JPS63108610A - Manufacture of piezo-electric ceramic - Google Patents

Manufacture of piezo-electric ceramic

Info

Publication number
JPS63108610A
JPS63108610A JP61254097A JP25409786A JPS63108610A JP S63108610 A JPS63108610 A JP S63108610A JP 61254097 A JP61254097 A JP 61254097A JP 25409786 A JP25409786 A JP 25409786A JP S63108610 A JPS63108610 A JP S63108610A
Authority
JP
Japan
Prior art keywords
composite
polymer latex
piezoelectric
ferroelectric
fired
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61254097A
Other languages
Japanese (ja)
Inventor
水村 光一
伸治 大羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Radio Co Ltd
Original Assignee
Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Radio Co Ltd filed Critical Japan Radio Co Ltd
Priority to JP61254097A priority Critical patent/JPS63108610A/en
Publication of JPS63108610A publication Critical patent/JPS63108610A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は圧電磁器の製造方法に関し、特に薄板成型が容
易でかつ任意形状の成型体をうろことを目的とする。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a method for manufacturing piezoelectric ceramics, and in particular, an object of the present invention is to easily form a thin plate and to form a molded body of any shape.

(従来の技術) チタン酸ジルコン酸鉛(以下、PZTという)チタン酸
バリウム(以下、  BaTi0aという)等の強誘電
体材料は、電気信号を機械信号に、またその反対に相互
に信号変換できることが知られている。上記強誘電体材
料を板状に成型し焼成した両面に電極を形成し、該材料
によって定まる電界強度を一定時間保持することにより
(Prior Art) Ferroelectric materials such as lead zirconate titanate (hereinafter referred to as PZT) and barium titanate (hereinafter referred to as BaTi0a) can convert electrical signals into mechanical signals and vice versa. Are known. By molding the ferroelectric material into a plate shape, forming electrodes on both sides of the fired material, and maintaining the electric field strength determined by the material for a certain period of time.

分極処理を施して圧電磁器が形成される。A piezoelectric ceramic is formed by performing a polarization process.

この圧電磁器は、超音波診断装置、魚群探知器、超音波
探知器、超音波顕微鏡等に広く利用されている。これら
各裡装置においてそれぞれ使用目的が異なるので圧電磁
器に印加する周波数も10 kHz〜200 kHz、
 数MHz” 100 M Hzとかなり広帯域にわた
る。例えば超音波診断装置(人体検査)においてPZT
の厚みは0.3〜0.4−11+であり、高解像化のた
めには高い周波数(数MHz )での駆動が要求され、
薄板化が要求される。
This piezoelectric ceramic is widely used in ultrasonic diagnostic devices, fish finders, ultrasonic detectors, ultrasonic microscopes, and the like. Since each of these devices has a different purpose of use, the frequency applied to the piezoelectric ceramic is 10 kHz to 200 kHz,
It covers a fairly wide band from several MHz to 100 MHz.For example, in ultrasonic diagnostic equipment (human body examination), PZT
The thickness is 0.3 to 0.4-11+, and driving at a high frequency (several MHz) is required for high resolution.
Thinner plates are required.

さて代表的な圧電8器材料であるPZTやBaTiO3
を用い圧電磁器を製造するには、従来セラミック製作と
同様な方法によっていた。即ち金型に圧電磁器材料粉末
を入れ、これを加圧。
Now, typical piezoelectric materials such as PZT and BaTiO3
In order to manufacture piezoelectric ceramics using this method, the same method as conventional ceramic manufacturing was used. That is, piezoelectric ceramic material powder is placed in a mold and pressurized.

成型し、該成型品を取り出した上で焼成するのが一般で
ある。
Generally, the molded product is molded and then fired after being taken out.

(発明が解決しようとする問題点) 上述したような金型プレス法に汀1本質的に2つの欠陥
がある。その第1は金型な使用するために、実用的にそ
の大きさが制限される。その第2&X、金型を大きくし
た際、プレス成型体と金型との接着強度が犬きくなるた
め専薄板を″成型しようとしても金型から成型体を剥離
する際、成型体が破損しやすいという欠点があり。
(Problems to be Solved by the Invention) The mold pressing method as described above essentially has two defects. First, since it is used as a mold, its size is practically limited. 2nd & There is a drawback.

