JPS6382420A - Production of electrophotographic sensitive body - Google Patents

Production of electrophotographic sensitive body

Info

Publication number
JPS6382420A
JPS6382420A JP22895586A JP22895586A JPS6382420A JP S6382420 A JPS6382420 A JP S6382420A JP 22895586 A JP22895586 A JP 22895586A JP 22895586 A JP22895586 A JP 22895586A JP S6382420 A JPS6382420 A JP S6382420A
Authority
JP
Japan
Prior art keywords
layer
gas
layer region
region
photoreceptor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22895586A
Other languages
Japanese (ja)
Inventor
Takao Kawamura
河村 孝夫
Naooki Miyamoto
宮本 直興
Hitoshi Takemura
仁志 竹村
Akira Watanabe
暁 渡辺
Kokichi Ishiki
石櫃 鴻吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP22895586A priority Critical patent/JPS6382420A/en
Publication of JPS6382420A publication Critical patent/JPS6382420A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • G03G5/082Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited
    • G03G5/08214Silicon-based
    • G03G5/08235Silicon-based comprising three or four silicon-based layers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • G03G5/082Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited
    • G03G5/08214Silicon-based
    • G03G5/08278Depositing methods

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Photoreceptors In Electrophotography (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To obtain a sensitive body having high dark resistivity by changing the ratio of acetylene to Si in a gas during the formation of a film so that an amorphous silicon carbide layer formed is composed of at least four layered regions contg. C under specified conditions. CONSTITUTION:An a-SiC forming gas is decomposed by glow discharge to form a negatively chargeable a-SiC layer 5c on a substrate 1. The gas contains C2H2 and Si in 0.01:1-3:1 ratio and the ratio of C2H2 to Si is changed so that the layer 5c is composed of first, second, third and fourth layered regions 6, 7, 8, 9 formed in order from the substrate 1 side toward the surface of the resulting sensitive body. The amount of C in the third region 8 is made smaller than that in the fourth region 9 and larger than that in the second region 7. When the second region 7 is formed, 0-1mol% gas contg. a group Va element is added to the a-SiC forming gas. When the first region 6 is formed, the gas contg. the group Va element is added by a larger amount than the amount in case of the second region 7. The regions 6-9 are practically integrated into the photoconductive a-SiC layer 5c, so a sensitive body having high dielectric strength and a long service life can be obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光導電性アモルファスシリコンカーバイド層か
ら成る電子写真感光体の製法に関し、特に負極性に帯電
可能な電子写真感光体の製法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing an electrophotographic photoreceptor comprising a photoconductive amorphous silicon carbide layer, and particularly relates to a method for manufacturing an electrophotographic photoreceptor that can be charged to a negative polarity. be.

〔従来技術及びその問題点〕[Prior art and its problems]

近年、電子写真感光体の進歩は目覚ましく、惑光体を搭
載する複写機やプリンター等の開発に伴って感光体自体
にも種々の特性が要求されている。
In recent years, progress in electrophotographic photoreceptors has been remarkable, and with the development of copying machines, printers, etc. equipped with photoreceptors, various characteristics are required of the photoreceptors themselves.

この要求に対してアモルファスシリコン層が耐熱性、耐
摩耗性、無公害性並びに光感度特性等に優れているとい
う理由から注目されている。
In response to this demand, amorphous silicon layers are attracting attention because they have excellent heat resistance, wear resistance, non-pollution properties, and photosensitivity characteristics.

しかし乍ら、アモルファスシリコン(以下、a−31と
略す)層は、それに何ら不純物元素をドーピングしない
と約109Ω・cmの暗抵抗値しか得られず、これを電
子写真用感光体に用いる場答には1012Ω・cam以
上の暗抵抗値にして電荷保持能力を高める必要がある。
However, the amorphous silicon (hereinafter abbreviated as a-31) layer can only obtain a dark resistance value of about 109 Ωcm unless it is doped with any impurity element, and when used in electrophotographic photoreceptors, To achieve this, it is necessary to increase the charge retention ability by setting a dark resistance value of 10 12 Ω·cam or more.

そのために酸素や窒素などの元素を微少量ドーピングし
て高抵抗化にし得るが、その反面、光導電性が低下する
という問題がある。また、ホウ素などを添加しても高抵
抗化が期待できるが、十分に満足し得るような暗抵抗値
が得られず約101′Ω・cn+程度にすぎない。
For this purpose, it is possible to increase the resistance by doping a small amount of elements such as oxygen or nitrogen, but on the other hand, there is a problem that the photoconductivity decreases. Further, even if boron or the like is added, a high resistance can be expected, but a sufficiently satisfactory dark resistance value cannot be obtained and is only about 101'Ω·cn+.

一方、上記の如きドーピング剤の開発と共に、a−Si
光導電層に別の非光導電層を積層して成る積層型感光体
が提案されている。
On the other hand, along with the development of doping agents as mentioned above, a-Si
A laminated photoreceptor has been proposed in which a photoconductive layer is laminated with another non-photoconductive layer.

例えば、第2図はこの積層型感光体であり、基板(1)
の上にキャリア注入阻止層(2) 、a−Si光導電層
(3)及び表面保護N(4)が順次積層されている。
For example, Figure 2 shows this laminated photoreceptor, with the substrate (1)
A carrier injection blocking layer (2), an a-Si photoconductive layer (3) and a surface protection N (4) are sequentially laminated thereon.

この積層型感光体によれば、キャリア注入阻止層(2)
は基板(1)からのキャリアの注入を阻止するものであ
り、表面保護層(4)はa−Si光導電N(3)を保護
して耐湿性等を向上させるものであるが、両者のN(2
)及び(4)ともに感光体の暗抵抗値を大きくして帯電
能を高めることが目的であり、そのためにこれらの層を
光導電性にする必要はない。
According to this laminated photoreceptor, the carrier injection blocking layer (2)
The surface protection layer (4) protects the a-Si photoconductive layer (3) and improves its moisture resistance, etc., but the N(2
) and (4) are both intended to increase the dark resistance value of the photoreceptor to increase the charging ability, and for that purpose, it is not necessary to make these layers photoconductive.

このように従来周知のa−3i電子写真感光体は光キヤ
リア発生層をa−3i光導電層により形成させた点に大
きな特徴があり、これによって耐熱性、耐久性及び光感
度特性などに優れた長所を有している反面、暗抵抗値が
不十分であるためにドーピング剤を用いたり、或いは積
層型感光体にすることで暗抵抗値を大きくしている。即
ち、積層型感光体に形成されるキャリア注入阻止層(2
)及び表面像8171(4)はa−St光導電層自体が
有する欠点を補完するものであり、a−St光導電N(
3)と実質上区別し得る層と言える。
As described above, the conventionally well-known A-3I electrophotographic photoreceptor has a major feature in that the photocarrier generation layer is formed by the A-3I photoconductive layer, and as a result, it has excellent heat resistance, durability, and photosensitivity characteristics. However, since the dark resistance value is insufficient, the dark resistance value is increased by using a doping agent or by forming a laminated type photoreceptor. That is, the carrier injection blocking layer (2
) and surface image 8171(4) complement the defects of the a-St photoconductive layer itself, and the a-St photoconductive layer N(
It can be said that this layer is substantially distinguishable from 3).

