JPS63108348A - Manufacture of electrophotographic sensitive body - Google Patents

Manufacture of electrophotographic sensitive body

Info

Publication number
JPS63108348A
JPS63108348A JP25426386A JP25426386A JPS63108348A JP S63108348 A JPS63108348 A JP S63108348A JP 25426386 A JP25426386 A JP 25426386A JP 25426386 A JP25426386 A JP 25426386A JP S63108348 A JPS63108348 A JP S63108348A
Authority
JP
Japan
Prior art keywords
layer
gas
region
photoreceptor
photoconductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25426386A
Other languages
Japanese (ja)
Inventor
Takao Kawamura
河村 孝夫
Naooki Miyamoto
宮本 直興
Hitoshi Takemura
仁志 竹村
Akira Watanabe
暁 渡辺
Kokichi Ishiki
石櫃 鴻吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP25426386A priority Critical patent/JPS63108348A/en
Publication of JPS63108348A publication Critical patent/JPS63108348A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • G03G5/082Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited
    • G03G5/08214Silicon-based
    • G03G5/08221Silicon-based comprising one or two silicon based layers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • G03G5/082Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited
    • G03G5/08214Silicon-based
    • G03G5/08278Depositing methods

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Photoreceptors In Electrophotography (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To dispense with the protective layer and the barrier layer of photosensitive body and to prevent ghost phenomenon by decomposing a gas mixture of He and a gas containing an element of group IIIa of the periodic table through glow discharge to form a photoconductive layer. CONSTITUTION:The gas for producing amorphous silicon carbide (a-SiC) is decomposed by glow discharge to form a positively chargeable photoconductive layer 5a made of a-SiC on a substrate 1. As said gas, a mixture of C2H2 and an Si-containing gas in a ratio of 0.01:1-3:1 further containing an element of group IIIa of the periodic table is used. The photoconductive layer 5a made of a-SiC composed of layer regions 6, 7 is formed on the conductive substrate 1. The layer region 7 is prepared by adding He to a gas mixture of C2H2 and the Si-containing gas in a ratio of <=5:1, and it contains the element of group IIIa in an amount of 10<-6>-1mol% and the layer region 6 contains said element more than the layer region 7. The content of C in the layer regions 6, 7 may be changed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光導電性アモルファスシリコンカーバイド層か
ら成る電子写真感光体の製法に関し、特に正極性に帯電
可能な電子写真感光体の製法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing an electrophotographic photoreceptor comprising a photoconductive amorphous silicon carbide layer, and particularly relates to a method for manufacturing an electrophotographic photoreceptor that can be positively charged. be.

〔従来技術及びその問題点〕[Prior art and its problems]

近年、電子写真感光体の進歩は目覚ましく、感光体を搭
載する複写機やプリンター等の開発に伴って感光体自体
にも種々の特性が要求されている。
In recent years, progress in electrophotographic photoreceptors has been remarkable, and with the development of copying machines, printers, etc. equipped with photoreceptors, various characteristics are required of the photoreceptors themselves.

この要求に対してアモルファスシリコン層が耐熱性、耐
摩耗性、無公害性並びに光感度特性等に優れているとい
う理由から注目されている。
In response to this demand, amorphous silicon layers are attracting attention because they have excellent heat resistance, wear resistance, non-pollution properties, and photosensitivity characteristics.

しかし乍ら、アモルファスシリコン(以下、a−Siと
略す)層は、それに何ら不純物元素をドーピングしない
と約10雫Ω・cmの暗抵抗率しか得られず、これを電
子写真用感光体に用いる場合には101tΩ・0111
以上の暗抵抗率にして電荷保持能力を高める必要がある
。そのために酸素や窒素などの元素を微少量ドーピング
して高抵抗化にし得るが、その反面、光導電性が低下す
るという問題がある。また、ホウ素などを添加しても高
抵抗化が期待できるが、十分に満足し得るような暗抵抗
率が得られず約101Ω・cm程度にすぎない。
However, an amorphous silicon (hereinafter abbreviated as a-Si) layer can only have a dark resistivity of about 10 drops Ωcm unless it is doped with any impurity element, and is used in electrophotographic photoreceptors. In this case, 101tΩ・0111
It is necessary to increase the charge retention ability by increasing the dark resistivity. For this purpose, it is possible to increase the resistance by doping a small amount of elements such as oxygen or nitrogen, but on the other hand, there is a problem that the photoconductivity decreases. Further, even if boron or the like is added, a high resistance can be expected, but a sufficiently satisfactory dark resistivity cannot be obtained and is only about 101 Ω·cm.

一方、上記の如きドーピング剤の開発と共に、a−5i
光導電層に別の非光導電層を積層して成る積層型感光体
が提案されている。
On the other hand, along with the development of doping agents as mentioned above, a-5i
A laminated photoreceptor has been proposed in which a photoconductive layer is laminated with another non-photoconductive layer.

例えば、第2図はこの積層型感光体であり、基板(1)
の上にキャリア注入阻止層(2) 、a−3t光導電M
(3)及び表面保護層(4)が順次積層されている。
For example, Figure 2 shows this laminated photoreceptor, with the substrate (1)
carrier injection blocking layer (2) on top of the a-3t photoconductive M
(3) and a surface protective layer (4) are sequentially laminated.

この積層型光体によれば、キャリア注入阻止層(2)は
基板(1)からのキャリアの注入を阻止するものであり
、表面保護層(4)はa−3i光導電層(3)を保護し
て耐湿性等を向上させるものであるが、両者の層(2)
及び(4)ともに感光体の暗抵抗率を大きくして帯電能
を高めることが目的であり、そのためにこれらの層を光
導電性にする必要はない。
According to this laminated light body, the carrier injection blocking layer (2) blocks injection of carriers from the substrate (1), and the surface protection layer (4) blocks the a-3i photoconductive layer (3). It protects and improves moisture resistance etc., but both layers (2)
The purpose of both (4) and (4) is to increase the dark resistivity of the photoreceptor to increase the charging ability, and for that purpose, it is not necessary to make these layers photoconductive.

このように従来周知のa−3i電子写真感光体は光キヤ
リア発生層をa−3i光導電層により形成させた点に大
きな特徴があり、これによって耐熱性、耐久性及び光感
度特性などに優れた長所を有している反面、暗抵抗率が
不十分であるためにドーピング剤を用いたり、更に積層
型感光体にすることで暗抵抗率を大きくしている。即ち
、積層型感光体に形成されるキャリア注入阻止11(2
)及び表面保護層(4)はa−5t光導電層自体が有す
る欠点を補完するものであり、a−3i光導電層(3)
と実質上区別し得る層と言える。
As described above, the conventionally well-known A-3I electrophotographic photoreceptor has a major feature in that the photocarrier generation layer is formed by the A-3I photoconductive layer, and as a result, it has excellent heat resistance, durability, and photosensitivity characteristics. However, since the dark resistivity is insufficient, the dark resistivity is increased by using doping agents or by making the photoreceptor a laminated type. That is, carrier injection prevention 11 (2) formed on the laminated photoreceptor
) and the surface protective layer (4) complement the defects of the a-5t photoconductive layer itself, and the a-3i photoconductive layer (3)
It can be said that it is a layer that can be practically distinguished.

本発明者等は上記事情に鑑みて、既にアモルファスシリ
コンカーバイド(以下、a−5iCと略す)は光導電性
を有すると共に暗抵抗率がドーピング剤の有無と無関係
に容易にIQIIΩ・cm以上になり、更にドーピング
剤の選択によって負極性に帯電可能な電子写真感光体と
成り得ることを見い出した。
In view of the above circumstances, the present inventors have already discovered that amorphous silicon carbide (hereinafter abbreviated as a-5iC) has photoconductivity and has a dark resistivity that easily exceeds IQIIΩ cm regardless of the presence or absence of a doping agent. Furthermore, they have found that by selecting a doping agent, it is possible to obtain an electrophotographic photoreceptor that can be charged to a negative polarity.

上記a−3iC層が電子写真感光体と成り得た理由は、
その層が大きなキャリア移動度をもち、更に10− ’
 ” (Ω・cm)−’以下の暗導電率であり、これに
よって大きな帯電能が得られたためである。
The reason why the above a-3iC layer could be used as an electrophotographic photoreceptor is as follows.
The layer has a large carrier mobility, and even 10-'
This is because the dark conductivity was less than (Ω·cm)−′, and a large charging ability was obtained.

しかしながら、このように大きなキャリア移動度をもつ
a−3iC電子写真感光体であっても、光源の波長によ
っては未だ満足し得る電子写真特性が得られていない0
例えば蛍光灯等の一般的な投光源(分光スペクトルが比
較的短波長側ヘシフトしている)を除電用光源に用いた
場合、画像露光時の光メモリー効果によってゴースト現
象(先の画像が完全に除去されずに残存し、次の画像形
成に伴って先の画像が再び現れる現象をいう)が生じ易
くなる傾向にある。
However, even with the a-3iC electrophotographic photoreceptor, which has such a high carrier mobility, satisfactory electrophotographic properties may still not be obtained depending on the wavelength of the light source.
For example, when a general light source such as a fluorescent lamp (with a spectrum shifted toward relatively short wavelengths) is used as a light source for static elimination, a ghost phenomenon (the previous image is completely distorted) due to the optical memory effect during image exposure. (a phenomenon in which the previous image remains without being removed and the previous image reappears as the next image is formed) tends to occur.

このような問題を解決するためには長波長の光を発する
光源を除電用光源に用いて露光を増大させることが有効
であり、これに適した光源として発光ダイオードアレイ
がある。ところが、このダイオードアレイを用いた場合
、ゴースト現象が生じないように強露光照射を行うと、
これに伴って帯電能が低下したり、暗減衰が増大すると
いう問題が生じる。更に、製造コスト面から【た場合、
発光ダイオードは蛍光灯に比べて格段に高価であり、低
コストな光源が望まれる。
In order to solve this problem, it is effective to increase exposure by using a light source that emits long wavelength light as a light source for static elimination, and a light emitting diode array is a suitable light source for this purpose. However, when using this diode array, if strong exposure is applied to prevent the ghost phenomenon,
This causes problems such as a decrease in charging ability and an increase in dark decay. Furthermore, from the manufacturing cost perspective,
Light emitting diodes are much more expensive than fluorescent lamps, and a low-cost light source is desired.

〔発明の目的〕[Purpose of the invention]

従って本発明は畝上に鑑みて案出されたものであり、そ
の目的は表面保護層及びキャリア注入阻止層を実質上不
要とし、全層に亘って光導電性a−SiCと成し、且つ
ゴースト現象の発生を防止することができた電子写真感
光体の製法を提供することにある。
Therefore, the present invention was devised in view of the ridges, and its purpose is to substantially eliminate the need for a surface protective layer and a carrier injection blocking layer, to make the entire layer of photoconductive a-SiC, and An object of the present invention is to provide a method for manufacturing an electrophotographic photoreceptor that can prevent the occurrence of a ghost phenomenon.

