JPH02177578A - Manufacture of piezoelectric ceramic - Google Patents

Manufacture of piezoelectric ceramic

Info

Publication number
JPH02177578A
JPH02177578A JP63332546A JP33254688A JPH02177578A JP H02177578 A JPH02177578 A JP H02177578A JP 63332546 A JP63332546 A JP 63332546A JP 33254688 A JP33254688 A JP 33254688A JP H02177578 A JPH02177578 A JP H02177578A
Authority
JP
Japan
Prior art keywords
substrate
layer
compound
lead
lead titanate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63332546A
Other languages
Japanese (ja)
Inventor
Koji Honda
本多 康二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP63332546A priority Critical patent/JPH02177578A/en
Publication of JPH02177578A publication Critical patent/JPH02177578A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make a piezoelectric ceramic miniaturized and lightweight and to hold down a burning temperature to be low by a method wherein a forming operation of a lead titanate zirconate layer is repeatedly executed using a solution which is prepared in such a manner that a titanium compound, a zirconium compound, and a lead compound are compounded together so as to make the composition ratio of each metal equal to that of lead titanate zirconate. CONSTITUTION:A liquid film is formed on a substrate 2 using a solution which contains a titanium compound, a zirconium compound, and a lead compound compounded to make a composition ratio of each metal equal to that of lead titanate zirconate. Then, the liquid film is dried up and thermally treated to form a lead titanate zirconate layer 1 on the substrate 2, and this forming operation is repeated to form two or more lead titanate zirconate layers 1 in lamination on the substrate 2. As a lead titanate zirconate layer formed on a substrate through a single operation is very small in thickness, only one layer of crystal layer is formed in a thicknesswise direction and in result the whole laminated layer becomes an aggregate of crystal excellent in orientation. By this setup, a piezoelectric ceramic of this design can be burned at a low temperature, made small and lightweight, and improved in performance.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は圧電セラミックスの製造方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing piezoelectric ceramics.

〔従来の技術〕[Conventional technology]

電圧を印加することによって歪みを生ずる圧電セラミッ
クスは、圧電素子としてアクチエエータなどに使用され
る。そして、圧電セラミックスの圧電特性を改良する丸
め、その電気的特性に異方性を持たせることが行われる
。すなわち、縦方向の圧電定数aSSを横方向の圧電定
数dStよシ遥かに大きくすることによル、変位量を増
大させることができる。又、d31を相対的に小さくす
ることKよシ、例えば接層タイプ又は一体焼成タイブの
スタック型アクチエエータに応用した場合、各圧電セラ
ミックス層間の剥離現象を防止できる。
Piezoelectric ceramics, which generate distortion when voltage is applied, are used as piezoelectric elements in actuators and the like. Then, rounding is performed to improve the piezoelectric properties of piezoelectric ceramics, and anisotropy is imparted to the electrical properties. That is, by making the piezoelectric constant aSS in the vertical direction much larger than the piezoelectric constant dSt in the lateral direction, the amount of displacement can be increased. In addition, by making d31 relatively small, for example, when applied to a contact type or integrally fired type stacked actuator, it is possible to prevent separation between the piezoelectric ceramic layers.

圧電セラミックスの電気的特性に異方性を持たせる方法
としては次の3つの方法が代表的な方法である。
The following three methods are typical methods for imparting anisotropy to the electrical properties of piezoelectric ceramics.

(1)  単軸プレス成形による方法 (2)  針状原料を使用する方法 (3)  焼成段階で一方向の分極を行う方法方法(1
)としては、例えば特開昭60−77307号公報には
、pbo及びTiesを主成分とし、更に所定量の、G
d、Sm、Nd、Prの酸化物のうちの少なくとも1柚
、酸化マンガン及び酸化アルミ゛ニウムな含む混合粉末
を円板状にプレス成形し、1200〜1ス60℃で5時
間焼成した後両面に電極を設け、更に分極処理する方法
が記載されている。
(1) Method using uniaxial press molding (2) Method using needle-shaped raw materials (3) Method using unidirectional polarization in the firing stage (1)
), for example, Japanese Patent Application Laid-Open No. 60-77307 discloses that the main components are pbo and Ties, and a predetermined amount of G.
A mixed powder containing at least one of the oxides of d, Sm, Nd, and Pr, manganese oxide, and aluminum oxide is press-molded into a disk shape, and after firing at 1200 to 60°C for 5 hours, both sides are coated. A method is described in which an electrode is provided on the substrate and further polarization treatment is performed.