〔発明の目的〕[Purpose of the invention]

本発明者等は上記事情に鑑みて鋭意研究の結果、アセチ
レン及びケイ素含有ガスが一定の比率に設定された混合
ガスをグロー放電分解して得られたアモルファスシリコ
ンカーバイド(以下、a−SiCと略す)は光導電性を
有すると共に暗抵抗値がドーピング剤の有無と無関係に
容易に1013Ω・cm以上になり、更にドーピング剤
の選択によって負極性に帯電可能な電子写真感光体と成
り得ることを見い出した。
In view of the above circumstances, the present inventors conducted intensive research and found that amorphous silicon carbide (hereinafter abbreviated as a-SiC) obtained by glow discharge decomposition of a mixed gas containing acetylene and silicon-containing gas at a certain ratio. ) has photoconductivity and has a dark resistance value of 1013 Ω·cm or more regardless of the presence or absence of a doping agent, and has also been found to be an electrophotographic photoreceptor that can be charged to a negative polarity by selecting a doping agent. Ta.

従って、本発明は上記知見に基いて完成されたものであ
り、その目的は大きな暗抵抗値を有する光導電性a−S
iC層から成る電子写真感光体の製法を提供することに
ある。
Therefore, the present invention was completed based on the above findings, and its purpose is to provide a photoconductive a-S having a large dark resistance value.
An object of the present invention is to provide a method for manufacturing an electrophotographic photoreceptor comprising an iC layer.

本発明の他の目的は表面保護層及びキャリア注入阻止層
を実質上不要とし、全層に亘って光導電性a−5iCか
ら成る電子写真感光体の製法を提供することにある。
Another object of the present invention is to provide a method for producing an electrophotographic photoreceptor that substantially eliminates the need for a surface protective layer and a carrier injection blocking layer and is made of photoconductive a-5iC throughout the entire layer.

本発明の更に他の目的は負極性に帯電可能な電子写真感
光体の製法を提供することにある。
Still another object of the present invention is to provide a method for producing an electrophotographic photoreceptor that can be negatively charged.

本発明の更に他の目的は高速成膜を達成した電子写真感
光体の製法を提供することにある。
Still another object of the present invention is to provide a method for manufacturing an electrophotographic photoreceptor that achieves high-speed film formation.

〔問題点を解決するための手段〕[Means for solving problems]

本発明によれば、少なくともアセチレン(CJt)及び
ケイ素(St)含有ガスから成ると共にこのガス組成比
が0.01:1乃至3:1の範囲内に設定され、且つ0
乃至1モルχの周期律表第Va族元素含有ガスを含むa
−SiC生成用ガスをグロー放電分解して基板上に負極
性に帯電可能なa−SiC層を形成することを特徴とす
る電子写真感光体の製法が提供される。
According to the present invention, the gas contains at least acetylene (CJt) and silicon (St), and the gas composition ratio is set within the range of 0.01:1 to 3:1, and 0.01:1 to 3:1.
a containing gas containing 1 to 1 mole χ of Group Va elements of the periodic table
- A method for manufacturing an electrophotographic photoreceptor is provided, which comprises forming an a-SiC layer that can be charged to a negative polarity on a substrate by glow discharge decomposition of a -SiC generating gas.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明の製法によれば、グロー放電分解法によってCt
Hzガス及びSi含有ガスから基板上に光導電性a−3
iC層を形成させると大きな暗抵抗値が得られ、更に周
期律表第Va族元素ガスを0乃至1モル%含有させると
負極性に帯電することを特徴とし、第1図はその基本構
成となる感光体である。
According to the production method of the present invention, Ct
Photoconductive a-3 on the substrate from Hz gas and Si-containing gas
When an iC layer is formed, a large dark resistance value can be obtained, and when it contains 0 to 1 mol% of a gas belonging to Group Va of the periodic table, it is negatively charged. Figure 1 shows its basic structure. It is a photoreceptor.

即ち、第1図によれば導電性基板(1)上に、例えばグ
ロー放電分解法によって光導電性a−SiC署(5)を
形成したものであり、この層厚方向に亘って炭素と周期
律表第Va族元素(以下、Va族元素と略す)をそれぞ
れ同一含有比率で含有させている。これによって暗抵抗
率が10”cm・Ω以上となると共に明抵抗率に比べて
1000倍以上となることを見い出し、この知見に基づ
く後述する実施例から明らかな通り、この単一組成の層
だけで十分に実用性のあるa−3iC感光体と成り得た
ことは予想外の成果であった。
That is, according to FIG. 1, a photoconductive a-SiC plate (5) is formed on a conductive substrate (1) by, for example, a glow discharge decomposition method, and carbon and periodic particles are formed over the thickness direction of this layer. Group Va elements (hereinafter abbreviated as Va group elements) are contained in the same content ratio. It was discovered that this resulted in a dark resistivity of 10" cm Ω or more, which was also 1000 times higher than the bright resistivity. As is clear from the examples described below based on this knowledge, only this single composition layer It was an unexpected result that a fully practical a-3iC photoreceptor could be obtained.

更に本発明者等はこのa−SiC感光体を正極性又は負
極性に帯電させて両者の帯電性能を比較した場合、この
a−3iC層(5)にVa族元素を0乃至10、OOO
ppmの範囲、好適には0乃至11000ppの範囲内
でドーピングすると負極性で有利に帯電能を高めること
ができることも見い出した。
Furthermore, when the present inventors charged this a-SiC photoreceptor to positive polarity or negative polarity and compared the charging performance of both, the Va group element was added to this a-3iC layer (5) from 0 to 10, OOO
It has also been found that doping in the ppm range, preferably in the range from 0 to 11000 ppm, can advantageously increase the chargeability with negative polarity.

このようにVa族元素のドーピング又はノンドープによ
って負極性に帯電し易くなる点については、未だ推論の
域を脱し得ないが、a−3iC層が負電荷を保持するの
に十分に高い抵抗率をもち、また、基板からの正電荷の
注入を防ぐ効果にも優れ、更に負電荷に対する電荷移動
度が優れている等の理由によると考えられる。
Although it is still a matter of speculation that doping or non-doping with Va group elements makes it easier to be negatively charged, it is clear that the a-3iC layer has a resistivity high enough to retain negative charges. This is believed to be due to the fact that it has excellent durability, is also effective in preventing injection of positive charges from the substrate, and has excellent charge mobility with respect to negative charges.