本発明の更に他の目的は正極性に帯電可能な電子写真感
光体の製法を提供することにある。
Still another object of the present invention is to provide a method for producing an electrophotographic photoreceptor that can be positively charged.

〔問題点を解決するための手段〕[Means for solving problems]

本発明によれば、アセチレン及びケイ素含有ガスから成
ると共にこのガス組成比が0.01:1乃至3:1の範
囲内に設定され、これらのガス流量の合計量に対して5
倍以下のヘリウムガスを配合し、且つ101乃至1モル
χの周期律表第ma族元素(以下、IIIa族元素と略
す)含有ガスを含むa−SiC生成用ガスをグロー放電
分解して基板上に正極性に帯電可能なa−5iC層を形
成することを特徴とする電子写真感光体の製法が提供さ
れる。
According to the present invention, the gas is composed of acetylene and silicon-containing gas, and the gas composition ratio is set within the range of 0.01:1 to 3:1, and the gas composition ratio is set within the range of 0.01:1 to 3:1, and the gas composition ratio is set within the range of 0.01:1 to 3:1.
A-SiC generation gas containing a gas containing 101 to 1 mol χ of Group Ma elements of the periodic table (hereinafter abbreviated as Group IIIa elements) is decomposed by glow discharge onto the substrate. Provided is a method for producing an electrophotographic photoreceptor, which comprises forming an a-5iC layer that can be positively charged.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明の製法によれば:、 a−SiC生成用ガスにH
eを含有することを特徴とするものであり、また、グロ
ー放電分解法によってCzH,ガス及びSi含有ガスか
ら基板上に光導電性a−5iC層を形成させると大きな
暗抵抗率が得られ、更にa−5iC生成用ガスに■a族
元素ガスを104乃至1モルχ含有させると正極性に有
利に帯電する感光体と成り得ることは既に本発明者等が
提案した通りである。
According to the production method of the present invention: H is added to the a-SiC generation gas.
Furthermore, when a photoconductive a-5iC layer is formed on a substrate from CzH gas and Si-containing gas by glow discharge decomposition method, a large dark resistivity can be obtained. Furthermore, as the present inventors have already proposed, if the a-5iC generation gas contains 10@4 to 1 mole .chi. of the a-group element gas, a photoreceptor that is favorably charged to positive polarity can be obtained.

即ち、第1図によれば導電性基板(1)上に、例えばグ
ロー放電分解法によって光導電性a−5iC層(5)を
形成したものであり、この層厚方向に亘って炭素とma
族元素をそれぞれ同一含有比率で含有させている。これ
によって暗抵抗率が1QI3Ω・cm以上となると共に
明抵抗率に比べて1000倍以上となることを見い出し
、この知見に基づく後述する実施例から明らかな通り、
この単一組成の層だけで十分に実用性のあるa−5iC
感光体と成り得たことは予想外の成果であった。
That is, according to FIG. 1, a photoconductive a-5iC layer (5) is formed on a conductive substrate (1) by, for example, a glow discharge decomposition method, and carbon and ma
Each group element is contained in the same content ratio. It was discovered that this resulted in a dark resistivity of 1QI3Ω·cm or more, which was also 1000 times higher than the bright resistivity, and as is clear from the examples described below based on this knowledge,
A-5iC is sufficiently practical with just this single composition layer.
The fact that it became a photoreceptor was an unexpected result.

更に本発明者等はこのa−SiC感光体を正極性又は負
極性に帯電させて両者の帯電性能を比較した場合、この
a−3iC層(5)にma族元素を0.1乃至10.0
00pf111の範囲、好適には0.1乃至1000p
p+aの範囲内でドーピングすると正極性で有利に帯電
能を高めることができることも見い出した。
Furthermore, when the present inventors charged this a-SiC photoreceptor to positive or negative polarity and compared the charging performance of the two, they found that the a-3iC layer (5) contained 0.1 to 10. 0
00pf111 range, preferably 0.1 to 1000p
It has also been found that doping within the range of p+a can advantageously increase the charging ability with positive polarity.

このようにl1la族元素のドーピングによって正極性
に帯電し易くなる点については、未だ解明されておらず
、推論の域を脱し得ないが、a−5iC層が正電荷を保
持するのに十分に高い抵抗率をもち、また、基板からの
負電荷の注入を防ぐ効果にも優れ、更に正電荷に対する
電荷移動度が優れている等の理由によると考えられる。
The reason why doping with l1la group elements makes it easier to be positively charged has not yet been elucidated and cannot be left out of the realm of speculation, but it appears that the a-5iC layer is sufficiently charged to retain positive charges. This is believed to be because it has high resistivity, is excellent in preventing injection of negative charges from the substrate, and has excellent charge mobility with respect to positive charges.

また、このI[[a族元素としてはB、A1.Ga、I
n等があるが、就中、Bが共有結合性に優れて半導体特
性を敏感に変え得る点で望ましい。
In addition, this I [[A group elements include B, A1. Ga, I
Among these, B is preferable because it has excellent covalent bonding properties and can sensitively change semiconductor properties.

上記のようにma族元素をドーピングさせるに当たって
は、a−3iC生成用ガスに10−4乃至1モル2、好
適には10−&乃至0.1モルχのl1Ia族元素ガス
を含有させるとよく、これによって上記の所要の範囲内
にドーピングさせることが可能となる。
When doping with the Ma group element as described above, it is preferable that the a-3iC generation gas contains 10-4 to 1 mol2, preferably 10-& to 0.1 mol χ of the l1Ia group element gas. , thereby making it possible to dope within the above-mentioned required range.

また、ma族元素をドープするに当たってはIhH。In addition, IhH is used when doping with a Ma group element.

、BPs、AI(CII+)s、Ga(CHs)z、I
n(CHs)s等が用いられる。
, BPs, AI(CII+)s, Ga(CHs)z, I
n(CHs)s etc. are used.

本発明のa−5iC層が光導電性を有するようになった
点については、アモルファス化したケイ素と炭素を不可
欠な構成元素とし、更にそのダングリングボンドを終端
させるべく水素元素(H)やハロゲン元素を所要の範囲
内で含有させることによって光導電性が生じるものと考
えられる0本発明者等が炭素の含有比率を幾通りにも変
えて光導電性の有無を確かめる実験を行ったところ、a
−5iC層(5)中に炭素を1乃至90原子χ、好適に
は5乃至50原子χの範囲内で含有させるとよく、或い
はこの範囲内で層厚方向に亘って炭素含有量を変えても
よい。
The reason why the a-5iC layer of the present invention has photoconductivity is that amorphous silicon and carbon are essential constituent elements, and hydrogen element (H) and halogen are added to terminate the dangling bonds. It is believed that photoconductivity occurs when the elements are contained within the required range.The present inventors conducted experiments to confirm the presence or absence of photoconductivity by changing the content ratio of carbon in a number of ways. a
-5iC layer (5) preferably contains carbon in the range of 1 to 90 atoms χ, preferably 5 to 50 atoms χ, or the carbon content may be varied within this range in the layer thickness direction. Good too.

また、水素元素(H)やハロゲン元素の含有量は5乃至
50原子χ、好適には5乃至40原子χ、最適には10
乃至30原子χがよく、通常、■元素が用いられている
。このH元素はダングリングボンドの終端部に取り込ま
れ易いのでバンドギャップ中の局在準位密度を低減化さ
せ、これにより、優れた半導体特性が得られる。
Further, the content of hydrogen element (H) and halogen element is 5 to 50 atoms χ, preferably 5 to 40 atoms χ, optimally 10
It is preferable to have χ to 30 atoms, and usually the element ▪ is used. Since this H element is easily incorporated into the terminal portion of the dangling bond, the localized level density in the band gap is reduced, thereby providing excellent semiconductor characteristics.

更にこのH元素の一部をハロゲン元素に置換してもよく
、これにより、a−SiC層の局在準位密度を下げて光
導電性及び耐熱性(温度特性)を高めることができる。
Further, a part of this H element may be replaced with a halogen element, thereby lowering the localized level density of the a-SiC layer and improving photoconductivity and heat resistance (temperature characteristics).

その置換比率はダングリングボンド終端用全元素中0.
01乃至50原子χ、好適には1乃至30原子χがよい
。また、ハロゲン元素にはF+CI+Br、1.At等
があるが、就中、Fを用いるとその大きな電気陰性度に
よって原子間の結合が大きくなり、これによって熱的安
定性に優れるという点で望ましい。
Its substitution ratio is 0.0 among all elements for dangling bond termination.
01 to 50 atoms χ, preferably 1 to 30 atoms χ. In addition, halogen elements include F+CI+Br, 1. Although there are At and the like, F is particularly desirable because its large electronegativity increases the bonding between atoms, resulting in excellent thermal stability.

本発明の製法によれば、a−3iC生成用ガスにC,H
,及びSi含有ガスの合計流量に対して5倍以下、好適
には0.5乃至3倍のHeガスを含有することを特徴と
しており、これにより、グロー放電分解に当たって電離
電圧が大きくなり、励起エネルギーが増大し、このよう
にしてプラズマ温度が上昇し、その結果、この雰囲気が
a−5iCJiiJの生成に有利に作用して膜質が改善
され、ゴースト現象が解消される。そして、このような
a−3iC層の改質現象は単にゴースト現象の解消だけ
ではなく、光感度や表面電位等の電子写真特性の全般に
亘って有利に作用する。
According to the production method of the present invention, C, H is added to the a-3iC generation gas.
, and contains less than 5 times, preferably 0.5 to 3 times as much He gas as the total flow rate of the Si-containing gas, which increases the ionization voltage during glow discharge decomposition and increases the excitation. The energy increases and thus the plasma temperature increases, so that this atmosphere favors the formation of a-5iCJiiJ, improving the film quality and eliminating the ghost phenomenon. Such a modification phenomenon of the a-3iC layer not only eliminates the ghost phenomenon, but also has an advantageous effect on overall electrophotographic characteristics such as photosensitivity and surface potential.

上記の如き光轟電性a−SiC層(5)の厚みは、少な
くとも5μm以上あればよく、これによって表面電位が
一200V以上となり、更に画像の分解能及び画像流れ
が生じない範囲内でその上限が適宜選ばれており、本発
明者等の実験によれば、5乃至100μ醜、好適には1
0乃至50771mの一囲内に設定するとよい。
The thickness of the photoconductive a-SiC layer (5) as described above should be at least 5 μm or more, so that the surface potential becomes 1200 V or more, and the upper limit thereof is within the range where image resolution and image blurring do not occur. is appropriately selected, and according to the experiments of the present inventors, the ugliness is 5 to 100μ, preferably 1
It is preferable to set it within a range of 0 to 50771 m.