又、方法(2)としては、基材が有機高分子である複合
圧電体の場合でめるが例えば特開昭61−285181
号公報には、有機高分子層中に、圧電特性の異なる複数
株の圧電体繊維を層に垂直な方向にそれぞれ平行に配列
する方法が記載されている。
Method (2) can be used in the case of a composite piezoelectric material in which the base material is an organic polymer.
The publication describes a method in which a plurality of piezoelectric fibers having different piezoelectric properties are arranged in parallel in a direction perpendicular to the layer in an organic polymer layer.

更に、方法(3)としては、例えばチタン酸ジルコン酸
鉛成形体を350〜1300℃に加熱焼成しながら、前
記成形体の一1方向に数百v程度の電圧を印加する方法
がある。
Furthermore, as method (3), for example, there is a method of applying a voltage of about several hundred volts in one direction of the lead zirconate titanate molded body while heating and firing the molded body at 350 to 1300°C.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、特開昭60−77507号公報記載の方
法では非常に小型のものや厚さが薄いものを製造するこ
とは困難であシ、又、焼成温度も高くなる。
However, with the method described in JP-A-60-77507, it is difficult to manufacture very small or thin products, and the firing temperature is also high.

又、特開昭61−283181号公報記載の方法は、圧
電体繊維を別に用意し、且つ圧電体の製造時に圧電体繊
維を所定方向に配列しなければならず、製造工程が煩雑
となる。
Furthermore, in the method described in JP-A-61-283181, the piezoelectric fibers must be prepared separately and the piezoelectric fibers must be arranged in a predetermined direction during the manufacture of the piezoelectric body, making the manufacturing process complicated.

更K、焼成段階で一分向の分極を行う方法も所望の分極
を起すことは困難である。
Furthermore, it is difficult to achieve the desired polarization even in a method in which polarization is performed in one direction during the firing step.

本発明は上記従来技術における問題点を解決するための
ものであり、その目的とするところは小型、軽量で分極
が起シ易し且つ焼成温度が低い圧電セラミックスを容易
に得ることができる製造方法を提供することに6る。
The present invention is intended to solve the above-mentioned problems in the prior art, and its purpose is to provide a manufacturing method that can easily produce piezoelectric ceramics that are small, lightweight, easily polarized, and have a low firing temperature. We aim to provide the following.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題を解決するため、本発明の圧電セラミックスの
製造方法は、チタン化合物とジルコニウム化合物と鉛化
合物とを、各金属の比がチタン酸ジルコン酸鉛の組成比
と同一となるように含む溶液を用いて基板上に液体薄膜
を形成し、次いで乾燥し熱処理して該基板上にチタン酸
ジルコン酸鉛層を形成し、更に前記操作を繰シ返すこと
によυ、該基板上に複数のチタン酸ジルコン酸鉛層を積
層形成することを特徴とするものである。
In order to solve the above problems, the method for manufacturing piezoelectric ceramics of the present invention includes a solution containing a titanium compound, a zirconium compound, and a lead compound such that the ratio of each metal is the same as the composition ratio of lead zirconate titanate. A thin liquid film is formed on the substrate using a liquid thin film, and then a lead zirconate titanate layer is formed on the substrate by drying and heat treatment, and by repeating the above operation, a plurality of titanium It is characterized by forming lead acid zirconate layers in a laminated manner.

チタン化合物、ジルコニウム化合物及び鉛化合物は例え
ば塩類、アルコキシド、錯体などの形態であってよい。
The titanium compounds, zirconium compounds and lead compounds may be in the form of salts, alkoxides, complexes, etc., for example.