大面積1例えばp 60 yam以下の厚さの成型体を
得るのに困難であった。
It was difficult to obtain a molded body having a large area, for example, a thickness of p 60 yam or less.

この為通常は大面積で薄板の強誘電体を製造するvcハ
大きな金型を用い、この金型で成型できろ程度の厚みの
成型体を作り、焼成後に研磨又はエツチング等の手法に
よって薄板を形成するが、これらの方法は、材料の歩留
りが悪くかつ工数を要し、製造コストの双方の点で難点
があった。
For this reason, VC, which manufactures thin plates of ferroelectric materials in large areas, usually uses a large mold, makes a molded body with a thickness that can be molded with this mold, and after firing, processes such as polishing or etching are used to make the thin plate. However, these methods have disadvantages in terms of both poor material yield and man-hours, and manufacturing costs.

また、これらの圧電磁器は可撓性がないため。Also, these piezoelectric ceramics are not flexible.

成形できる形状に制約があり用途を制限していた。また
別の方法として圧電8器材料を蒸着法またはスパッタ法
を用いて薄板を作る方法があるが、前述の金型プレス法
に比べ面積は広くとれるが膜厚はせいぜい数μmまでで
超音波診断装置用としては落丁ぎて適さない。また圧電
磁器を使用しないで有機質の圧電材料1例え+hVDF
(ポリフッ化ビニリデン)を使用した例もあるが一般に
有機圧電材料は、圧電母器に比較し。
There are restrictions on the shapes that can be molded, which limits the applications. Another method is to make a thin plate using a piezoelectric material by vapor deposition or sputtering, but this method allows for a wider area than the above-mentioned mold pressing method, but the film thickness is only a few micrometers at most, making ultrasonic diagnostics possible. It is not suitable for use in equipment as it is too small. Also, instead of using piezoelectric ceramics, an example of an organic piezoelectric material + hVDF
Although there are examples of using polyvinylidene fluoride (polyvinylidene fluoride), in general, organic piezoelectric materials are compared to piezoelectric base materials.

感度の点で難点があった。There was a problem with sensitivity.

(問題点を解決するための手段) 本発明は、上述した欠点を解決するため2強誘電体板焼
微粉末をポリマーラテックスを言む分散液に均一に分散
させ加硫することにより。
(Means for Solving the Problems) The present invention solves the above-mentioned drawbacks by uniformly dispersing a sintered fine powder of two ferroelectric plates in a dispersion liquid called a polymer latex and vulcanizing the same.

可撓性を有する薄く大面積の複合体を得、さらに任意形
状の型に挾み低温で前記ポリマーラテックスを全て焼却
除去し、これをさらに高温で焼成することにより、所定
の厚さの圧電特性に潰れたかつ任意形状を有する圧電磁
器を提供するものである。以下詳細に説明する。
A thin and large-area flexible composite is obtained, which is then sandwiched between molds of arbitrary shape, all of the polymer latex is incinerated at a low temperature, and then fired at a higher temperature to produce piezoelectric properties of a predetermined thickness. The present invention provides a piezoelectric ceramic that is flattened and has an arbitrary shape. This will be explained in detail below.

本発明はP Z T 、 BaTiO3等の強誘電体板
焼粉末をイオン交換水中に分散、攪拌した状態で。
In the present invention, ferroelectric plate powder such as PZT, BaTiO3, etc. is dispersed and stirred in ion-exchanged water.

アクリロニトリル・ブジエタン系ラテックス(以下NB
Rという)、スチレン・ブジエタン系ラテックス(以下
SBRという)等のポリマーラテックスを前記強訪電体
板焼粉末100重量パーセント当り3〜10重量パーセ
ント混合し。
Acrylonitrile butiethane latex (hereinafter referred to as NB)
A polymer latex such as styrene-butiethane latex (hereinafter referred to as SBR) is mixed in an amount of 3 to 10 percent by weight per 100 percent by weight of the strong electric conductor plate-fired powder.