更に、このa−SiC層の暗減衰曲線及び光減衰曲線を
求めたところ、高い表面電位をもつと共に優れた光感度
特性を有し、また、残留電位が小さくなっていることを
確かめた。
Furthermore, when the dark decay curve and light decay curve of this a-SiC layer were determined, it was confirmed that it had a high surface potential, excellent photosensitivity characteristics, and a small residual potential.

また本発明者等は、上記の電子写真感光体を製作するに
当たってグロー放電分解法に基づいて02Hzガス及び
Si含有ガスを所定の比率で混合させるとよく、これに
より、a−SiC層が高速に成膜され、且つ光導電性を
有する。
In addition, the present inventors have found that when manufacturing the above-mentioned electrophotographic photoreceptor, it is preferable to mix 02Hz gas and Si-containing gas at a predetermined ratio based on the glow discharge decomposition method. It is formed into a film and has photoconductivity.

即ち、CzHzとSi含有ガスをグロー放電領域に導入
するに当たってこのガス組成比を0.01:1乃至3:
lの範囲内に、好適には0.05:l乃至l:1、最適
には0.05:1乃至0.3:1の範囲内に設定すれば
よく、0.01:1の比率から外れた場合には暗抵抗率
が10+1Ω・cm以下となって電荷保持能が十分でな
く、大きな帯電電位を得ることがなくなり、3:1の比
率から外れた場合には膜中のダングリングボンドが増加
して暗抵抗率が10+1Ω−’c+s以下となる。
That is, when introducing CzHz and Si-containing gas into the glow discharge region, the gas composition ratio is adjusted to 0.01:1 to 3:
l, preferably within the range of 0.05:l to l:1, optimally within the range of 0.05:1 to 0.3:1, and from a ratio of 0.01:1 to If it deviates from the ratio of 3:1, the dark resistivity will be less than 10+1 Ω・cm, and the charge retention capacity will be insufficient, making it impossible to obtain a large charged potential.If the ratio deviates from 3:1, dangling bonds in the film will occur. increases, and the dark resistivity becomes 10+1Ω−'c+s or less.

前記Si含有ガスとして5IH41S1zH4,5iJ
s+5iFa+SiC1m、5iHC13等々があり、
就中、5il14+5iJiはそれ自身StがHと結合
しているため膜中にHがとり込まれやすく膜中のダング
リングボンドを低減し光導電性を向上させる点で望まし
い。
5IH41S1zH4,5iJ as the Si-containing gas
There are s+5iFa+SiC1m, 5iHC13, etc.
Particularly, 5il14+5iJi is desirable since St itself is bonded to H, so H is easily incorporated into the film, reducing dangling bonds in the film and improving photoconductivity.

また、前記ダングリングボンド終端用元素としてHを用
いる場合には、H2ガスはCtlhガス及びSiH#ガ
スの流量合計値に対して3倍以下、好適には2倍以下に
配合すればよく、これから外れると膜中の水素が過剰と
なって感光体に要求される電気的特性が劣化する。
In addition, when H is used as the element for terminating dangling bonds, H2 gas may be blended in an amount not more than three times, preferably not more than twice, the total flow rate of Ctlh gas and SiH# gas. If it comes off, hydrogen in the film becomes excessive and the electrical characteristics required of the photoreceptor deteriorate.

本発明の製法によれば、上述した通りの製造条件によっ
てa−5iCNを生成するに当たっては、グロー放電用
の高周波電力、反応室内部のガス圧及び基板温度を次の
通りに設定するのがよい。
According to the manufacturing method of the present invention, when producing a-5iCN under the manufacturing conditions as described above, it is preferable to set the high-frequency power for glow discharge, the gas pressure inside the reaction chamber, and the substrate temperature as follows. .

即ち、高周波電力は0.05乃至0.5W/cm”の範
囲に設定すればよ< 、0.05W/c+a”未満であ
ると成膜速度が小さくなり、0.5W/cm”を超える
とプラズマダメージによって膜質が低下してキャリア移
動度が小さくなる。また、ガス圧は0.1乃至2.0T
orrの範囲に設定すればよ< 、0.1Torr未満
であると成膜速度が小さくなり、2.0Torrを超え
ると放電が不安定となる。更に、基板温度はa−Si:
H膜の成膜形成に比べて30乃至80℃位高くするのが
よく、望ましくは200乃至400℃の範囲がよい、こ
の基板温度が200℃未満であれば、SiとCのネット
ワーク化が阻害され、400℃を超えると水素の脱離が
著しくなって暗抵抗率が小さくなる。
In other words, the high frequency power should be set within the range of 0.05 to 0.5 W/cm. If it is less than 0.05 W/c+a, the deposition rate will be low, and if it exceeds 0.5 W/cm. The film quality deteriorates due to plasma damage and carrier mobility decreases.In addition, the gas pressure is 0.1 to 2.0T.
If it is set within the range of < 0.1 Torr, the film formation rate will be low, and if it exceeds 2.0 Torr, the discharge will become unstable. Furthermore, the substrate temperature is a-Si:
The temperature should be about 30 to 80 degrees Celsius higher than the H film formation, preferably in the range of 200 to 400 degrees Celsius. If this substrate temperature is less than 200 degrees Celsius, the networking of Si and C will be inhibited. When the temperature exceeds 400° C., hydrogen desorption becomes significant and the dark resistivity decreases.

かくして層厚方向に亘って単一組成の光導電性a−5i
C層だけで十分に実用と成り得る電子写真感光体が提供
される。
Thus, the photoconductive a-5i of a single composition throughout the layer thickness direction
An electrophotographic photoreceptor that can be put into practical use with just the C layer is provided.

そこで、本発明者等は上記の結果を踏まえて、更に鋭意
研究に努めたところ、この単一組成の層内部に種々のN
 fiJI域を生成させることによって電子写真特性を
更に向上し得ることを見い出した。
Therefore, based on the above results, the present inventors conducted further research and found that various N
It has been found that electrophotographic properties can be further improved by generating a fiJI region.

即ち、本発明の製法においては、構成元素である炭素又
はma族元素の含有比率を層厚方向に亘って変化させ、
これによって複数の層領域を生成させ、このN領域の数
に対応して下記の第1の態様乃至第4の態様までの電子
写真感光体の製法が得られる。
That is, in the manufacturing method of the present invention, the content ratio of carbon or the Ma group element as a constituent element is changed over the layer thickness direction,
As a result, a plurality of layer regions are generated, and the following methods of manufacturing an electrophotographic photoreceptor are obtained according to the number of N regions.

本発明によれば、このような態様の中で、基板側から感
光体表面側へ向けて第1の層領域、第2の層領域、必要
に応じて第3の層領域、第4の層領域を生成させ、少な
くとも第2の層領域及び第3の層領域の形成時にa−S
iC生成用ガス中にlieを含有させることを特徴とす
るものであり、これによってゴースト現象が生じなくな
る。
According to the present invention, in such an embodiment, from the substrate side to the photoreceptor surface side, the first layer region, the second layer region, and if necessary, the third layer region, and the fourth layer. a-S during formation of at least the second layer region and the third layer region.
It is characterized by containing lie in the iC generation gas, thereby eliminating the ghost phenomenon.

以下、本発明の製法を第1の態様及び第2の態様につい
て詳細に述べ、第3の様態及び第4の態様はこれに準す
るものとする。
Hereinafter, the manufacturing method of the present invention will be described in detail regarding the first aspect and the second aspect, and the third aspect and the fourth aspect shall correspond thereto.

蚤上立胆槙 第1の態様によれば、a−5iC生成用ガスをグロー放
電分解して正極性に帯電可能な光導電性a−SiC層を
基板上に形成した電子写真感光体の製法にあって、前記
ガスはCzHz及びSi含有ガスから成り、そのガス組
成比を0.01:1乃至3:1の範囲内に設定し、且つ
ma族元素含有ガスを含有させると共に成膜中にこの含
有比率を小さくしたことを特徴とする電子写真感光体の
製法が提供される。
According to the first aspect, a method for manufacturing an electrophotographic photoreceptor in which a photoconductive a-SiC layer that can be positively charged is formed on a substrate by glow discharge decomposition of an a-5iC generation gas. The gas is composed of CzHz and Si-containing gas, the gas composition ratio is set within the range of 0.01:1 to 3:1, and while containing the Ma group element-containing gas, A method for manufacturing an electrophotographic photoreceptor is provided, which is characterized by reducing this content ratio.

即ち、この第1の態様によれば、第1図に示した単一組
成の光導電性a−3iC層に対してma族元素を含有さ
せ、その含有比率を変えることにより少な(とも第1の
層領域及び第2の層領域を生成させるものであり、この
態様を第3図乃至第9図により説明する。
That is, according to this first aspect, by incorporating a Ma group element into the photoconductive a-3iC layer having a single composition shown in FIG. This layer region and the second layer region are generated, and this aspect will be explained with reference to FIGS. 3 to 9.

第3図においては導電性基板(1)上に第1の層領域(
6)及び第2の層領域(7)を順次形成し、両者の層領
域が一体化した光導電性a−SiC層(5a)から成っ
ており、そして、第1の層領域(6)には第2の層領域
(7)に比べてma族元素が多く含まれていると共に第
2のN領域())の形成時にa−SiC生成用中にIl
eHeガス定量含有することが重要である。
In FIG. 3, a first layer region (
6) and a second layer region (7) are successively formed, both layer regions consisting of an integrated photoconductive a-SiC layer (5a); contains more Ma group elements than the second layer region (7), and also contains Il during a-SiC generation during the formation of the second N region ()).
It is important to contain a fixed amount of eHe gas.

第2の層領域(7)はrIia族元素め含有量が0.1
乃至10.000ppmの範囲内で、好適には0.1乃
至1゜000 pp■の範囲内で適宜法められ、これに
よって正極性に帯電すると共に表面電位、光感度特性等
の所要な電子写真特性が得られる。そして、このN8m
域よりもma族元素を多(含有した第1の層領域(6)
を形成すると光導電性a−3iC層(5a)の基板側領
域で導電率が大きくなり、これにより、基板側からめキ
ャリアの注入が阻止されると共にa−StC層の全領域
で発生した光キャリアが基板へ円滑に流れ、その結果、
表面電位が大きくなると共に光感度特性が向上する。
The second layer region (7) has an rIia group element content of 0.1
It is appropriately controlled within the range of 10.000 ppm to 10.000 ppm, preferably within the range of 0.1 to 1.000 ppm, thereby positively charging and improving the required electrophotographic properties such as surface potential and photosensitivity characteristics. characteristics are obtained. And this N8m
The first layer region (6) containing more Ma group elements than the
When formed, the conductivity increases in the substrate side region of the photoconductive a-3iC layer (5a), which prevents injection of carriers from the substrate side and eliminates photocarriers generated in the entire region of the a-StC layer. flows smoothly to the substrate, and as a result,
As the surface potential increases, the photosensitivity characteristics improve.