これらを各金属の比がチタン酸ジルコン[鉛の組成比と
同一となるように含む溶液の溶媒としては、前記各化合
物の形態に応じて有機溶媒又は無機溶媒又はこれらの混
合溶媒を適宜用いる。各化合物の濃度はチタン酸ジルコ
ン酸鉛層(−層)の厚みなどに応じて定める。又、前記
各化合物以外に所望によシ他の化合物を含んでいてもよ
い。
As a solvent for a solution containing these metals so that the ratio of each metal is the same as the composition ratio of zirconium titanate (lead), an organic solvent, an inorganic solvent, or a mixed solvent thereof is appropriately used depending on the form of each compound. The concentration of each compound is determined depending on the thickness of the lead zirconate titanate layer (-layer). In addition to the above-mentioned compounds, other compounds may be included as desired.

基材は熱処理の際の温度に耐えられるもの例えばガラス
、セラミックス、耐熱金属である。
The base material is a material that can withstand the temperature during heat treatment, such as glass, ceramics, or heat-resistant metal.

基材上に所定厚みの液体薄膜を形成する方法としては慣
用の方法例えば浸漬法、噴霧法、塗布法等を用いること
ができる。
As a method for forming a liquid thin film of a predetermined thickness on a substrate, a conventional method such as a dipping method, a spraying method, a coating method, etc. can be used.

液体薄膜を形成した後の乾燥及び熱処理条件は溶媒の種
類や液体薄膜の厚みなどに応じて決定する。
Drying and heat treatment conditions after forming the liquid thin film are determined depending on the type of solvent and the thickness of the liquid thin film.

〔作用〕[Effect]

一回の操作で基板上に形成されるチタン酸ジルコン酸鉛
層の厚みが非常に薄い(最大1μm)ので、熱処理にお
いて、厚みと直交する方向には種々の大きさの結晶が無
秩序に成長するが、厚み方向には1層の結晶層しか形成
されず、このためチタン酸ジルコン酸鉛層を基板上に複
数形成した場合にも全体が配向性の良い結晶の集合体と
なり分極が容易と表るため圧電特性が向上する。
Since the thickness of the lead zirconate titanate layer formed on the substrate in a single operation is very thin (maximum 1 μm), crystals of various sizes grow randomly in the direction perpendicular to the thickness during heat treatment. However, only one crystal layer is formed in the thickness direction, so even if multiple lead zirconate titanate layers are formed on a substrate, the whole becomes an aggregate of crystals with good orientation, and polarization is easy. This improves piezoelectric properties.

〔実施例〕〔Example〕

以下の実施例及び比較例において本発明を更に詳細に説
明する。なお、本発明は下記実施例に限定されるもので
はない。
The present invention will be explained in further detail in the following Examples and Comparative Examples. Note that the present invention is not limited to the following examples.

実施例1 チタンテトライソプロポキシド(’1’TIP)148
モルとジルコニウムテトラブトキシド(ZTB)CL5
2モルとをイソプロパツール3oowLtK溶%して混
合インプロパツール溶液(モル比: Ti/Zr=、、
、48152)とし、これにチタンとジルコニウムのモ
ル数の2倍モルのジェタノールアミン(DEA)10v
を加え、室温で1〜2時間攪拌して均一溶液とした。次
いでこの溶液に酢酸鉛1モルを加え、完全に溶解した。
Example 1 Titanium tetraisopropoxide ('1'TIP) 148
Mol and zirconium tetrabutoxide (ZTB) CL5
2 moles of isopropanol and 3oow of LtK were dissolved to form a mixed inpropatool solution (molar ratio: Ti/Zr=,,
, 48152), and add 10v of jetanolamine (DEA) twice the number of moles of titanium and zirconium.
was added and stirred at room temperature for 1 to 2 hours to form a homogeneous solution. Next, 1 mol of lead acetate was added to this solution and completely dissolved.