これを充分分散させた後、ポリマーラテックスを加硫し
1強誘電体板焼粉末とポリマーラテックスの複合体を形
成する。ついで前記複合体を水洗、混練した上でローラ
により所定の薄板に圧延成型する。この複合体はポリマ
ーラテックスの働きにより可撓性を有する。
After sufficiently dispersing the powder, the polymer latex is vulcanized to form a composite of the ferroelectric sintered powder and the polymer latex. Next, the composite is washed with water, kneaded, and rolled into a predetermined thin plate using rollers. This composite has flexibility due to the action of the polymer latex.

前記で得られた薄板状複合体を用途に応じて平面またに
球面など任意の形状を有するセラミック裂の型に挾み成
形する。その後前記型に挾んだ−44で電気炉に投入し
ポリマーラテックスを全て焼却除去しく400〜600
’C)さらに高温で焼成し焼結体を得る。焼成後、蒸着
法、スプレー法、スクリーン印刷等の手法により電極付
をした後9分極処理を施し圧電磁器を得る。
The thin plate-like composite obtained above is sandwiched and molded into a ceramic mold having an arbitrary shape such as a flat or spherical shape depending on the purpose. After that, put the -44 between the molds into an electric furnace and burn off all the polymer latex.
'C) A sintered body is obtained by firing at a higher temperature. After firing, electrodes are attached using methods such as vapor deposition, spraying, and screen printing, followed by nine polarization treatments to obtain piezoelectric ceramics.

(実施例) 平均粉径1.3 amのPZT仮焼仮焼微粉末100ケ
rオン交換水200mJ中に混合し、攪拌し。
(Example) PZT calcined fine powder having an average powder diameter of 1.3 am was mixed in 200 mJ of 100 ker on-exchanged water and stirred.

充分分散後NBRを4.2gr混合、攪拌し、充分分散
後、加硫剤としてアクリル酸nブチル10gr。
After thorough dispersion, 4.2 gr of NBR was mixed and stirred, and after thorough dispersion, 10 gr of n-butyl acrylate was added as a vulcanizing agent.

0.1モル/lの亜硫酸水5oyr、o、1モル/eの
塩酸水2CNIrを前記分散液に混合し、ボールミル内
で1時間混合し、複合体を得る。
5 oyr of 0.1 mol/l sulfite water and 2 CNIr of 1 mol/e hydrochloric acid water are mixed into the dispersion and mixed in a ball mill for 1 hour to obtain a composite.

゛上記方法で得られた複合体を水泳、混練し。゛The composite obtained by the above method is swimming and kneaded.

充分乾燥後、第1図に示す様にローラ1で圧延成形し、
可撓性を有する薄板状で大面積の複合体2を製作する。
After sufficiently drying, it is rolled and formed using roller 1 as shown in Figure 1.
A composite body 2 having a flexible thin plate shape and a large area is manufactured.

矢印はローラの回転方向である。上記複合体2を適当な
サイズに切断した上で、第2図に示すジルコニヤからな
る球面を有する型3及び4に挾んで成型した。この時焼
成後の型離れを良くするためマグネシャあるいはジルコ
ニヤの微粉末を塗布しておくことが望ましい結果を与え
た。次いで電気炉中で500°C21O時間置き、NB
Rを薄板状の複合体から完全に焼却、除去した。NBR
を完全に焼却、除去後、1250℃で薄板の成形体を焼
成し、厚さ300龍9面積50真冨X100Hの薄板状
のPZTが得られた。
The arrow indicates the direction of rotation of the roller. The composite 2 was cut into an appropriate size and molded between molds 3 and 4 having spherical surfaces made of zirconia as shown in FIG. At this time, it was desirable to apply fine powder of magnesia or zirconia to improve release from the mold after firing. Then, it was placed in an electric furnace at 500°C for 210 hours, and the NB
R was completely incinerated and removed from the thin plate-like composite. NBR
After being completely incinerated and removed, the thin plate molded body was fired at 1250°C to obtain a thin plate-shaped PZT having a thickness of 300 mm, 9 areas, 50 mm, and 100 mm.