更にこの第2の層領域(7)の形成に当たって、a−3
iC生成用ガス中にHeガスをCJ*及びSi含有ガス
の合計流量に対して5倍以下、好適には0.5乃至3倍
の範囲内に含有させるとよく、これにより、ゴースト現
象が生じなくなる。
Furthermore, in forming this second layer region (7), a-3
It is preferable to include He gas in the iC generation gas in an amount of 5 times or less, preferably 0.5 to 3 times the total flow rate of CJ* and Si-containing gas, thereby causing a ghost phenomenon. It disappears.

この第1の層領域(6)はその領域全体に亘って光導電
性を有しており、これによって第2図に示した従来のa
’−S i電子写真感光体のキャリア注入阻止N(2)
 と区別し得る。
This first layer region (6) is photoconductive over its entire region, which makes it possible to avoid the conventional a shown in FIG.
'-Si electrophotographic photoreceptor carrier injection prevention N(2)
can be distinguished from

即ち、第1の層領域(6)はその領域全体の光導電性に
よって光感度特性を全般に亘って向上させる。特に第1
の層領域(6)に到達し易い比較的長波長な光に対して
は優れた光感度特性が得られ゛、これにより半導体レー
ザーを記録用光源とした電子写真感光体に好適となる。
That is, the first layer region (6) improves the photosensitivity characteristics over the whole area due to the photoconductivity of the entire region. Especially the first
Excellent photosensitivity characteristics can be obtained for relatively long-wavelength light that easily reaches the layer region (6), and this makes it suitable for electrophotographic photoreceptors using semiconductor lasers as recording light sources.

また、従来のa−3i電子写真感光体によれば、前記キ
ャリア注入阻止N(2)のm*をa−Si光導電層(3
)に介して175倍以下に設定するのに対して、本発明
の製法によれば、第1の層領域(6)の層厚は第2の層
領域(7)に比べて光感度特性を向上させることができ
、その好適な層厚比は1/2以下、最適には1八以下に
設定するのがよい。
Further, according to the conventional a-3i electrophotographic photoreceptor, m* of the carrier injection blocking N(2) is set to m* of the a-Si photoconductive layer (3).
), whereas according to the manufacturing method of the present invention, the layer thickness of the first layer region (6) has a photosensitivity characteristic lower than that of the second layer region (7). The layer thickness ratio is preferably set to 1/2 or less, most preferably 18 or less.

更に第1の態様によれば、炭素台を量を第4図乃至第9
図に示す通りに設定してもよい、これらの図において、
横軸は基板から感光体表面に至る層厚を示し、縦軸は炭
素含有量を示している。尚、この横軸において(6) 
、 (7)に示すそれぞれの範囲は第1の層領域及び第
2の層領域を表している。
Furthermore, according to the first aspect, the amount of the carbon stand is adjusted from FIGS. 4 to 9.
In these figures, which may be configured as shown in the figures,
The horizontal axis shows the layer thickness from the substrate to the photoreceptor surface, and the vertical axis shows the carbon content. Furthermore, on this horizontal axis (6)
, Each range shown in (7) represents a first layer region and a second layer region.

即ち、第4図は炭素含有比率が全層に亘って一定であり
、或いは第5図は第1のN領域で炭素含有量を少な(し
ており、これに対して第6図乃至第9図は第1の層領域
が第2の層領域に比べて炭素が多く含有されていること
を示すものであり、これによって表面電位が一段と高く
なって光感度特性が向上する。また、第7図乃至第9図
のように炭素の含有量を層厚方向に亘って漸次変えると
表面電位及び光感度を一層高め且つ残留電位が小さくな
る。
That is, in FIG. 4, the carbon content ratio is constant throughout the entire layer, or in FIG. 5, the carbon content is small in the first N region, whereas in FIGS. The figure shows that the first layer region contains more carbon than the second layer region, which further increases the surface potential and improves the photosensitivity characteristics. If the carbon content is gradually changed in the layer thickness direction as shown in FIGS. 9 to 9, the surface potential and photosensitivity will be further increased and the residual potential will be reduced.

員り東皿盪 第2の態様によれば、a−3iC生成用ガスをグロー放
電分解して正極性に帯電可能な光導電性a−SiC層を
基板上に形成した電子写真感光体の製法であって、前記
ガスはCgH*及びSi含有ガスから成りそのガス組成
比を0.01=1乃至3:1の範囲内に設定し、成膜中
にcznz含有組成比を変えて前記a−3iC層に少な
(とも第1の領域、第2のLiI域及び第3の領域を具
備させ、第1の1!領域は第2の層領域より基板側に、
第2の層領域は第3の層領域より基板側にそれぞれ配置
され、第3の層領域は第2の層領域に比べて炭素が多く
含まれ、且つ前記第2の層領域の形成時に前記a−Si
C生成用ガスに10−b乃至1モルχのma族元素含有
ガスを含むとともに第1のN fin域の形成時にa−
5iC生成用ガス中におけるma族元素含有ガスの占め
る割合が第2の層領域の形成時に比べて大きいことを特
徴とする電子写真感光体の製法が提供される。
According to a second aspect, a method for manufacturing an electrophotographic photoreceptor in which a photoconductive a-SiC layer that can be positively charged is formed on a substrate by glow discharge decomposition of an a-3iC generation gas. The gas is composed of CgH* and Si-containing gas, and the gas composition ratio is set within the range of 0.01=1 to 3:1, and the cznz content composition ratio is changed during film formation to achieve the a- The 3iC layer has a first region, a second LiI region, and a third region, and the first 1! region is closer to the substrate than the second layer region,
The second layer regions are each disposed closer to the substrate than the third layer regions, and the third layer regions contain more carbon than the second layer regions, and when the second layer regions are formed, the a-Si
The C-generating gas contains a gas containing 10-b to 1 mol χ of a group element, and when forming the first N fin region, a-
Provided is a method for manufacturing an electrophotographic photoreceptor, characterized in that the proportion of the Ma group element-containing gas in the 5iC generation gas is larger than that during the formation of the second layer region.

即ち、この第2の態様によれば、第10図に示す通り、
第1の態様にて示した第2の層領域(7)の上に更に第
3のJi層領域8)を形成し、第3の層領域(8)の炭
素含有量を第2の層領域(7)よりも多くし、そして、
第1の層領域(6)、第2の層領域(7)及び第3の層
領域(8)を実質上一体化して光導電性a−5iC層(
5b)とした。
That is, according to this second aspect, as shown in FIG.
A third Ji layer region 8) is further formed on the second layer region (7) shown in the first embodiment, and the carbon content of the third layer region (8) is adjusted to the second layer region (7). (7) more than, and
The first layer region (6), the second layer region (7) and the third layer region (8) are substantially integrated to form a photoconductive a-5iC layer (
5b).

この第3の層領域(8)を形成すると、a−3iC層(
5b)の表面側の暗抵抗率が太き(なり、これに伴って
感光体の表面電位が顕著に向上する。
When this third layer region (8) is formed, the a-3iC layer (
5b), the dark resistivity on the surface side becomes thicker, and the surface potential of the photoreceptor increases markedly.

即ち、第3の層領域(8)は光導電性a−3iC層(5
b)の表面側を高抵抗化させるために形成されており、
第2図にて述べた従来周知の表面保護層(4)とは全く
区別し得るものである。また、光キヤリア発生層とキャ
リア輸送層とに分けられた機能分離型感光体によれば、
キャリア輸送層をtQImΩ・cm以上に高抵抗化させ
るが、この層に格別大きな光導電性が要求されておらず
、通常、光導電率の暗導電率に対する比率が1000倍
未満の光導電性に設定されているに過ぎない、これに対
して、第3の層領域(8)はこの比率が1000倍以上
の光導電性を有しており、上記キャリア輸送層に対して
も十分に区別し得る。
That is, the third layer region (8) is a photoconductive a-3iC layer (5
It is formed to increase the resistance of the surface side of b),
This layer can be completely distinguished from the conventionally known surface protective layer (4) described in FIG. Furthermore, according to a functionally separated photoreceptor that is divided into a photocarrier generation layer and a carrier transport layer,
Although the carrier transport layer is made to have a high resistance of tQImΩ・cm or more, this layer is not required to have particularly high photoconductivity, and usually has a photoconductivity with a ratio of photoconductivity to dark conductivity of less than 1000 times. On the other hand, the third layer region (8) has a photoconductivity that is more than 1000 times this ratio, and is sufficiently distinguished from the carrier transport layer. obtain.

第3の層領域(8)の層厚は、第201i領域(7)に
比べて1倍以下、好ましくは1ノ2倍以下、最適には1
/4倍以下がよく、これにより、表面電位が顕著に向上
すると共に光感度に優れ、且つ残留電位が小さくなり、
望ましいと言える。
The layer thickness of the third layer region (8) is not more than 1 times, preferably not more than 1 times, optimally not more than 1 times, compared to the 201i region (7).
/4 times or less is good, and as a result, the surface potential is significantly improved, the photosensitivity is excellent, and the residual potential is small.
It can be said that it is desirable.

本発明に係る第2の態様の電子写真感光体によれば、上
記第2の層領域(7)及び第3の層領域(8)の両者又
はいずれか一方の層領域を形成するに当たってa−3i
C生成用ガス中にHeガスを含有させることを特徴とし
ており、この含有量はCJ黛及びSt含有ガスの合計流
量に対して5倍以下、好適には0.5乃至3倍C!H−
の範囲に設定すればよく、これにより、ゴースト現象が
生じなくなる。
According to the electrophotographic photoreceptor of the second aspect of the present invention, in forming both or either of the second layer region (7) and the third layer region (8), a- 3i
It is characterized by containing He gas in the C generation gas, and this content is 5 times or less, preferably 0.5 to 3 times the total flow rate of CJ and St-containing gas. H-
It suffices to set the value within the range of , which prevents the ghost phenomenon from occurring.

更に第2の態様によれば、光導電性a−5iC層(5b
)の炭素含有分布は第11図乃至第16図に示す通りで
あり、横軸は基板から感光体表面に至る層厚を示し、縦
軸は炭素含有量は示している。尚、この横軸において、
(6) (7) (8)に示すそれぞれの範囲は第1の
J1領域、第2の層領域及び第3の層領域を表している
Further according to a second aspect, a photoconductive a-5iC layer (5b
) are as shown in FIGS. 11 to 16, where the horizontal axis shows the layer thickness from the substrate to the surface of the photoreceptor, and the vertical axis shows the carbon content. Furthermore, on this horizontal axis,
The respective ranges shown in (6), (7), and (8) represent the first J1 region, the second layer region, and the third layer region.

第12図、第14図、第15図及び第16図によれば、
層厚方向に亘って炭素の含有量を漸次変えており、これ
により、表面電位が向上すると共に光感度に優れ、且つ
残留電位が小さくなる。
According to FIGS. 12, 14, 15, and 16,
The carbon content is gradually changed over the layer thickness direction, which improves the surface potential, provides excellent photosensitivity, and reduces residual potential.