耐熱ガラス板からなる基板(寸法:縦2cr11、横4
crlI、厚み2m5)を溶液[30秒浸漬した後6c
In/分の速度で引き上げた。なお、液体薄膜の厚みは
引き上げ速度で決まシ、速度が遅くなれば液体薄膜は厚
くなる。次いで基板を室温で30分乾燥後600℃で3
0分間熱処理して基板上に厚み1μmのチタン酸ジルコ
ン酸鉛層を形成した。第1図にその説明図を示す。図中
、1#′iチタン酸ジルコン酸鉛層、2Fi基板である
。又、第2図は第1図をA方向から見た図である。前記
操作を50回繰シ返して第3図に示す如く、チタン酸ジ
ルコン酸鉛層1を50層積層形成した。次いでこれにシ
リコンオイル中150℃で3ky/mの電界を印加して
分極処理を行い、圧電セラミックスを得た。
Substrate made of heat-resistant glass plate (dimensions: length 2cr11, width 4
crlI, thickness 2m5) in solution [6c after soaking for 30 seconds
It was pulled up at a rate of In/min. Note that the thickness of the liquid thin film is determined by the pulling speed, and the slower the speed, the thicker the liquid thin film becomes. The substrate was then dried at room temperature for 30 minutes and then heated at 600°C for 30 minutes.
A 1 μm thick lead zirconate titanate layer was formed on the substrate by heat treatment for 0 minutes. An explanatory diagram is shown in FIG. In the figure, there is a 1#'i lead zirconate titanate layer and a 2Fi substrate. 2 is a view of FIG. 1 viewed from direction A. The above operation was repeated 50 times to form 50 lead zirconate titanate layers 1 as shown in FIG. Next, a polarization treatment was performed by applying an electric field of 3 ky/m at 150° C. in silicone oil to obtain piezoelectric ceramics.

実施例2 実施例1と同様にして、基板1上にチタン酸ジルコン酸
鉛層1を100層積層形成して、圧電セラミックスを得
た。
Example 2 In the same manner as in Example 1, 100 lead zirconate titanate layers 1 were laminated on the substrate 1 to obtain piezoelectric ceramics.

比較例 実施例1で調製した溶液を200℃で蒸発乾固し、得た
粉体を乳ばちに入れ粉砕して微粉末とした。次いでこの
微粉末を単軸ブレスを用いて2トン/−の圧力で加圧成
形して、厚み100μmの薄板とした。次いでこれを1
200℃で1時間焼成した。
Comparative Example The solution prepared in Example 1 was evaporated to dryness at 200°C, and the resulting powder was placed in a mortar and ground into a fine powder. Next, this fine powder was press-molded using a uniaxial press at a pressure of 2 tons/- to form a thin plate with a thickness of 100 μm. Then add this to 1
It was baked at 200°C for 1 hour.

〈性能比較試験〉 実施例1.2及び比較例の圧電セラミックスについて、
配向度、電気機械結合係数及び比誘電率を測定した。な
お、配向度は次のようにして算出した。すなわち、まず
銅をターゲットとしてKZt線を用い、C軸([002
:l軸)とa軸((:200)軸)Kおけるピーク面積
Sc及びSaから下記式(1) Icよシ面積比Aを算
出する。
<Performance comparison test> Regarding the piezoelectric ceramics of Example 1.2 and Comparative Example,
The degree of orientation, electromechanical coupling coefficient, and dielectric constant were measured. Note that the degree of orientation was calculated as follows. That is, first, a KZt wire is used with copper as a target, and the C-axis ([002
The area ratio A of Ic is calculated from the peak areas Sc and Sa on the a-axis ((:200) axis) and the a-axis ((:200) axis) using the following formula (1).

Sc+Sa 式(1)よシ実施例における面積比A3及び比較例にお
ける面積比Aoを求め、下記式(II)によシ配向度P
を求めた。
Sc+Sa According to the formula (1), the area ratio A3 in the example and the area ratio Ao in the comparative example are determined, and the degree of orientation P is calculated according to the following formula (II).
I asked for

結果を下記衣に示す。The results are shown below.

表よシ明らかな如く、実施例1及び2の圧電セラミック
スは比較例の圧電セラミックスに比べて配向度が非常に
向上している。その結果、縦効果を表わす電気機械結合
係数に$3が非常に優れたものとなった。
As is clear from the table, the degree of orientation of the piezoelectric ceramics of Examples 1 and 2 is greatly improved compared to that of the comparative example. As a result, the electromechanical coupling coefficient representing the longitudinal effect of $3 was excellent.