上記薄板状の成型体の両面に、蒸着により電極を形成し
9次いで120°Cのシリコンオイル中で20分間、2
0Kv/crlLの直流電界を印加した後、100℃の
恒温槽中で短絡し、10時間エージングを行ない、再び
120℃のシリコンオイル中で20分間、20KV/c
rILの直流電界を印加し1分極処理を完了した。
Electrodes were formed on both sides of the thin plate-shaped molded body by vapor deposition.
After applying a DC electric field of 0 Kv/crlL, it was short-circuited in a constant temperature bath at 100°C, aged for 10 hours, and then heated again at 20 KV/c in silicone oil at 120°C for 20 minutes.
A DC electric field of rIL was applied to complete one polarization process.

この球面を持つ圧電磁器について圧電特性を測定したと
ころ、厚さ振動の圧電定数 d33=181 X 10
−12C/N、 kt =0.52で同組成で通常の焼
成法で作成した圧電磁器と殆んど同一の圧電特性を有す
ることが確認された。
When we measured the piezoelectric properties of this piezoelectric ceramic with a spherical surface, we found that the piezoelectric constant of thickness vibration was d33 = 181 x 10
-12C/N, kt = 0.52, it was confirmed that it had almost the same piezoelectric properties as a piezoelectric ceramic made with the same composition by a normal firing method.

なお1本実施例では9面積が50mX 100amのも
のであるが、圧延成形前の複合体の量、また焼成炉の大
きさを適当に選ぶことにより、さらに面積の大きな薄板
圧電磁器が得られる。また。
In this example, the area is 50 m x 100 am, but by appropriately selecting the amount of the composite before rolling and the size of the firing furnace, a sheet piezoelectric ceramic having an even larger area can be obtained. Also.

本実施例でし:1強誘電体板焼粉末より複合体を形成し
ているが9強誘電体原料より複合体を形成してもよい。
In this example, the composite is formed from 1 ferroelectric plate baking powder, but the composite may be formed from 9 ferroelectric raw materials.

また2本実施例では1球面を持つ強誘電体を焼成してい
るが1球面以外の形状でも前述の内容を損うものではな
い。
Further, in the two embodiments, a ferroelectric material having one spherical surface is fired, but shapes other than one spherical surface do not impair the above-mentioned content.

(発明の効果) 以上説明したように1本発明は強誘電体板X児微粉末を
ポリマーラテックスを含む分散液に。
(Effects of the Invention) As explained above, one aspect of the present invention is to form a fine powder of a ferroelectric plate into a dispersion containing a polymer latex.

均一に分散させ加硫することにより、可撓性を有する薄
く大面積の複合体を得ることができ。
By uniformly dispersing and vulcanizing, a thin and flexible composite with a large area can be obtained.

さらに任意の形状の型に挾み、低温でポリマーラテック
スを全て焼却、除去し、さらに高温で焼成することによ
り、圧電特性に潰れ薄く大面積を有し、かつ任意の形状
な有する圧電磁器を得ることができる。
Furthermore, by sandwiching it in a mold of an arbitrary shape, incinerating and removing all the polymer latex at a low temperature, and then firing it at a higher temperature, a piezoelectric ceramic that is thin, has a large area, and has an arbitrary shape is obtained by crushing the piezoelectric properties. be able to.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図はそれぞれ不発明の実施例による圧延
成形の形態図及び焼成用の型の断面図である。 1はローラ、2は複合体、3は6板、4は凹板。
FIG. 1 and FIG. 2 are a form diagram of rolling forming and a sectional view of a baking mold, respectively, according to an uninvented embodiment. 1 is a roller, 2 is a composite, 3 is a 6-plate, and 4 is a concave plate.