また、このVa族元素としてはNtPtAs、Sb、B
iがあるが、就中、Pが共有結合性に優れて半導体特性
を敏感に変え得る点で好ましく、或いはノンドープにし
ても、膜中の構成元素が少な(なるので安定した特性が
得られ、その上、優れた帯電能及び感度を有するという
点で望ましい。
In addition, the Va group elements include NtPtAs, Sb, B
Among them, P is preferable because it has excellent covalent bonding properties and can sensitively change the semiconductor properties, or even if it is non-doped, there are few constituent elements in the film (so stable properties can be obtained. Moreover, it is desirable in that it has excellent charging ability and sensitivity.

上記のようにVa族元素をドーピングさせるに当たって
は、a−5iC生成用ガスにO乃至1モルχ、好適には
0乃至0.1モルχのVa族元素ガスを含有させるとよ
(、これによって上記の所要の範囲内にドーピングさせ
ることが可能となる。また、Va族元素をドープするに
当たってはNt、NH3,PH3,AsF3.SbH3
等が用いられる。
When doping the Va group element as described above, the a-5iC generation gas should contain O to 1 mol χ, preferably 0 to 0.1 mol χ of the Va group element gas. It becomes possible to dope within the above-mentioned required range.In addition, when doping with Va group elements, Nt, NH3, PH3, AsF3.SbH3
etc. are used.

本発明の製法によって得られたa−SiC層が光導電性
を有するようになりだ点については、アモルファス化し
たケイ素と炭素を不可欠な構成元素とし、更にそのダン
グリングボンドを終端させるぺくHやハロゲン元素を所
要の範囲内で含有させることによって光導電性が生じる
ものと考えられる、本発明者等が炭素の含有比率を幾通
りにも変えて光導電性の有無を確かめる実験を行ったと
ころ、a−3iC層(5)中に炭素を1乃至90原子χ
、好適には5乃至50原子χの範囲内で含有させるとよ
く、或いはこの範囲内で層厚方向に亘って炭素含有量を
変えてもよい。
The reason why the a-SiC layer obtained by the manufacturing method of the present invention becomes photoconductive is that it uses amorphous silicon and carbon as essential constituent elements, and furthermore, it uses PEH to terminate the dangling bonds. It is believed that photoconductivity occurs when the halogen element is contained within the required range.The inventors conducted experiments to confirm the presence or absence of photoconductivity by varying the content ratio of carbon. , 1 to 90 carbon atoms χ in the a-3iC layer (5)
, preferably within the range of 5 to 50 atoms χ, or the carbon content may be varied within this range over the layer thickness direction.

また、■やハロゲン元素の含有量は5乃至50原子χ、
好適には5乃至40原子χ、最適には10乃至30原子
χがよく、通常、Hが用いられている。このHはダング
リングボンドの終端部に取込まれ易いのでバンドギャッ
プ中の局在準位密度を低減化させ、これにより、優れた
半導体特性が得られる。
In addition, the content of ■ and halogen elements is 5 to 50 atoms χ,
Preferably 5 to 40 atoms χ, optimally 10 to 30 atoms χ, and H is usually used. Since this H is easily incorporated into the terminal portion of the dangling bond, the localized level density in the band gap is reduced, thereby providing excellent semiconductor characteristics.

更にこのHの一部をハロゲン元素に置換してもよ(、こ
れにより、a−3iC層の局在準位密度を下げて光導電
性及び耐熱性(温度特性)を高めることができる。その
置換比率はダングリングボンド終端用全元素中0.01
乃至50原子χ、好適にはl乃至30原子χがよい、ま
た、このハロゲン元素にはF+CI+Br、1.At等
があるが、就中、Fを用いるとその大きな電気陰性度に
よって原子間の結合が大きくなり、これによって熱的安
定性に優れるという点で望ましい。
Furthermore, a part of this H may be replaced with a halogen element (thereby, the localized level density of the a-3iC layer can be lowered and the photoconductivity and heat resistance (temperature characteristics) can be improved. The substitution ratio is 0.01 among all elements for dangling bond termination.
50 atoms χ, preferably 1 to 30 atoms χ, and this halogen element includes F+CI+Br, 1. Although there are At and the like, F is particularly desirable because its large electronegativity increases the bonding between atoms, resulting in excellent thermal stability.

また、光導電性a−SiC(5)の厚みは、少なくとも
5μm以上あればよく、これによって表面電位が一20
0V以上となり、一方、この層(5)の厚みは画像の分
解能及び画像流れが生じない範囲内でその上限が適宜選
ばれており、本発明者等の実験によれば、5乃至100
 pm 、好適には10乃至50μn+の範囲内に設定
するとよい。
Further, the thickness of the photoconductive a-SiC (5) should be at least 5 μm or more, so that the surface potential is 200 μm or more.
On the other hand, the upper limit of the thickness of this layer (5) is appropriately selected within the range of image resolution and image blurring, and according to experiments by the present inventors, the thickness is 5 to 100 V.
pm, preferably within the range of 10 to 50 μn+.

そして、このa−5iC層の分光感度特性、並びに暗減
衰曲線及び光減衰曲線を求めたところ、前者については
可視光領域で分光感度ピーク(ピーク波長約600nm
 )があり、これによって複写機用光源として一般的に
用いられているタングステンランプに十分に適用し得る
ことが判った。また、後者の減衰曲線についても高い表
面電位をもっと共に優れた光感度特性を有し、更に残留
電位が小さくなっていることが判った。
When we determined the spectral sensitivity characteristics, dark decay curve, and light decay curve of this a-5iC layer, we found that the former has a spectral sensitivity peak (peak wavelength of approximately 600 nm) in the visible light region.
), and it has been found that this can be fully applied to tungsten lamps commonly used as light sources for copying machines. It was also found that the latter decay curve had both a high surface potential and excellent photosensitivity characteristics, and also had a smaller residual potential.

更に本発明者等は、上記の電子写真感光体を製作するに
当たってグロー放電分解法に基いてC,Htガス及びS
i含有ガスを所定の比率で混合させるとよく、これによ
り、a−SiC層が高速に成膜され、且つ光導電性を有
することを見い出した。
Furthermore, in manufacturing the above-mentioned electrophotographic photoreceptor, the present inventors used C, Ht gas and S based on a glow discharge decomposition method.
It has been found that by mixing i-containing gases at a predetermined ratio, an a-SiC layer can be formed at high speed and has photoconductivity.