〔発明の効果〕〔Effect of the invention〕

上述の如く本発明の圧電セラミックスの製造方法は、チ
タン化合物とジルコニウム化合物と鉛化合物とを、各金
属の比がチタン酸ジルコン酸鉛の組成比と同一となるよ
うに含む溶液を用いて基板上に液体薄膜を形成し、次い
で乾燥し熱処理して該基板上にチタン酸ジルコン酸鉛層
を形成し、更に前記操作を繰シ返すことによシ、該基板
上に複数のチタン酸ジルコン酸鉛層を積層形成するため
、チタン酸ジルコン酸鉛層が配向性の良い結晶層となり
、分極が容易でアシ、又、脱分極もほとんど起らず信頼
性が高い。更に、従来法に比べて低温で焼成できるため
、基材などの選択範囲が広がりコンポジット化が容易で
あるとともに設計の自由度が増す。又、従来法に比べて
薄くて電気特性が優れたチタン酸ジルコン酸鉛層を容易
に得ることができるので、電子部品の小型・軽量化及び
性能向上に効果がある。更に本発明の方法はどのような
形状の基板上にもチタン酸ジルコン酸鉛層を形成するこ
とができるので電子部品の製造等圧適用する場合の応用
範囲が広い。
As described above, the method for manufacturing piezoelectric ceramics of the present invention involves applying a titanium compound, a zirconium compound, and a lead compound onto a substrate using a solution containing a titanium compound, a zirconium compound, and a lead compound such that the ratio of each metal is the same as the composition ratio of lead zirconate titanate. A liquid thin film is formed on the substrate, followed by drying and heat treatment to form a lead zirconate titanate layer on the substrate, and by repeating the above operation, a plurality of lead zirconate titanate layers are formed on the substrate. Since the layers are laminated, the lead zirconate titanate layer becomes a crystal layer with good orientation, and polarization is easy and there is almost no reed or depolarization, resulting in high reliability. Furthermore, since it can be fired at a lower temperature than conventional methods, the range of selection of base materials is expanded, making it easier to create composites and increasing the degree of freedom in design. Furthermore, since a lead zirconate titanate layer that is thinner and has better electrical properties than conventional methods can be easily obtained, it is effective in reducing the size and weight of electronic components and improving their performance. Further, since the method of the present invention can form a lead zirconate titanate layer on a substrate of any shape, it has a wide range of applications in the case of isobaric application in the production of electronic components.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の圧電セラミックスの製造方法において
、基板上に1層のチタン酸ジルコン酸鉛層を形成した状
態を示す説明図。 第2図は第1図をA方向から見た状態を示す説明図、 第3図は本発明の方法によシ基板上に50層のチタン酸
ジルコン酸鉛層を積層形成した状態を示す説明図である
。 図中、 1・・・チタン酸ジルコン酸鉛層  2・・・基板(ほ
か2名) 第2図 第3図
FIG. 1 is an explanatory diagram showing a state in which a single lead zirconate titanate layer is formed on a substrate in the piezoelectric ceramic manufacturing method of the present invention. FIG. 2 is an explanatory diagram showing a state in which FIG. 1 is viewed from direction A. FIG. 3 is an explanatory diagram showing a state in which 50 lead zirconate titanate layers are laminated on a substrate by the method of the present invention. It is a diagram. In the figure, 1... Lead zirconate titanate layer 2... Substrate (2 other people) Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] チタン化合物とジルコニウム化合物と鉛化合物とを、各
金属の比がチタン酸ジルコン酸鉛の組成比と同一となる
ように含む溶液を用いて基板上に液体薄膜を形成し、次
いで乾燥し熱処理して該基板上にチタン酸ジルコン酸鉛
層を形成し、更に前記操作を繰り返すことにより、該基
板上に複数のチタン酸ジルコン酸鉛層を積層形成するこ
とを特徴とする圧電セラミックスの製造方法。
A liquid thin film is formed on a substrate using a solution containing a titanium compound, a zirconium compound, and a lead compound such that the ratio of each metal is the same as the composition ratio of lead zirconate titanate, and then dried and heat-treated. A method for manufacturing piezoelectric ceramics, comprising forming a lead zirconate titanate layer on the substrate, and repeating the above operation to form a plurality of lead zirconate titanate layers in a laminated manner on the substrate.
JP63332546A 1988-12-28 1988-12-28 Manufacture of piezoelectric ceramic Pending JPH02177578A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63332546A JPH02177578A (en) 1988-12-28 1988-12-28 Manufacture of piezoelectric ceramic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63332546A JPH02177578A (en) 1988-12-28 1988-12-28 Manufacture of piezoelectric ceramic

