Semiconductor laser device
JPS605592Y2 (en) semiconductor laser equipment
JP3272060B2 (en) Semiconductor element
JPH0719917B2 (en) Light emitting / light receiving integrated device
JP2001308366A (en) Photodiode
JPS63108790A (en) Semiconductor laser with optical output monitor
JPH07297480A (en) Optical semiconductor device
JPS5855673B2 (en) semiconductor laser
JPS6329427B2 (en)
JPS63161684A (en) Optical semiconductor device
JPS61220480A (en) Semiconductor light receiving device