即ち、CtH!とSi含有ガスをグロー放電領域に導入
するに当たってこのガス組成比を0.01:1乃至3;
1の範囲内に、好適には0.05:1乃至1:1、最適
には0.05:1乃至0.3:1の範囲内に設定すれば
よく、0.01:1の比率から外れた場合には暗抵抗率
がIQIIΩ・am以下となって電荷保持能力が十分で
なく、大きな帯電電位を得ることができなくなり、3:
1の比率から外れた場合には膜中のダングリングボンド
が増加して暗抵抗率がIQIIΩ・Cl11以下となる
That is, CtH! When introducing the Si-containing gas into the glow discharge region, the gas composition ratio is set to 0.01:1 to 3;
1, preferably 0.05:1 to 1:1, optimally 0.05:1 to 0.3:1, and from a ratio of 0.01:1 to If it is off, the dark resistivity becomes less than IQIIΩ·am, and the charge retention ability is insufficient, making it impossible to obtain a large charged potential.3:
When the ratio deviates from 1, the number of dangling bonds in the film increases and the dark resistivity becomes less than IQIIΩ·Cl11.

前記Si含有ガスとしてSiH4,5iJ6,5i3H
11,SIF*+5iC1a、5iHC13等々があり
、就中、5tH4,5iJi+はそれ自身StがHと結
合しているため膜中にHがとけ込まれやすく膜中のダン
グリングボンドを低減し光導電性を向上させる点で望ま
しい。
SiH4,5iJ6,5i3H as the Si-containing gas
11, SIF*+5iC1a, 5iHC13, etc. Among them, 5tH4 and 5iJi+ have St bonded to H, so H is easily dissolved into the film, reducing dangling bonds in the film and improving photoconductivity. It is desirable in that it improves

また、前記ダングリングボンド終端用元素としてHを用
いる場合には、HtガスはCJtガス及びSiH4ガス
の流量合計値に対して3倍以下、好適には2倍以下に配
合すればよく、これから外れると膜中の水素が過剰とな
って感光体に要求される電気的特性が劣化する。
Furthermore, when H is used as the element for terminating dangling bonds, Ht gas may be blended in an amount of 3 times or less, preferably 2 times or less, of the total flow rate of CJt gas and SiH4 gas; This results in excessive hydrogen in the film, deteriorating the electrical characteristics required of the photoreceptor.

本発明の製法によれば、上述した通りの製造条件によっ
てa−3iCJiを生成するに当たっては、グロー放電
用の高周波電力、反応室内部のガス圧及び基板温度を次
の通りに設定するのがよい。
According to the manufacturing method of the present invention, when producing a-3iCJi under the manufacturing conditions as described above, it is preferable to set the high-frequency power for glow discharge, the gas pressure inside the reaction chamber, and the substrate temperature as follows. .

即ち、高周波電力は0.05乃至0.5W/cm!の範
囲に設定すればよ< 、0.05W/cm”未満である
と成膜速度が小さくなり、0.5W/cm”を越えると
プラズマダメージによって膜質が低下してキャリア移動
度が小さくなる。また、ガス圧は0.1乃至2.0To
rrの範囲に設定すればよ< 、0.ITorr未満で
あると成膜速度が小さくなり、2.0Torrを越える
と放電が不安定となる。更に、基板温度はa−5t:H
膜の成膜形成に比べて30乃至80℃位高くするのがよ
く、望ましくは200乃至400℃の範囲がよい。この
基板温度が200℃未満であれば、StとCのネットワ
ーク化が阻害され、400℃を越えると水素の脱離が著
しくなって暗抵抗率が小さくなる。
That is, the high frequency power is 0.05 to 0.5 W/cm! If it is set within the range of < 0.05 W/cm'', the film formation rate will be low, and if it exceeds 0.5 W/cm'', the film quality will deteriorate due to plasma damage and the carrier mobility will decrease. In addition, the gas pressure is 0.1 to 2.0To
Just set it in the range of rr<, 0. If it is less than I Torr, the film formation rate will be low, and if it exceeds 2.0 Torr, the discharge will become unstable. Furthermore, the substrate temperature is a-5t:H
The temperature is preferably about 30 to 80 degrees Celsius higher than the temperature for film formation, preferably in the range of 200 to 400 degrees Celsius. If the substrate temperature is less than 200° C., networking of St and C is inhibited, and if it exceeds 400° C., hydrogen desorption becomes significant and the dark resistivity decreases.

かくして、単一組成の光導電性a−SiC層だけで十分
に実用と成り得る電子写真感光体が提供される。
Thus, an electrophotographic photoreceptor is provided which can be put into practical use with just a photoconductive a-SiC layer having a single composition.

次に本発明者等は上記の結果を踏まえて、更に鋭意研究
に努めたところ、この単一組成の層内部に種々の層領域
を生成させることによって電子写真特性を更に向上し得
ることを見い出した。
Next, based on the above results, the present inventors conducted further intensive research and discovered that the electrophotographic properties could be further improved by creating various layer regions within this single composition layer. Ta.

即ち、本発明の製法においては、グロー放電分解法によ
る成膜中に炭素又はVa族元素の含有比率を層厚方向に
亘って変化させ、これによって複数の層領域を生成させ
、この層領域の数に対応して下記の第1の態様乃至第4
の態様までの電子写真感光体の製法が得られる。
That is, in the manufacturing method of the present invention, the content ratio of carbon or Va group elements is varied in the layer thickness direction during film formation by glow discharge decomposition, thereby generating a plurality of layer regions, and The following first to fourth aspects correspond to the numbers.
A method for manufacturing an electrophotographic photoreceptor according to the embodiments described above is obtained.

以下、本発明に係る電子写真感光体の製法の態様を第3
図乃至24図により説明する。
Hereinafter, the third embodiment of the method for manufacturing an electrophotographic photoreceptor according to the present invention will be described.
This will be explained with reference to Figures 24 to 24.

玉土皇腹盪 第1の態様によれば、a−5iC生成用ガスをグロー放
電分解して負橿性に帯電可能な光導電性a−SiC層を
基板上に形成した電子写真感光体の製法にあって、前記
ガスはCtHz及びSi含有ガスから成り、そのガス組
成比を0.01:1乃至3:1の範囲内に設定し、且つ
Va族元素含有ガスを含有させると共に成膜中にこの含
有比率を小さくしたことを特徴とする電子写真感光体の
製法が提供される。
According to a first aspect of the invention, an electrophotographic photoreceptor is provided, in which a photoconductive a-SiC layer that can be negatively charged is formed on a substrate by glow discharge decomposition of an a-5iC generation gas. In the manufacturing method, the gas is composed of a CtHz and Si-containing gas, the gas composition ratio is set within the range of 0.01:1 to 3:1, and a Va group element-containing gas is contained while the gas is Provided is a method for producing an electrophotographic photoreceptor characterized in that this content ratio is reduced.