Publications (1)

Publication Number Publication Date
JPH02177578A true JPH02177578A (en) 1990-07-10

Family

ID=18256130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63332546A Pending JPH02177578A (en) 1988-12-28 1988-12-28 Manufacture of piezoelectric ceramic

Country Status (1)

Country Link
JP (1) JPH02177578A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6883901B2 (en) 2002-01-22 2005-04-26 Seiko Epson Corporation Piezoelectric element, liquid jetting head, and method for manufacturing thereof
US7120978B2 (en) * 2000-06-21 2006-10-17 Canon Kabushiki Kaisha Process of manufacturing a piezoelectric element

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7120978B2 (en) * 2000-06-21 2006-10-17 Canon Kabushiki Kaisha Process of manufacturing a piezoelectric element
US7618131B2 (en) 2000-06-21 2009-11-17 Canon Kabushiki Kaisha Structure of piezoelectric element and liquid discharge recording head, and method of manufacture therefor
US6883901B2 (en) 2002-01-22 2005-04-26 Seiko Epson Corporation Piezoelectric element, liquid jetting head, and method for manufacturing thereof
US7328490B2 (en) 2002-01-22 2008-02-12 Seiko Epson Corporation Method for manufacturing a liquid jetting head

Similar Documents

Publication Publication Date Title
CN107986782B (en) Doped modified lead zirconate titanate piezoelectric ceramic and preparation method thereof
CN110590352B (en) High-voltage bismuth ferrite-barium titanate-based piezoelectric ceramic generated by low polarization field intensity and preparation method thereof
JP3391307B2 (en) Manufacturing method of piezoelectric ceramics
CN112062551A (en) Bismuth ferrite-based piezoelectric ceramic material with high depolarization temperature and high piezoelectric performance and preparation method thereof
WO2012008041A1 (en) Ferroelectric film, sol-gel solution, film-forming method and ferroelectric film manufacturing method
US2729757A (en) Ferroelectric ceramic composition and method of making same
US6579468B2 (en) Piezoelectric ceramic composition, piezoelectric ceramic element, and method for manufacturing the piezoelectric ceramic composition
JP6323305B2 (en) Piezoelectric composition and piezoelectric element
JPH02177578A (en) Manufacture of piezoelectric ceramic
JPH10279352A (en) Production of piezoelectric ceramics
KR100200181B1 (en) Piezoelectric ceramic and manufacturing method thereof
JP2015165552A (en) Piezoelectric composition and piezoelectric device
JP3569742B2 (en) Electrostrictive material and manufacturing method thereof
JP2004002051A (en) Piezoelectric ceramic composition, piezoelectric ceramic element, and method of producing the piezoelectric ceramic composition
JP2825029B2 (en) Piezoelectric ceramic composition
CN1286475A (en) Piezoelectric ceramics composition and piezoelectric device using same
JP3802611B2 (en) Piezoelectric material
DE19744630C1 (en) Piezoelectric component production by sol-gel coating of a metal substrate
JPH1045470A (en) Piezoelectric ceramics
JPH03285864A (en) Thin dielectric film
JPS6358777B2 (en)
JPH0782022A (en) Ceramic with orientation and its production
JPH0340965A (en) Ferroelectric ceramics
JP3084401B1 (en) High performance piezoelectric ceramics and their manufacturing method
WO1992002471A1 (en) Method for the preparation of piezoelectric ceramic materials of pztn