Claims (1)

【特許請求の範囲】[Claims]  ポリマーラテックスを適量含む分散液に強誘電体板焼
粉末を懸濁させ、これを混合攪拌し、前記ポリマーラテ
ックスが前記強誘電体板焼粉末に均一に分散した状態で
加硫し、可撓性を有する複合体を得、該複合体を任意の
厚さ及び形状に成形加工した後、複合体に含まれるポリ
マーラテックスを低温で焼却除去し、さらに高温で焼成
し焼結体を得、該焼結体に電極を付着した後で分極処理
を行なうことを特徴とする圧電磁器の製造方法。
A ferroelectric sheet-fired powder is suspended in a dispersion containing an appropriate amount of polymer latex, mixed and stirred, and the polymer latex is vulcanized in a state uniformly dispersed in the ferroelectric sheet-fired powder, thereby making it flexible. After forming the composite into a desired thickness and shape, the polymer latex contained in the composite is removed by incineration at a low temperature, and then fired at a high temperature to obtain a sintered body. A method for manufacturing piezoelectric ceramics, characterized in that a polarization treatment is performed after attaching an electrode to a compact.
JP61254097A 1986-10-24 1986-10-24 Manufacture of piezo-electric ceramic Pending JPS63108610A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61254097A JPS63108610A (en) 1986-10-24 1986-10-24 Manufacture of piezo-electric ceramic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61254097A JPS63108610A (en) 1986-10-24 1986-10-24 Manufacture of piezo-electric ceramic

Publications (1)

Publication Number Publication Date
JPS63108610A true JPS63108610A (en) 1988-05-13

Family

ID=17260181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61254097A Pending JPS63108610A (en) 1986-10-24 1986-10-24 Manufacture of piezo-electric ceramic

Country Status (1)

Country Link
JP (1) JPS63108610A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5543803A (en) * 1978-09-21 1980-03-27 Toshiba Corp Composite piezoelectric material manufacturing method
JPS60231458A (en) * 1984-04-27 1985-11-18 日立化成工業株式会社 Manufacture of ceramic dielectic

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5543803A (en) * 1978-09-21 1980-03-27 Toshiba Corp Composite piezoelectric material manufacturing method
JPS60231458A (en) * 1984-04-27 1985-11-18 日立化成工業株式会社 Manufacture of ceramic dielectic

Similar Documents

Publication Publication Date Title
KR101694579B1 (en) Polymer composite piezoelectric body and method for producing same
US4826616A (en) Piezoelectric pressure-sensitive element and method for making same
US5169551A (en) Piezoelectric composite material
DE102008021827B4 (en) Ceramic material, method for producing the ceramic material, component with the ceramic material and its use
JPS58157183A (en) Method of producing wafer made of piezoelectric polymer material and method of producing piezoelectric polymer converter
US20230331972A1 (en) Piezoelectric Composite Material and Method
US20230141847A1 (en) Lead-free three-component piezoelectric polymer composite
JPS63108610A (en) Manufacture of piezo-electric ceramic
JPH08259323A (en) Compound lanthanum/lead/zirconium/titanium perovskite, ceramic composition and actuator
KR102600625B1 (en) Method for manufacturing flexible large area piezoelectric composite materials
JPH01148749A (en) Piezoelectric ceramic composition for actuator
Shemin et al. A study on domain transition in relaxor ferroelectric PLZT ceramics
JP3080277B2 (en) Method for producing bismuth layered compound
US20230323077A1 (en) Polyolefin based piezoelectric polymer composite
Kunwar et al. Investigating the Effects of Solvents and Nanocomposites on Tailoring the Elastic Modulus of Piezoelectric Thin Film PVDF-TrFE
JPS6022512B2 (en) Piezoelectric polymer composite material and its manufacturing method
JP3075448B2 (en) Method for producing bismuth layered compound-piezoelectric polymer composite
Reed et al. Effect of particle size on the dielectric and piezoelectric properties of PbTiO/sub 3/-polymer composites
JPH06188470A (en) Bismuth layer compound-piezoelectric polymer composite
KR20230040637A (en) Method for manufacturing flexible laminated piezoelectric composites
JP3554395B2 (en) Piezoelectric material
JPS6239551B2 (en)
JP2001089235A (en) Production of piezoelectric ceramics
JP3061224B2 (en) Bismuth layered compound polarization method
JPH02177578A (en) Manufacture of piezoelectric ceramic