即ち、この第1の態様によれば、第1図に示した単一組
成の光導電性a−SiC層に対してVa族元素を含有さ
せ、これに伴ってその含有比率を変えることにより少な
くとも第10層領域及び第2の層領域を生成させるもの
であり、この態様を第3図乃至第9図により説明する。
That is, according to this first aspect, by incorporating a Va group element into the photoconductive a-SiC layer having a single composition shown in FIG. 1 and changing the content ratio accordingly, at least The tenth layer region and the second layer region are generated, and this aspect will be explained with reference to FIGS. 3 to 9.

第3図においては導電性基板(1)上に第1の層領域(
6)及び第2の層領域(7)を順次形成し、両者の層領
域が一体化した光導電性a−3iC層(5a)から成っ
ており、そして、第1の層領域(6)には第2の層領域
(7)に比べてVa族元素が多く含まれていることが重
要である。
In FIG. 3, a first layer region (
6) and a second layer region (7) are successively formed, both layer regions consisting of an integrated photoconductive a-3iC layer (5a); It is important that the second layer region (7) contains more Va group elements than the second layer region (7).

第2のNF4域(7)はVa族元素の含有量がO乃至1
0,000ppmの範囲内で、好適には0乃至1,00
0pp+mの範囲内で適宜法められ、これによって負極
性に帯電すると共に表面電位、光感度特性等の所要な電
子写真特性が得られる。そして、この層領域よりもVa
族元素を多く含有した第1のNril域(6)を形成す
ると、光導電性a−3iC層(5a)の基板側領域で導
電率が大きくなり、これにより、基板側からのキャリア
の注入が阻止されると共にa−3iC層の全領域で発生
した光キャリアが基板へ円滑に流れ、その結果、表面電
位が大きくなると共に光感度特性が向上することを見い
出した。
The second NF4 region (7) has a Va group element content of O to 1.
Within the range of 0,000 ppm, preferably 0 to 1,00
It is suitably controlled within the range of 0 pp+m, and as a result, it is charged to a negative polarity and required electrophotographic properties such as surface potential and photosensitivity properties are obtained. Then, Va
When the first Nril region (6) containing a large amount of group elements is formed, the conductivity increases in the substrate side region of the photoconductive a-3iC layer (5a), thereby preventing carrier injection from the substrate side. It has been found that the photocarriers that are blocked and generated in the entire region of the a-3iC layer flow smoothly to the substrate, and as a result, the surface potential increases and the photosensitivity characteristics improve.

この第1の層領域(6)はその領域全体に亘って光導電
性を有しており、これによって第2図に示した従来のa
−St電子写真感光体のキャリア注入阻止層(2)と区
別し得る。
This first layer region (6) is photoconductive over its entire region, which makes it possible to avoid the conventional a shown in FIG.
It can be distinguished from the carrier injection blocking layer (2) of the -St electrophotographic photoreceptor.

即ち、第1の層領域(6)はその領域全体の光導電性に
よって光感度特性を金膜に亘って向上させる。特に、第
1の層領域(6)に到達し易い比較的長波長な光に対し
ては優れた光感度特性が得られ、これにより、半導体レ
ーザーを記録用光源とした電子写真感光体に好適となる
That is, the first layer region (6) improves the photosensitivity properties across the gold film due to the photoconductivity of the entire region. In particular, excellent photosensitivity characteristics can be obtained for relatively long wavelength light that easily reaches the first layer region (6), making it suitable for electrophotographic photoreceptors using semiconductor lasers as recording light sources. becomes.

また、従来のa−St電子写真感光体によれば、前記キ
ャリア注入阻止N(2)の層厚をa−Si光導電層(3
)に対して175倍以下に設定するのに対して、本発明
の製法によれば、第1の層領域(6)の層厚は第2の層
領域(7)に比べて1倍以下であっても十分に残留電位
を小さくして光感度特性を向上させることができ、その
好適な層厚比は172以下、最適には174以下に設定
するのがよい。
Further, according to the conventional a-St electrophotographic photoreceptor, the layer thickness of the carrier injection blocking N(2) is set to 3.
), whereas according to the manufacturing method of the present invention, the layer thickness of the first layer region (6) is set to be 1 times or less than that of the second layer region (7). Even if the residual potential is present, the residual potential can be sufficiently reduced to improve the photosensitivity characteristics, and the preferred layer thickness ratio is preferably set to 172 or less, and optimally 174 or less.

この光導電性a−5iC層(5a)の炭素含有量は、第
4図乃至第9図に示す通りであり、横軸は基板から感光
体表面に至る層厚方向を示し、縦軸は炭素含有量を示し
ている。尚、この横軸において(6)。
The carbon content of this photoconductive a-5iC layer (5a) is as shown in FIGS. It shows the content. Note that (6) on this horizontal axis.

(7)に示すそれぞれの範囲は第1の層領域及び第2の
層領域を表している。
Each range shown in (7) represents a first layer region and a second layer region.

即ち、第4図は炭素含有比率が全層に亘って一定であり
、或いは第5図は第1の層領域で炭素含有量を少なくし
ており、これに対して第6図乃至第9図は第1の層領域
が第2の層領域に比べて炭素が多く含有されていること
を示すものであり、これによって表面電位が一段と高く
なって光感度特性が向上する。また、第7図乃至第9図
のように炭素の含有量を層厚方向に亘って漸次変えると
表面電位及び光感度を一層高め且つ残留電位が小さくな
る。
That is, in FIG. 4, the carbon content ratio is constant throughout the entire layer, or in FIG. 5, the carbon content is reduced in the first layer region, whereas in FIGS. indicates that the first layer region contains more carbon than the second layer region, which further increases the surface potential and improves the photosensitivity characteristics. Further, if the carbon content is gradually changed in the layer thickness direction as shown in FIGS. 7 to 9, the surface potential and photosensitivity will be further increased and the residual potential will be reduced.

また、前記第1の層領域(6)には酸素や窒素の少なく
とも一種を含有させてもよく、これによってa−SiC
層(5a)の基板(1)に対する密着性が向上する。
Further, the first layer region (6) may contain at least one of oxygen and nitrogen, so that the a-SiC
The adhesion of the layer (5a) to the substrate (1) is improved.