員り坐鳳盪 第3の態様によれば、a−SiC生成用ガスをグロー放
電分解して正極性に帯電可能な光導電性a−3iCを基
板上に形成した電子写真感光体の製法であって、前記ガ
スはC1□及びSt含有ガスから成り、その組成比を0
.01:1乃至3:lの範囲内に設定し、成膜中にC!
H!含有組成比を変えて前記a−3iC層に少なくとも
第1のN jJ[域、第2の層領域、第3のN fin
域及び第4のN fil域を基板側から感光体表面へ向
けて順次具備し、且つ第3の7181域は第2の層領域
に比べて第4のM領域は、第3の層領域に比べてそれぞ
れ炭素が多く含まれ前記第2の層領域の形成時に前記a
−5iC生成用ガスに10−&乃至1モノリのma族元
素含有ガスを含むとともに第1のM領暉の形成時にa−
5iC生成用ガス中におけるma族元素含有ガスの占め
る割合が第2の層領域の形成時に比べて大きいことを特
徴とする電子写真感光体の製法が提供される。
According to a third aspect of the present invention, there is provided a method for manufacturing an electrophotographic photoreceptor in which photoconductive a-3iC, which can be positively charged, is formed on a substrate by glow discharge decomposition of a-SiC generation gas. The gas is composed of C1□ and St-containing gas, and the composition ratio is set to 0.
.. C! during film formation.
H! The a-3iC layer has at least a first N jJ area, a second layer area, and a third N fin by changing the content composition ratio.
7181 area and a fourth N fil area are provided sequentially from the substrate side toward the photoreceptor surface, and the third 7181 area is provided in the second layer area, and the fourth M area is provided in the third layer area. When forming the second layer region, the a
-5iC generation gas contains 10- to 1 monolithic MA group element-containing gas, and when forming the first M region, a-
Provided is a method for manufacturing an electrophotographic photoreceptor, characterized in that the proportion of the Ma group element-containing gas in the 5iC generation gas is larger than that during the formation of the second layer region.

即ち、第3のB様によれば、第17図に示す通り、第2
の態様にて示した第3の層領域(8)の上に更に第4の
層領域(9)を形成し、第4の層領域(9)が第3の層
領域(8)に比べて炭素を多く含んでおり、そして、第
1のM 9M域(6)から第4の層領域(9)を実質上
一体化して光導電性a−SiCM(5c)とした。
That is, according to the third person B, as shown in FIG.
A fourth layer region (9) is further formed on the third layer region (8) shown in the embodiment, and the fourth layer region (9) has a larger area than the third layer region (8). The first M 9M region (6) to the fourth layer region (9) were substantially integrated into a photoconductive a-SiCM (5c).

この第4の層領域(9)は第3の層領域(8)に比べて
炭素を多く含有させて高抵抗化させ、これより、帯電能
を高めて表面電位を向上させることができ、その結果、
耐電圧が高くて長寿命の感光体を得ることができる。
This fourth layer region (9) contains more carbon than the third layer region (8) and has a high resistance, thereby increasing the charging ability and improving the surface potential. result,
A photoreceptor with high withstand voltage and long life can be obtained.

更に第3の態様によれば、光導電性a−3iC層(5C
)の炭素含有分布は第18図乃至第21図に示す通りで
あり、横軸は基板から感光体表面に至る層厚を示し、縦
軸は炭素含有量を示している。尚、この横軸において、
(6) (7) (8) (9)に示すそれぞれの範囲
は第1の層領域、第2の層領域、第3の層領域及び第4
0層領域を表している。
Further according to a third aspect, a photoconductive a-3iC layer (5C
) is as shown in FIGS. 18 to 21, where the horizontal axis represents the layer thickness from the substrate to the surface of the photoreceptor, and the vertical axis represents the carbon content. Furthermore, on this horizontal axis,
(6) (7) (8) The respective ranges shown in (9) are the first layer area, the second layer area, the third layer area and the fourth layer area.
It represents the 0 layer area.

第19図及び第21図によれば、層厚方向に亘って炭素
の含有量を漸次変えており、これにより、表面電位及び
光感度が向上し、且つ残留電位が小さくなる。
According to FIGS. 19 and 21, the carbon content is gradually changed over the layer thickness direction, thereby improving the surface potential and photosensitivity, and reducing the residual potential.

里り東皿皇 第4の態様によれば、a−5iC生成用ガスをグロー放
電分解して正極性に帯電可能な光導電性a−3icl及
びa−5iC表面保護層を順次形成した電子写真感光体
の製法にあって、前記光導電性a−5iC生成用ガスは
CJx及びSi含有ガスから成り、そのガス組成比を0
.01:1乃至3:1の範囲内に設定し、成膜中にCL
III含有組成比を変えて前記a−5iC層に少な(と
も第1の層領域、第2の層領域及び第3の層領域を具備
させ、第1の層領域は第2の層領域より基板側に、第2
の層領域は第3のN領域より基板側に、それぞれ配置さ
れ、′第3の層領域は第2の領域に比べて炭素が多く含
まれ、且つ前記第1の層領域の形成時に前記a−3iC
生成用ガスに10−乃至1モル2のnla族元素含有ガ
スを含むとともに第1の層領域の形成時にa−5iC生
成用ガス中における11[a族元素含有ガスの占める割
合が第2の層領域の形成時に比べて大きいことを特徴と
する電子写真感光体の製法が提供される。
According to the fourth aspect of Satorito Sarako, an electrophotographic image is produced in which photoconductive a-3icl and a-5iC surface protective layers which can be charged to positive polarity are sequentially formed by glow discharge decomposition of a-5iC generation gas. In the photoreceptor manufacturing method, the photoconductive a-5iC generating gas is composed of CJx and Si-containing gas, and the gas composition ratio is set to 0.
.. 01:1 to 3:1, and CL during film formation.
By changing the III-containing composition ratio, the a-5iC layer has a first layer region, a second layer region, and a third layer region, and the first layer region has a lower content than the second layer region. side, second
are arranged closer to the substrate than the third N region, and the third layer region contains more carbon than the second region, and when the first layer region is formed, the a -3iC
The generation gas contains 10 to 1 mol 2 of the NLA group element-containing gas, and when the first layer region is formed, the ratio of the 11[A group element-containing gas in the a-5iC generation gas to that of the second layer Provided is a method for manufacturing an electrophotographic photoreceptor characterized in that the area is larger than when it is formed.

即ち、この第4の態様によれば、第22図に示す通り、
第2の態様にて示した第3のN領域(8)の上に更にa
−3iC表面保護層(10)を形成したものであり、こ
のa−3iC表面保護層(10)は光導電性a−3SC
層(5b)の表面をオーバーコートして保護するために
形成される。
That is, according to this fourth aspect, as shown in FIG.
Further a on the third N region (8) shown in the second embodiment
-3iC surface protective layer (10) is formed, and this a-3iC surface protective layer (10) is made of photoconductive a-3SC.
It is formed to overcoat and protect the surface of layer (5b).

a−3iC表面保護層(lO)はa−3iCから成ると
いう点では光導電性a−3iC層(5b)と同じである
が、炭素の含有量を多くして高硬度とし、これによって
表面保護作用をもたらす。
The a-3iC surface protective layer (lO) is the same as the photoconductive a-3iC layer (5b) in that it is made of a-3iC, but it has a higher carbon content to give it higher hardness, thereby protecting the surface. bring about action.

このa−3iC表面保護層(10)は、その構成元素の
組成比を変えて光導電性又は非光導電性とすることがで
き、炭素の含有量を多くすると非光導電性になる傾向が
あり、これに伴って高硬度特性が得られ、高硬度a−3
iC表面保護層となる。
This a-3iC surface protective layer (10) can be made photoconductive or non-photoconductive by changing the composition ratio of its constituent elements; increasing the carbon content tends to make it non-photoconductive. With this, high hardness characteristics are obtained, and high hardness is A-3.
It becomes an iC surface protective layer.

更に第4の態様によれば、炭素含有分布は第23図及び
第24図に示す通りであり、横軸は基板から感光体表面
に至る層厚を示し、縦軸は炭素含有量を示している。尚
、この横軸において(6) (7) (8) (10)
に示すそれぞれの範囲は第1のMW域、第2の層領域、
第3の層領域及びa−3iC表面保護層を表している。
Furthermore, according to the fourth aspect, the carbon content distribution is as shown in FIGS. 23 and 24, where the horizontal axis represents the layer thickness from the substrate to the photoreceptor surface, and the vertical axis represents the carbon content. There is. Furthermore, on this horizontal axis (6) (7) (8) (10)
The respective ranges shown in are the first MW region, the second layer region,
It represents the third layer region and the a-3iC surface protection layer.

かくして、第1の態様乃至第4の態様によれば、第1図
に示した単一組成のa−5iC感光体に比べて格段に高
性能な電子写真感光体が提供される。
Thus, according to the first to fourth aspects, an electrophotographic photoreceptor with significantly higher performance than the single-composition a-5iC photoreceptor shown in FIG. 1 is provided.

また、本発明によれば、単一組成のa−3iC層並びに
第1乃至第3の態様のa−5iCiiは、いずれも光導
電性a−SiC層から成り、これによって十分実用的な
電子写真特性が得られるが、これらのa−3iC層の表
面上に従来周知の表面保護層を形成してもよい。
Further, according to the present invention, the a-3iC layer of a single composition and the a-5iCii of the first to third embodiments are both composed of a photoconductive a-SiC layer, which makes it possible to use electrophotography for practical use. However, a conventionally known surface protective layer may be formed on the surface of these a-3iC layers.

この表面保護層はそれ自体高絶縁性、高耐食性及び高硬
度特性を有するものであれば種々の材料を用いることが
でき、例えばポリイミド樹脂などの有機材料+a−3i
C+SiOx+SiO+A1gO*+SiC,5tJa
+a−5i*a−5i:H,a−3i:P、a−SiC
:H+a−SiC:Fなどの無機材料を用いることがで
きる。
Various materials can be used for this surface protective layer as long as they themselves have high insulation properties, high corrosion resistance, and high hardness characteristics. For example, organic materials such as polyimide resin + a-3i
C+SiOx+SiO+A1gO*+SiC, 5tJa
+a-5i*a-5i:H, a-3i:P, a-SiC
:H+a-SiC:F and other inorganic materials can be used.

次に本発明の実施例に用いられる容量結合型グロー放電
分解装置を第25図により説明する。
Next, a capacitively coupled glow discharge decomposition device used in an embodiment of the present invention will be explained with reference to FIG.

図中、第1.第2.第3.第4.第5.第6タンク(1
1) (12) (13) (14) (15) (1
6)には、それぞれ5iHa、CgHz。
In the figure, 1st. Second. Third. 4th. Fifth. 6th tank (1
1) (12) (13) (14) (15) (1
6), 5iHa and CgHz, respectively.