第2011遥 第2の態様によれば、a−SiC生成用ガスをグロー放
電分解して負極性に帯電可能な光導電性a−SiC層を
基板上に形成した電子写真感光体の製法であって、前記
ガスはCtHt及びSi含有ガスから成りそのガス組成
比を0.01:1乃至3:1の範囲内に設定し、成膜中
にCJz含有組成比を変えて前記a−SiC層に少なく
とも第1の領域、第2の層領域及び第3の領域を具備さ
せ、第1の層領域は第2の層領域より基板側に、第2の
層領域は第3の層領域より基板側にそれぞれ配置され、
第3の層領域は第2の層領域に比べて炭素が多く含まれ
、且つ前記第2の層領域の形成時に前記a−3iC生成
用ガスに0乃至1モルχのVa族元素含有ガスを含むと
ともに第1の層領域の形成時にa−5iC生成用ガス中
におけるVa族元素含有ガスの占める割合が第2の層領
域の形成時に比べて大きいことを特徴とする電子写真感
光体の製法が提供される。
According to a second aspect of No. 2011, there is provided a method for manufacturing an electrophotographic photoreceptor in which a photoconductive a-SiC layer that can be charged to a negative polarity is formed on a substrate by glow discharge decomposition of an a-SiC generation gas. The gas is composed of CtHt and Si-containing gas, and the gas composition ratio is set within the range of 0.01:1 to 3:1, and the CJz-containing composition ratio is changed during film formation to form the a-SiC layer. At least a first region, a second layer region, and a third region are provided, the first layer region being closer to the substrate than the second layer region, and the second layer region being closer to the substrate than the third layer region. are placed respectively in
The third layer region contains more carbon than the second layer region, and when forming the second layer region, 0 to 1 mole χ of Va group element-containing gas is added to the a-3iC generation gas. A method for manufacturing an electrophotographic photoreceptor, characterized in that the proportion of Va group element-containing gas in the a-5iC generation gas during formation of the first layer region is larger than that during formation of the second layer region. provided.

即ち、この第2の態様によれば、第10図に示す通り、
第1の態様にて示した第2の層領域(7)の上に更に第
3の層領域(8)を形成し、これに伴って第3の層領域
(8)の炭素含有量を第2の層領域(7)よりも多くし
、そして、第1の層領域(6)、第2の層領域(7)及
び第3の層領域(8)を実質上一体化して光導電性a−
3iC層(5b)とした。
That is, according to this second aspect, as shown in FIG.
A third layer region (8) is further formed on the second layer region (7) shown in the first embodiment, and the carbon content of the third layer region (8) is accordingly increased. and the first layer region (6), the second layer region (7) and the third layer region (8) are substantially integrated to form a photoconductive a. −
3iC layer (5b).

この第3の層領域(8)を形成すると、a−SiC層(
5b)の表面側の暗抵抗値が大きくなり、これに伴って
感光体の表面電位が顕著に向上することを見い出した。
When this third layer region (8) is formed, the a-SiC layer (
It has been found that the dark resistance value on the surface side of 5b) increases, and the surface potential of the photoreceptor increases markedly.

この第3の層領域(8)は光導電性a−3iC層(5b
)の表面側を高抵抗化させるために形成されており、第
2図にて述べた従来周知の表面保護層(4)とは全く区
別し得るものである。また、光キヤリア発生層とキャリ
ア輸送層とに分けられた機能分離型感光体によれば、キ
ャリア輸送層を101ffΩ・Cl11以上に高抵抗化
させるが、この層に格別大きな光導電性が要求されてお
らず、通常、光導電率の暗導電率に対する比率が100
0倍未満の光導電性に設定されているに過ぎない。これ
に対して、第3の層領域(8)はこの比率が1000倍
以上の光導電性を有しており、上記キャリア輸送層に対
しても十分に区別し得る。
This third layer region (8) is a photoconductive a-3iC layer (5b
) is formed to increase the resistance on the surface side of the layer (4), and can be completely distinguished from the conventionally known surface protective layer (4) described in FIG. In addition, according to a functionally separated photoconductor that is divided into a photocarrier generation layer and a carrier transport layer, the carrier transport layer has a high resistance of 101ffΩ・Cl11 or more, but this layer is required to have exceptionally high photoconductivity. Usually, the ratio of photoconductivity to dark conductivity is 100.
The photoconductivity is only set to be less than 0 times. On the other hand, the third layer region (8) has a photoconductivity that is 1000 times higher in this ratio or more, and can be sufficiently distinguished from the carrier transport layer.

第3の層領域(8)の層厚は、第2のI!層領域7)に
比べて1倍以下、好ましくは172倍以下、最適には1
74倍以下がよく、これにより、表面電位が顕著に向上
すると共に光感度に優れ、且つ残留電位が小さくなり、
望ましいと言える。
The layer thickness of the third layer region (8) is equal to the second I! layer area 7), preferably 172 times or less, optimally 1
A value of 74 times or less is good, and as a result, the surface potential is significantly improved, the photosensitivity is excellent, and the residual potential is small.
It can be said that it is desirable.

本発明によれば、光導電性a−5iC層(5b)の炭素
含有分布は第11図乃至第16図に示す通りであり、横
軸は基板から感光体表面に至る層厚方向を示し、縦軸は
炭素含有量を示している。尚、この横軸において、(6
) (7) (8)に示すそれぞれの範囲は第1のIJ
層領域第2の層領域及び第3の層領域を表している。
According to the present invention, the carbon content distribution of the photoconductive a-5iC layer (5b) is as shown in FIGS. 11 to 16, where the horizontal axis indicates the layer thickness direction from the substrate to the surface of the photoreceptor, The vertical axis shows carbon content. Furthermore, on this horizontal axis, (6
) (7) Each range shown in (8) is the first IJ
Layer regions represent a second layer region and a third layer region.

第12図、第14図、第15図及び第16図は層厚方向
に亘って炭素の含有量を漸次変え、これにより、表面電
位が向上すると共に光感度に優れ、且つ残留電位が小さ
くなる。
Figures 12, 14, 15, and 16 show that the carbon content is gradually changed in the layer thickness direction, which improves the surface potential, provides excellent photosensitivity, and reduces residual potential. .

員り皇胆槙 第3の態様によれば、a−3iC生成用ガスをグロー放
電分解して負極性に帯電可能な光導電性a−Siclを
基板上に形成した電子写真感光体の製法であって、前記
ガスはCtHz及びSi含有ガスから成り、そのガス組
成比を0.01:1乃至3:1の範囲内に設定し、成膜
中にC2H2含有組成比を変えて前記a−3tCNに少
なくとも第1の層領域、第2の層領域、第3の層領域及
び第4の層領域を基板側から感光体表面へ向けて順次具
備し、且つ第3の層領域は第2の層領域に比べて、第4
の層領域は第3の層領域に比べてそれぞれ炭素が多く含
まれ前記第2の層領域の形成時に前記a−3iC生成用
ガスにO乃至1モルχのVa族元素含有ガスを含むとと
もに第1の層領域の形成時にa−SiC生成用ガス中に
おけるVa族元素含有ガスの占める割合が第2の層領域
の形成時に比べて大きいことを特徴とする電子写真感光
体の製法が提供される。
According to a third aspect of the invention, there is provided a method for producing an electrophotographic photoreceptor in which photoconductive a-SiCl, which can be charged to a negative polarity, is formed on a substrate by glow discharge decomposition of a-3iC generation gas. The gas is composed of CtHz and Si-containing gas, and the gas composition ratio is set within the range of 0.01:1 to 3:1, and the C2H2 content ratio is changed during film formation to form the a-3tCN. includes at least a first layer region, a second layer region, a third layer region, and a fourth layer region in order from the substrate side toward the photoreceptor surface, and the third layer region is provided with a second layer region. Compared to the area, the fourth
Each of the layer regions contains more carbon than the third layer region, and when forming the second layer region, the a-3iC generation gas contains O to 1 mole χ of Va group element-containing gas, and Provided is a method for manufacturing an electrophotographic photoreceptor, characterized in that when forming the first layer region, the proportion of Va group element-containing gas in the a-SiC generating gas is larger than when forming the second layer region. .

即ち、第3の態様によれば、第17図に示す通り、第2
の態様にて示した第3の層領域(8)の上に更に第4の
層領域(9)を形成し、これに伴って第4の層領域(9
)が第3の層領域(8)に比べて炭素を多く含んでおり
、そして、第1の層領域(6)から第4の層領域(9)
を実質上一体化して光導電性a−SiC層(5c)とし
た。
That is, according to the third aspect, as shown in FIG.
A fourth layer region (9) is further formed on the third layer region (8) shown in the embodiment, and accordingly, a fourth layer region (9) is formed.
) contains more carbon than the third layer region (8), and the first layer region (6) to the fourth layer region (9)
were substantially integrated to form a photoconductive a-SiC layer (5c).

この第4の層領域(9)は第3のN Ti1W域(8)
に比べて炭素を多く含有させて高抵抗化させ、これより
、帯電能を高めて表面電位を向上させることができ、そ
の結果、耐電圧が高くて長寿命の感光体を得ることがで
きる。
This fourth layer region (9) is the third NTi1W region (8)
By containing a large amount of carbon to increase the resistance, it is possible to increase the charging ability and improve the surface potential, and as a result, it is possible to obtain a photoconductor with a high withstand voltage and a long life.

本発明の製法によれば、光導電性a−SiCJi(5c
)の炭素含有分布は第18図乃至第21図に示す通りで
あり、横軸は基板から感光体表面に至る層厚方向を示し
、縦軸は炭素含有量を示している。尚、この横軸におい
て、(6) (7) (8) (9)に示すそれぞれの
範囲は第1の層領域、第2のJW層領域第3の層領域及
び第4の領域を表している。
According to the manufacturing method of the present invention, photoconductive a-SiCJi (5c
) is as shown in FIGS. 18 to 21, where the horizontal axis indicates the layer thickness direction from the substrate to the surface of the photoreceptor, and the vertical axis indicates the carbon content. In addition, on this horizontal axis, the respective ranges shown in (6), (7), (8), and (9) represent the first layer region, the second JW layer region, the third layer region, and the fourth region. There is.

第19図及び第21図は層厚方向に亘って炭素の含有量
を漸次変え、これにより、表面電位及び光感度が向上し
、且つ残留電位が小さくなる。
In FIGS. 19 and 21, the carbon content is gradually changed in the layer thickness direction, thereby improving the surface potential and photosensitivity, and reducing the residual potential.

策虹■黒携 第4の態様によれば、a−SiC生成用ガスをグロー放
電分解して負極性に帯電可能な光導電性a−3tC層及
びa−SiC表面保護層を順次形成した電子写真感光体
の製法にあって、前記光導電性a−SiC生成用ガスは
CtIh及びSi含有ガスから成り、そのガス組成比を
0.01:1乃至3:1の範囲内に設定し、成膜中にC
zHz含有組成比を変えて前記a−SiC層に少なくと
も第1の層領域、第2の層領域及び第3の層領域を具備
させ、第1の層領域は第2の層領域より基板側に、第2
の層領域は第3の層領域より基板側にそれぞれ配置され
、第3の層領域は第2の領域に比べて炭素が多く含まれ
、且つ前記第2の層領域の形成時に前記a−3iC生成
用ガスにO乃至1モルχのVa族元素含有ガスを含むと
ともに第1の層領域の形成時にa−3iC生成用ガス中
におけるVa族元素含有ガスの占める割合が第2の層領
域の形成時に比べて大きいことを特徴とする電子写真感
光体の製法が提供される。
According to the fourth aspect of the plan, a photoconductive a-3tC layer that can be charged to a negative polarity and an a-SiC surface protection layer are sequentially formed by glow discharge decomposition of an a-SiC generation gas. In the method for manufacturing a photographic photoreceptor, the photoconductive a-SiC generating gas is composed of CtIh and Si-containing gas, and the gas composition ratio is set within the range of 0.01:1 to 3:1. C in the film
The a-SiC layer has at least a first layer region, a second layer region, and a third layer region by changing the zHz content composition ratio, and the first layer region is closer to the substrate than the second layer region. , second
The layer regions are arranged closer to the substrate than the third layer region, and the third layer region contains more carbon than the second layer region, and when forming the second layer region, the a-3iC The generation gas contains O to 1 mol χ of the Va group element-containing gas, and the proportion of the Va group element-containing gas in the a-3iC generation gas during the formation of the first layer region is the same as that of the second layer region. Provided is a method for manufacturing an electrophotographic photoreceptor characterized by a larger size than usual.

即ち、この第4の態様によれば、第22図に示す通り、
第2の態様にて示した第3の層領域(8)の上に更にa
−SiC表面保t!JiW(10)を形成したものであ
り、このa−5iC表面保護層(10)は光導電性a−
SiC層(5b)の表面をオーバーコートして保護する
ために形成される。
That is, according to this fourth aspect, as shown in FIG.
Further a on the third layer region (8) shown in the second embodiment
-SiC surface retention! This a-5iC surface protective layer (10) is a photoconductive a-5iC surface protective layer (10).
It is formed to overcoat and protect the surface of the SiC layer (5b).

a−3iC表面保護層(10)はa−3iCから成ると
いう点では光導電性a−3iC層(5b)と同じである
が、炭素の含有量を多くして高硬度とし、これによって
表面保護作用をもたらす。
The a-3iC surface protective layer (10) is the same as the photoconductive a-3iC layer (5b) in that it is made of a-3iC, but it has a higher carbon content to give it higher hardness, thereby protecting the surface. bring about action.

このa−3iC表面保護層(10)は、その構成元素の
組成比を変えて光導電性又は非光導電性とすることがで
き、炭素の含有量を多くすると非光導電性になる傾向が
あり、これに伴って高硬度特性が得られ、高硬度a−3
iC表面保護層となる。
This a-3iC surface protective layer (10) can be made photoconductive or non-photoconductive by changing the composition ratio of its constituent elements; increasing the carbon content tends to make it non-photoconductive. With this, high hardness characteristics are obtained, and high hardness is A-3.
It becomes an iC surface protective layer.