BJi(Ileガス希釈で0.2χ含有)+BJ*(l
ieガス希釈で38ppm含有)、He、NOガスが密
封されており、Heはキャリアーガスとしても用い4れ
る。これらのガスは対応する第1.第2.第3.第4.
第5.第6調整弁(17) (1B) (19) (2
0) (21) (22)を開放することにより放出さ
れ、その流量がマスフローコントローラ(23)(24
)(25)(26) (27) (28)により制御さ
れ、第1、第2.第3.第4.第5タンク(11) (
12) (13) (14) (15)からのガスは第
1主管(29)へ、第6°タンク(16)からのHeガ
スは第2主管(30)へ送られる。尚、(31)(32
)は止め弁である。第1主管(29)及び第2主管(3
0)を通じて流れるガスは反応管(33)へと送り込ま
れるが、この反応管(33)の内部には容量結合型放電
用電極(34)が設置されており、それに印加される高
周波電力は5〇−乃至3Kwが、また周波数はI MH
z乃至10MHzが適当である8反応管(33)の内部
には、アルミニウムから成る筒状の成膜用基板(35)
が試料保持台(36)の上に載置されており、この保゛
持台(36)はモーター(37)により回転駆動される
ようになっており、そして、基板(35)は適当な加熱
手段により、約200乃至400℃好ましくは約200
乃至350℃の温度に均一に加熱される。更に、反応管
(33)の内部はa−5iC膜形成時に高度の真空状態
(放電圧0.1乃至2,0Torr )を必要とするこ
とにより回転ポンプ(38)と拡散ポンプ(39)に連
結されている。
BJi (contains 0.2χ with Ile gas dilution) + BJ*(l
(contains 38 ppm when diluted with IE gas), He, and NO gas are sealed, and He is also used as a carrier gas4. These gases correspond to the first. Second. Third. 4th.
Fifth. Sixth regulating valve (17) (1B) (19) (2
0) (21) (22), and its flow rate is controlled by the mass flow controllers (23) (24).
)(25)(26)(27)(28), and the first, second . Third. 4th. 5th tank (11) (
12) (13) (14) The gas from (15) is sent to the first main pipe (29), and the He gas from the 6th tank (16) is sent to the second main pipe (30). Furthermore, (31) (32
) is a stop valve. The first main pipe (29) and the second main pipe (3
The gas flowing through 0) is sent to the reaction tube (33), and a capacitively coupled discharge electrode (34) is installed inside this reaction tube (33), and the high frequency power applied to it is 5 〇- to 3Kw, and the frequency is I MH
A cylindrical film-forming substrate (35) made of aluminum is placed inside the eight reaction tubes (33), which are suitable for a frequency of 10 MHz to 10 MHz.
is placed on a sample holder (36), which is rotated by a motor (37), and the substrate (35) is heated with appropriate heat. by means of about 200 to 400°C, preferably about 200°C.
It is uniformly heated to a temperature of 350°C to 350°C. Furthermore, the interior of the reaction tube (33) is connected to a rotary pump (38) and a diffusion pump (39) because a high degree of vacuum (discharge voltage 0.1 to 2.0 Torr) is required during a-5iC film formation. has been done.

以上のように構成されたグロー放電分解装置において、
例えば、a−5iC膜(He、Bを含有する)を基板(
35)に形成する場合には、第1.第2.第3.第5調
整弁(17) (1B) (19) (21)を開いて
それぞれよりSiH*+ CJx4Jm+Heガスを放
出する。放出量はマスフローコントローラ(23) (
24) (25) (27)により制御され、5iH1
+CJ*+B、HaJeの混合ガスは第1主管(29)
を介して反応管(33)へと流し込まれる。
In the glow discharge decomposition device configured as above,
For example, an a-5iC film (containing He and B) is deposited on a substrate (
35), the first. Second. Third. The fifth regulating valves (17), (1B), (19), and (21) are opened to release SiH*+CJx4Jm+He gas from each one. The release amount is determined by the mass flow controller (23) (
24) (25) Controlled by (27), 5iH1
+CJ*+B, HaJe mixed gas is in the first main pipe (29)
and into the reaction tube (33).

そして、反応管(33)の内部が0.1乃至2.0To
rr程度の真空状態、基板温度が200 Th至400
℃、容量型放電用電極(34)の高周波電力が50W乃
至3Kw、または周波数が1乃至50MHzに設定され
ていることに相俟ってグロー放電が起こり、ガスが分解
してHe及びBを含有したa−3iC膜が基板上に高速
で形成される。
Then, the inside of the reaction tube (33) is 0.1 to 2.0 To
Vacuum state of about rr, substrate temperature 200 Th to 400
℃, the high frequency power of the capacitive discharge electrode (34) is set to 50 W to 3 Kw, or the frequency is set to 1 to 50 MHz, and a glow discharge occurs, and the gas decomposes and contains He and B. A-3iC film is formed on the substrate at high speed.

〔実施例〕〔Example〕

次に本発明の実施例を詳細に説明する。 Next, embodiments of the present invention will be described in detail.

(例1) 本例においては、光導電性a−5iC層をアルミニウム
製成膜用基板に生成し、そのclogガスの配合比率に
対する導電率を測定した。
(Example 1) In this example, a photoconductive a-5iC layer was formed on an aluminum film-forming substrate, and its conductivity with respect to the clog gas blending ratio was measured.

即ち、第25図に示した容量結合型グロー放電分解装置
を用いて第1タンク(11)よりSiHオガスを150
secmの流量で、第5タンク(15)よりHeガスを
100secsの流量で放出し、第2タンク(12)よ
りC2hガスを10〜100sec■の流量で放出し、
グロー放電分解法に基いて約5μ−の厚みのa−5iC
膜を製作し、暗導電率及び光導電率を測定したところ、
第26図に示す通りの結果が得られた。
That is, using the capacitively coupled glow discharge decomposition device shown in FIG.
He gas is released from the fifth tank (15) at a flow rate of 100 seconds, and C2h gas is released from the second tank (12) at a flow rate of 10 to 100 seconds.
A-5iC with a thickness of about 5μ based on glow discharge decomposition method
When we fabricated the film and measured its dark conductivity and photoconductivity, we found that
The results shown in FIG. 26 were obtained.

第26図によれば、横軸はCJgガス流量(sccm)
を、縦軸は導電率〔(Ω・cm)−’)を表わし、・印
は暗導電率のプロット、o印はtle−Meレーザー(
波長632.8nm 、100 pm W/cm”)を
照射した時の光導電率のプロットであり、a、bはそれ
ぞれの特性曲線である。
According to Fig. 26, the horizontal axis is CJg gas flow rate (sccm)
, the vertical axis represents the conductivity [(Ω・cm)-'), the ・ mark is a plot of dark conductivity, and the o mark is a plot of the tle-Me laser (
This is a plot of photoconductivity when irradiated with light (wavelength: 632.8 nm, 100 pm W/cm"), and a and b are respective characteristic curves.

第26図から明らかな通り、暗導電率は10− ” (
Ω・cag)−’以下と成り得、最小で10− ” C
Ω・cm)−’まで得られた。また、光導電率は暗導電
率に比べて1000倍以上となり、このa−5iC層が
電子写真感光体用として十分に満足し得る光導電性をも
っていることが判る。
As is clear from Fig. 26, the dark conductivity is 10-'' (
Ω・cag)-' or less, with a minimum of 10-''C
Ω·cm)-' was obtained. Further, the photoconductivity was 1000 times or more as compared to the dark conductivity, indicating that this a-5iC layer had photoconductivity sufficiently satisfactory for use in electrophotographic photoreceptors.

(例2) 本例においては、(例1)に基いて82H&ガス(又は
PR,ガス)を導入して暗導電率及び光導電率を測定し
たところ、第27図に示す通りの結果が得られた。
(Example 2) In this example, when 82H&gas (or PR gas) was introduced and the dark conductivity and photoconductivity were measured based on (Example 1), the results shown in Figure 27 were obtained. It was done.

図中、横軸は5iHeとCxH*の合計流量に対するB
zHi純量(これはHeガスの希釈゛比率より換算して
求められるBmH&の絶対流量を表わす)である、尚、
B!H,純量をpus純量に置き換えた場合も参考例と
して記載する。
In the figure, the horizontal axis is B relative to the total flow rate of 5iHe and CxH*.
zHi pure amount (this represents the absolute flow rate of BmH & calculated from the dilution ratio of He gas);
B! A case where the pure amount of H is replaced with the pure amount of pus is also described as a reference example.

第27図によれば、・印は暗導電率のプロットであり、
Q印は光導電率(この光導電率は(例1)と同様にして
求められる)のプロットであり、C。
According to FIG. 27, the mark is a plot of dark conductivity,
Mark Q is a plot of photoconductivity (this photoconductivity is determined in the same manner as in (Example 1)), and C.

dはそれぞれの特性曲線である。d is each characteristic curve.

第27図から明らかな通り、光導電率は暗導電率に比べ
て1000倍以上となり、Heと共にPやBをドーピン
グしたa−SiC層が電子写真感光体用として満足し得
る光導電性をもっている。
As is clear from FIG. 27, the photoconductivity is more than 1000 times higher than the dark conductivity, indicating that the a-SiC layer doped with P and B along with He has photoconductivity that is satisfactory for use in electrophotographic photoreceptors. .

(例3) 本例においては、(例1)中CI II 2ガス流量を
lO105cに設定して得られたa−3iC層に対して
分光感度特性を測定しており、その結果は第28図に示
された分光感度曲線eとなった。尚、この図は各波長に
おいて等エネルギー光を照射した時の光導電率を示す。
(Example 3) In this example, the spectral sensitivity characteristics are measured for the a-3iC layer obtained by setting the medium CI II 2 gas flow rate to lO105c in (Example 1), and the results are shown in Figure 28. The spectral sensitivity curve e is shown in FIG. Note that this figure shows the photoconductivity when irradiated with equal energy light at each wavelength.

第28図より明らかな通り、可視光領域に光感度が認め
られ、これによって電子写真用の光導電体として十分に
用いることができる。
As is clear from FIG. 28, photosensitivity is observed in the visible light region, and as a result, it can be satisfactorily used as a photoconductor for electrophotography.

(例4) 本例においては、(例1)中czuzガス流量を103
CCffiに設定してえられたa−3iC層(厚み30
um)に対して表面電位、暗減衰及び光減衰のそれぞれ
の特性を測定した。この測定は+5.6KVのコロナチ
ャージャで正帯電し、暗中での表面電位の経時変化と、
650n+sの単色光照射直後の表面電位の経時変化を
追ったものである。
(Example 4) In this example, (Example 1) medium czuz gas flow rate is 103
The a-3iC layer (thickness 30
The characteristics of surface potential, dark decay, and light decay were measured with respect to um). This measurement was performed by positively charging with a +5.6KV corona charger, and measuring the change in surface potential over time in the dark.
This figure follows the change in surface potential over time immediately after irradiation with 650n+s monochromatic light.

その結果は第29図に示す通りであり、f、gはそれぞ
れ暗減衰曲線及び光減衰曲線である。
The results are shown in FIG. 29, where f and g are the dark decay curve and the light decay curve, respectively.

第29図より明らかな通り、表面電位が約+620Vと
大きくなっており、暗減衰も5秒後で27χ程度であり
、電荷保持能力に優れている。また、光導電率にも優れ
ており、残留電位も小さいと言える。
As is clear from FIG. 29, the surface potential is as large as about +620V, and the dark decay is about 27χ after 5 seconds, indicating excellent charge retention ability. It can also be said that it has excellent photoconductivity and low residual potential.

尚、(例4)にて得られたa−3iCPJを−5,6K
Vのコロナチャージ中で負帯電させたところ、表面電位
が数十Vであった。
In addition, the a-3iCPJ obtained in (Example 4) was heated to -5,6K
When negatively charged in a V corona charge, the surface potential was several tens of V.

そして、この(例4)に基いて製作されたa−SiC感
光体のHe含有量を測定したところ、約0.1原子χで
あり、また、この感光体を+5.6KVのコロナチャー
ジャによって正極性に帯電させ、次いで画像露光して磁
気ブラシ現像を行った結果、画像濃度が高く、高コント
ラストでゴースト現象が全く生じない良質な画像が得ら
れた。然るに前述のHeガス導入に代えてH2ガスを1
00scc−の流量で導入し、他は全く同一条件にて製
作した電子写真感光体はゴースト現象が現れた。
When the He content of the a-SiC photoconductor manufactured based on this (Example 4) was measured, it was approximately 0.1 atom χ, and this photoconductor was connected to the positive electrode using a +5.6KV corona charger. As a result of electrostatic charging, imagewise exposure, and magnetic brush development, a high-quality image with high image density, high contrast, and no ghost phenomenon was obtained. However, instead of introducing He gas as described above, H2 gas was introduced at 1
A ghost phenomenon appeared in the electrophotographic photoreceptor manufactured under the same conditions except that a flow rate of 00 scc was introduced.

(例5) 本例においては第1の態様の感光体を製作した。(Example 5) In this example, a photoreceptor of the first embodiment was manufactured.

即ち、基板用アルミニウム製ドラムを第25図に示した
容量結合型グロー放電分解装置の反応管(33)内に設
置し、そして、第1タンク(11)よりSiH*ガスを
、第2タンク(12)よりC1H!ガスを、第3タンク
及び第4タンク(13) (14)よりBzHiガスを
、第5タンク(15)よりHeガスを、第6タンク(1
6)よりHeガスをそれぞれ放出し、第1表に示す製造
条件で第1の層領域及び第2の層領域を形成した。
That is, the aluminum drum for the substrate is installed in the reaction tube (33) of the capacitively coupled glow discharge decomposition device shown in FIG. 12) from C1H! BzHi gas from the third and fourth tanks (13) (14), He gas from the fifth tank (15), and He gas from the sixth tank (15).
6), He gas was released, and the first layer region and the second layer region were formed under the manufacturing conditions shown in Table 1.

かくして得られた感光体を、暗中で+5.6KVの高圧
源に接続されたコロナチャージ中で正極性に帯電させ、
次いで分光された単色光(650nm)を感光体表面に
照射し、これによって下記の通りの電子写真特性が得ら
れた。尚、残留電位はn光開始5秒後の値である。
The thus obtained photoreceptor was positively charged in a corona charge connected to a +5.6 KV high voltage source in the dark.
Next, the surface of the photoreceptor was irradiated with spectrally monochromatic light (650 nm), thereby obtaining the following electrophotographic characteristics. Note that the residual potential is the value 5 seconds after the start of n-light.

表面電位・・・+730v 光感度・・・0.42c+s”erg−’残留電位・・
・29V 次に(例4)と同様に正極性に帯電させ、次いで画像露
光して磁気ブラシ現像を行った結果、画像濃度が高く、
高コントラストでゴースト現象が全く生じない良質な画
像が得られた。
Surface potential...+730v Photosensitivity...0.42c+s"erg-'Residual potential...
・29V Next, as in (Example 4), it was charged to positive polarity, then imagewise exposed and developed with a magnetic brush. As a result, the image density was high,
A high-quality image with high contrast and no ghost phenomenon was obtained.

然るに、第1のNeM域及び第2の11 fin域の形
成に当たって用いられるキャリアーガス(Heガス10
1005c流量)、並びに第1の層領域の形成に用いら
れるBJi(0,2χ含有)の希釈用HeガスをOXガ
スに置換し、他は全(同一条件にて製作した電子写真感
光体にはゴースト現象が見られた。
However, the carrier gas (He gas 10 fin used in forming the first NeM region and the second 11 fin region
1005c flow rate) and the diluent He gas of BJi (containing 0,2χ) used to form the first layer region was replaced with OX gas, and all other A ghost phenomenon was observed.

(以下余白) (例6) 本例においては第2の態様の感光体を(例4)と同様に
製作した。
(Left below) (Example 6) In this example, a photoreceptor of the second embodiment was manufactured in the same manner as in (Example 4).

その製作条件は第2表に示す通りであって、電子写真特
性は下記の通りになり、ゴースト現象は全く生じなかっ
た。
The manufacturing conditions were as shown in Table 2, and the electrophotographic characteristics were as shown below, with no ghost phenomenon occurring at all.

表面電位・・・+770V 光感度・・・0.39c■Rerg −1残留型位・・
・25V 然るに、第1の層領域の形成に当たって用いられるキャ
リアーガス(Heガス101005c流量)及びB11
16(0,2に含有)の希釈用Heガス、並びに第2の
層領域の形成に用いられるBJ、(38ppm含有)の
希釈用11eガスをhガスに置換し、他は全く同一条件
にて製作した電子写真感光体にはゴースト現象が見られ
た。
Surface potential...+770V Photosensitivity...0.39c ■Rerg -1 residual type...
・25V However, the carrier gas (He gas 101005c flow rate) used in forming the first layer region and B11
16 (contained in 0 and 2), BJ used for forming the second layer region, and 11e gas (containing 38 ppm) for dilution were replaced with H gas, and the other conditions were exactly the same. A ghost phenomenon was observed in the produced electrophotographic photoreceptor.

(以下余白) (例7)     ・ 本例においては第3の態様の感光体を第3表に示す条件
で製作し、これによって下記の電子写真特性が得られた
。また、ゴースト現象は全く生じなかった。
(Left below) (Example 7) - In this example, a photoreceptor of the third embodiment was manufactured under the conditions shown in Table 3, and the following electrophotographic properties were obtained. Further, no ghost phenomenon occurred at all.

表面電位・・・+800v 、 光感度・・・0.40cm”erg−’残留電位・
・・35V 更に、この感光体の表面電位、暗減衰及び光減衰のそれ
ぞれの特性を(例4)と同様に測定したところ、第30
図に示す通りの結果が得られた0図中、h、iはそれぞ
れ暗減衰曲線及び光減衰曲線である。
Surface potential...+800v, photosensitivity...0.40cm"erg-'residual potential...
...35V Furthermore, when the surface potential, dark decay, and light decay characteristics of this photoreceptor were measured in the same manner as in (Example 4), the 30th
In the figure, h and i are the dark decay curve and the light decay curve, respectively.

第30図より明らかな通り、表面電位が約−750vと
著しく太き(なっており、暗減衰も5秒後で20χ程度
であって電荷保持能力に優れている。
As is clear from FIG. 30, the surface potential is significantly large at about -750V, and the dark decay is about 20χ after 5 seconds, indicating excellent charge retention ability.

(以下余白) (例8) 本例においては第4の態様の感光体を第4表に示す条件
で製作し、これによって下記の電子写真特性が得られた
。また、ゴースト現象は全く生じなかった。
(Left below) (Example 8) In this example, a photoreceptor of the fourth embodiment was manufactured under the conditions shown in Table 4, and the following electrophotographic properties were obtained. Further, no ghost phenomenon occurred at all.

表面電位・・・+900V 光感度・・J、40cm”erg−’ 残留電位・・・45V (以下余白) 〔発明の効果〕 以上の通り、本発明の電子写真感光体の製法によれば、
全層に亘って光導電性を有するa−3iCが高い賄抵抗
率となり、且つ光感度特性にも優れていることによちて
実質上表面保護層及びキャリア注入阻止層を不要とする
ことができ、その結果、光導電性a−3iCliだけか
ら成る電子写真感光体が提供できた。   ゛ また本発明の製法によれば、Heガスをa−5iC生成
用ガス中に所定量含有させることによってゴースト現象
が生じなくなり、その結果′、一段と高性能な電子写真
感光体が提供できる。更に、膜質改善に伴って電子写真
特性全般に亘ってその特性の向上が期待できる。
Surface potential...+900V Photosensitivity...J, 40cm"erg-' Residual potential...45V (hereinafter blank) [Effects of the Invention] As described above, according to the method for manufacturing an electrophotographic photoreceptor of the present invention,
Since a-3iC, which has photoconductivity throughout the entire layer, has a high resistivity and excellent photosensitivity characteristics, a surface protection layer and a carrier injection blocking layer are virtually unnecessary. As a result, an electrophotographic photoreceptor consisting only of photoconductive a-3iCli could be provided. Furthermore, according to the manufacturing method of the present invention, by incorporating a predetermined amount of He gas into the a-5iC generation gas, the ghost phenomenon does not occur, and as a result, an electrophotographic photoreceptor with even higher performance can be provided. Furthermore, improvements in overall electrophotographic properties can be expected as the film quality improves.

更に本発明の電子写真感光体の製法によれば、層厚方向
に亘って炭素及びma族元素の含有量を変えることによ
って表面電位を向上させると共に光感度特性を高め、且
つ残留電位を顕著に小さくすることができる。特に、炭
素の含有量を層厚方向に亘って変えると、抵抗率が制御
されて所要の層領域が得られ、その結果、格段に高性能
な電子写真感光体が提供できる。
Furthermore, according to the method for producing an electrophotographic photoreceptor of the present invention, by changing the content of carbon and MA group elements in the layer thickness direction, the surface potential is improved, the photosensitivity characteristics are enhanced, and the residual potential is significantly reduced. Can be made smaller. In particular, when the carbon content is varied in the layer thickness direction, the resistivity can be controlled and a desired layer area can be obtained, and as a result, an electrophotographic photoreceptor with significantly higher performance can be provided.

また、本発明の製法によれば、正極性に有利に帯電する
ことができる正極性用電子写真感光体が提供される。
Further, according to the manufacturing method of the present invention, a positive polarity electrophotographic photoreceptor that can be charged advantageously to positive polarity is provided.

本発明の電子写真感光体の製法によれば、それ自体で帯
電能及び耐環境性に優れていることから、特に保護層を
設ける必要がなく、例えばコロナ放電による被曝或いは
現像剤の樹脂成分の感光体表面へのフィルミング等によ
って表面が劣化した場合、その劣化した表面を研摩剤等
で研摩再生を繰り返し行ってもその研摩量において制限
を受けずに感光体の初期特性を維持することができ、そ
れによって初期における良好な画像を長期に亘り安定し
て供給することが可能となる。
According to the manufacturing method of the electrophotographic photoreceptor of the present invention, since the electrophotographic photoreceptor itself has excellent charging ability and environmental resistance, there is no need to provide a special protective layer, and, for example, it is not necessary to provide a protective layer. When the surface of a photoreceptor is deteriorated due to filming, etc., even if the deteriorated surface is repeatedly polished and regenerated with an abrasive, etc., the initial characteristics of the photoreceptor can be maintained without being limited in the amount of polishing. This makes it possible to stably supply a good initial image over a long period of time.

更に、従来のa−3t悪感光を長期間に亘って使用した
場合にはコロナ放電に伴って感光体表面の局所的な放電
波−が発生し易くなり、これに起因して画像に斑点が生
じるという問題があったが、本発明の製法によれば、a
−3tの誘電率がε−12であるのに対してa−3iC
はε・7と約半分程度であるために帯電能に優れており
、これにより、表面電位を高くしても何ら上記の放電破
壊が発生しなくなり、その結果、高品質且つ高信頼性の
電子写真感光体が提供きれる。
Furthermore, when conventional A-3T exposure is used for a long period of time, local discharge waves are likely to occur on the surface of the photoreceptor due to corona discharge, which causes spots on the image. However, according to the manufacturing method of the present invention, a
-3t has a dielectric constant of ε-12, while a-3iC
is about half that of ε・7, so it has excellent charging ability.As a result, the above-mentioned discharge breakdown does not occur even if the surface potential is increased, and as a result, high-quality and highly reliable electronic We can provide photographic photoreceptors.

更に本発明の製法により得られた電子写真感光体を従来
のa−5i悪感光と比較した場合、このa−Si感光体
の問題点として耐湿性に劣っているので画像流れが生じ
易く、また、帯電能に劣っているのでゴースト現象が発
生するが、これを解決するためにa−Si感光体の使用
時にヒータを用いてその感光体を加熱し、その発生を防
止している。これに対して本発明の電子写真感光体は耐
湿性且つ帯電能に優れているために上記のようにヒータ
を用いて使用する必要はないという利点がある。
Furthermore, when the electrophotographic photoreceptor obtained by the manufacturing method of the present invention is compared with the conventional a-5i photoreceptor, problems with this a-Si photoreceptor include poor moisture resistance, which tends to cause image deletion, and , a ghost phenomenon occurs due to poor charging ability, but in order to solve this problem, when using an a-Si photoreceptor, a heater is used to heat the photoreceptor to prevent the occurrence of this phenomenon. On the other hand, the electrophotographic photoreceptor of the present invention has an advantage in that it is not necessary to use a heater as described above because it has excellent moisture resistance and charging ability.

また、本発明の製法により得られた電子写真感光体はa
−Si感光体と比べて炭素の含有量を変えるだけで幅広
い分光感度特性(ピーク600〜700na+)が得ら
れると共に光感度自体を増大させることができ、更に必
要に応じて不純物元素をドーピングすれば長波長側の増
感も可能になるという利点がある。
Further, the electrophotographic photoreceptor obtained by the manufacturing method of the present invention has a
-Compared to a Si photoreceptor, a wide range of spectral sensitivity characteristics (peak 600 to 700 na+) can be obtained by simply changing the carbon content, and the photosensitivity itself can be increased, and if necessary, it can be doped with impurity elements. This has the advantage that sensitization on the long wavelength side is also possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の製法に係る電子写真感光体の層構成を
示す説明図、第2図は従来の電子写真感光体の層構造を
示す説明図、第3図は本発明に係る第1の態様の感光体
の層領域を示す説明図、第4図、第5図、第6図、第7
図、第8図及び第9図はそれぞれ本発明に係る第1のB
様の感光体の炭素含有量を示す説明図、第1θ図は本発
明に係る第2のa様の感光体の層領域を示す説明図、第
11図、第12図、第13図、第14図、第15図及び
第16図はそれぞれ本発明に係る第2の態様の感光体の
炭素含有量を示す説明図、第17図は本発明に係る第3
の態様の感光体のM fil域を示す説明図、第18図
、第19図、第20図及び第21図はそれぞれ本発明に
係る第3の態様の感光体の炭素含有量を示す説明図、第
22図は本発明に係る第4の態様の感光体の層領域を示
す説明図、第23図及び第24図は本発明に係る第4の
態様の感光体の炭素含有量を示す説明図、第25図は本
発明の実施例に用いられる容量結合型グロー放電分解装
置の説明図、第26図はC2■、ガスの流量比率に対す
る導電率を示す線図、第27図はMhガス及びBJiガ
スのそれぞれの流量比率に対する導電率を示す線図、第
28図はアモルファスシリコンカーバイド層め分光感度
特性を示す線図、第29図はアモルファスシリコンカー
バイド層の暗減衰及び光減衰を示す線図、第30図は第
3の態様のアモルファスシリコンカーバイド層の暗減衰
及び光減衰を示す線図である。 l・・・基板 5.5a、5b、5c・・・・光導電性アモルファスシ
リコンカーバイド層 6・・・第1のi領域 7・・・第2の層領域 8・・・第3の層領域 9・・・第4の7!領域 10・・・アモルファスシリコンカーバイド表面保護層 第2加 85N26図 (几C犠)″ CニドIV/(SiI・1体−1−Cλ市)b…1) 
+ u2L12   5il14  +  (,211
z第2出 ! −17LTrL 威”を時間(sec)
FIG. 1 is an explanatory diagram showing the layer structure of an electrophotographic photoreceptor according to the manufacturing method of the present invention, FIG. 2 is an explanatory diagram showing the layer structure of a conventional electrophotographic photoreceptor, and FIG. 4, 5, 6, and 7
8 and 9 respectively show the first B according to the present invention.
FIG. 1θ is an explanatory diagram showing the layer region of a second photoconductor according to the present invention, FIG. 11, FIG. 12, FIG. 13, FIG. 14, 15, and 16 are explanatory diagrams showing the carbon content of the photoreceptor of the second embodiment of the present invention, respectively, and FIG. 17 is an explanatory diagram showing the carbon content of the photoreceptor of the third embodiment of the present invention
FIG. 18, FIG. 19, FIG. 20, and FIG. 21 are explanatory diagrams showing the carbon content of the photoconductor according to the third embodiment of the present invention, respectively. , FIG. 22 is an explanatory diagram showing the layer region of the photoconductor of the fourth embodiment of the present invention, and FIGS. 23 and 24 are explanatory diagrams showing the carbon content of the photoconductor of the fourth embodiment of the present invention. Figure 25 is an explanatory diagram of a capacitively coupled glow discharge decomposition device used in an embodiment of the present invention, Figure 26 is a diagram showing the conductivity versus the flow rate ratio of C2 and gas, and Figure 27 is a diagram showing the conductivity of Mh gas. Figure 28 is a diagram showing the spectral sensitivity characteristics of the amorphous silicon carbide layer, and Figure 29 is a diagram showing the dark attenuation and optical attenuation of the amorphous silicon carbide layer. 30 are diagrams showing the dark decay and light decay of the amorphous silicon carbide layer of the third embodiment. l...Substrate 5.5a, 5b, 5c...Photoconductive amorphous silicon carbide layer 6...First i region 7...Second layer region 8...Third layer region 9...Fourth 7! Region 10...Amorphous silicon carbide surface protective layer 2nd addition 85N26 (几C sacrificial)''C nide IV/(SiI 1 body-1-Cλ city)b...1)
+ u2L12 5il14 + (,211
Z second out! -17LTrL time (sec)

Claims (1)

【特許請求の範囲】[Claims] アセチレン及びケイ素含有ガスから成ると共にこのガス
組成比が0.01:1乃至3:1の範囲内に設定され、
これらのガス流量の合計量に対して5倍以下のヘリウム
ガスを配合し、且つ10^−^6乃至1モル%の周期律
表第IIIa族元素含有ガスを含むアモルファスシリコン
カーバイド生成用ガスをグロー放電分解して基板上に正
極性に帯電可能なアモルファスシリコンカーバイド層を
形成することを特徴とする電子写真感光体の製法。
It consists of acetylene and silicon-containing gas, and the gas composition ratio is set within the range of 0.01:1 to 3:1,
Grow an amorphous silicon carbide producing gas containing 10^-^6 to 1 mol% of a gas containing Group IIIa elements of the periodic table, in which helium gas is blended at 5 times or less with respect to the total flow rate of these gases. A method for manufacturing an electrophotographic photoreceptor, characterized by forming an amorphous silicon carbide layer on a substrate, which can be positively charged, by decomposition by discharge.
JP25426386A 1986-10-24 1986-10-24 Manufacture of electrophotographic sensitive body Pending JPS63108348A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25426386A JPS63108348A (en) 1986-10-24 1986-10-24 Manufacture of electrophotographic sensitive body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25426386A JPS63108348A (en) 1986-10-24 1986-10-24 Manufacture of electrophotographic sensitive body

Publications (1)

Publication Number Publication Date
JPS63108348A true JPS63108348A (en) 1988-05-13

Family

ID=17262544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25426386A Pending JPS63108348A (en) 1986-10-24 1986-10-24 Manufacture of electrophotographic sensitive body

Country Status (1)

Country Link
JP (1) JPS63108348A (en)

Similar Documents

Publication Publication Date Title
JPS63108348A (en) Manufacture of electrophotographic sensitive body
JP2657491B2 (en) Electrophotographic photoreceptor
JPS6382420A (en) Production of electrophotographic sensitive body
JPS6382416A (en) Electrophotographic sensitive body
JPS63108347A (en) Manufacture of electrophotographic sensitive body
JPS6382422A (en) Production of electrophotographic sensitive body
JPS6382417A (en) Production of electrophotographic sensitive body
JP2657490B2 (en) Electrophotographic photoreceptor
JPS6382421A (en) Production of electrophotographic sensitive body
JPS6382419A (en) Production of electrophotographic sensitive body
JPS63104063A (en) Electrophotographic sensitive body
JPS6382424A (en) Production of electrophotographic sensitive body
JP2668241B2 (en) Electrophotographic photoreceptor
JPS6381439A (en) Electrophotographic sensitive body
JPS6381442A (en) Electrophotographic sensitive body
JPS63104062A (en) Electrophotographic sensitive body
JPS6382423A (en) Production of electrophotographic sensitive body
JPS6382418A (en) Production of electrophotographic sensitive body
JP2756570B2 (en) Electrophotographic photoreceptor
JP2756569B2 (en) Electrophotographic photoreceptor
JP3113453B2 (en) Manufacturing method of electrophotographic photoreceptor
JPS6381441A (en) Electrophotographic sensitive body
JP2572600B2 (en) Electrophotographic photoreceptor
JPS6381440A (en) Electrophotographic sensitive body
JPH0789234B2 (en) Electrophotographic photoreceptor