第4の態様によれば、炭素含有分布は第壱3図及び第2
4図に示す通りであり、横軸は基板から感光体表面に至
る層厚方向を示し、縦軸は炭素含有量を示している。尚
、この横軸において(6) (7) (8) (10)
に示すそれぞれの範囲は第1の層領域、第2の層領域、
第3のN fil域及びa−3iC表面保護層を表して
いる。
According to the fourth aspect, the carbon content distribution is shown in Figure 13 and Figure 2.
As shown in FIG. 4, the horizontal axis indicates the layer thickness direction from the substrate to the surface of the photoreceptor, and the vertical axis indicates the carbon content. Furthermore, on this horizontal axis (6) (7) (8) (10)
The respective ranges shown in are the first layer region, the second layer region,
The third N fil region and a-3iC surface protection layer are shown.

本発明によれば、単一組成のa−3iC層並びに第1乃
至第3の態様のa−3iC層は、いずれも光導電性a−
5iC層から成り、これによって十分実用的な電子写真
特性が得られるが、これらのa−5iC層の表面上に従
来周知の表面保護層を形成してもよい。
According to the present invention, the a-3iC layer of a single composition and the a-3iC layer of the first to third aspects are both photoconductive a-3iC layers.
Although the a-5iC layer provides sufficient practical electrophotographic properties, a conventionally known surface protective layer may be formed on the surface of these a-5iC layers.

この層はそれ自体高絶縁性、高耐食性及び高硬度特性を
有するものであれば種々の材料を用いることができ、例
えばポリイミド樹脂などの有機材料* a−SiC,5
top、 SiO+ Al 20s+ stc、 si
 sca、a−St + a−St :H+a−St:
F+a−3iC:Iff、 Ha−5iC:Fなどの無
機材料を用いることができる。
Various materials can be used for this layer as long as they themselves have high insulating properties, high corrosion resistance, and high hardness properties, such as organic materials such as polyimide resin* a-SiC, 5
top, SiO+ Al 20s+ stc, si
sca, a-St + a-St: H+a-St:
Inorganic materials such as F+a-3iC:Iff and Ha-5iC:F can be used.

次に本発明の実施例に用いられる容量結合型グロー放電
分解装置を第25図により説明する。
Next, a capacitively coupled glow discharge decomposition device used in an embodiment of the present invention will be explained with reference to FIG.

図中、第り第2.第3.第4.第5.第6タンク(11
) (12) (13) (14) (15) (16
)には、それぞれSiH*+CzHz+PHz (Ib
ガス希釈で0.2χ含有)、PH*(Ibガス希釈で3
3ppm含有)、H,、Noガスが密封されており、■
2はキャリアーガスとしても用いられる。これらのガス
は対応する第1.第2.第3.第4.第5.第6調整弁
(17)(18) (19) (20) (21) (
22)を開放することにより放出され、その流量がマス
フローコントローラ(23)(24)(25)(26)
 (27) (28)により制御され、第1.第2、第
3.第4.第5タンク(11) (12) (13) 
(14) (15)からのガスは第1主管(29)へ、
第6タンク(16)からのNoガスは第2主管(30)
へ送られる。尚、(31) (32)は止め弁である。
In the figure, No. 2. Third. 4th. Fifth. 6th tank (11
) (12) (13) (14) (15) (16
), SiH*+CzHz+PHz (Ib
(contains 0.2χ when diluted with gas), PH* (contains 3 when diluted with Ib gas)
3ppm), H,, No gas is sealed,■
2 is also used as a carrier gas. These gases correspond to the first. Second. Third. 4th. Fifth. Sixth regulating valve (17) (18) (19) (20) (21) (
22), and its flow rate is controlled by the mass flow controllers (23), (24), (25), and (26).
(27) Controlled by (28), the first. 2nd, 3rd. 4th. 5th tank (11) (12) (13)
(14) The gas from (15) goes to the first main pipe (29),
No gas from the 6th tank (16) goes to the 2nd main pipe (30)
sent to. Note that (31) and (32) are stop valves.

第1主管(29)及び第2主管(30)を通じて流れる
ガスは反応管(33)へと送り込まれるが、この反応管
(33)の内部には容量結合型放電用電極(34)が設
置されており、それに印加される高周波電力は50w乃
至3K11が、また周波数はIMHz乃至10MH2が
適当である0反応管(33)の内部には、アルミ、ニウ
ムから成る筒状の成膜基板(35)が試料保持筒(36
)の上に載置されており、この保持台(36)はモータ
ー(37)により回転駆動されるようになっており、そ
して、基板(35)は適当な加熱手段により、約200
乃至400℃好ましくは約200乃至350℃の温度に
均一に加熱される。更に、反応管(33)の内部はa−
5iC膜形成時に高度の真空状態(放電圧0.1乃至2
.0Torr )を必要とすることにより回転ポンプ(
38)と拡散ポンプ(39)に連結されている。
Gas flowing through the first main pipe (29) and the second main pipe (30) is sent into the reaction tube (33), and a capacitively coupled discharge electrode (34) is installed inside this reaction tube (33). The high frequency power applied to it is suitably 50W to 3K11, and the frequency is suitably IMHZ to 10MH2. Inside the reaction tube (33) is a cylindrical film-forming substrate (35) made of aluminum or nickel. is the sample holding cylinder (36
), this holding stand (36) is driven to rotate by a motor (37), and the substrate (35) is heated to about 200 degrees by a suitable heating means.
It is heated uniformly to a temperature of from 400°C to 400°C, preferably from about 200°C to 350°C. Furthermore, the inside of the reaction tube (33) is a-
A high degree of vacuum condition (discharge voltage 0.1 to 2
.. By requiring a rotary pump (0 Torr)
38) and a diffusion pump (39).

以上のように構成されたグロー放電分解装置において、
例えば、a−3iC膜(Pを含有する)を基板(35)
に形成する場合には、第1.第2.第3.第5調整弁(
17) (1B) (19) (21)を開いてそれぞ
れより5IHn+CJz、PH+、Hzガスを放出する
。放出量はマスフローコントローラ(23) (24)
 (25) (27)により制御され、5l)It+C
Jz+PHi+H1の混合ガスは第1主管(29)を介
して反応管(33)へと流し込まれる。そして、反応管
(33)の内部が0.1乃至2.0Torr程度の真空
状態、基板温度が200乃至400℃、容量型放電用電
極(34)の高周波電力が5〇−乃至3に%1、または
周波数が1乃至10MH2に設定されていることに相俟
ってグロー放電が起こり、ガスが分解してPを含有した
a−SiC膜が基板上に高速で形成される。
In the glow discharge decomposition device configured as above,
For example, an a-3iC film (containing P) is used as a substrate (35).
1. Second. Third. Fifth regulating valve (
17) (1B) (19) Open (21) and release 5IHn+CJz, PH+, and Hz gases from each. The amount of release is determined by the mass flow controller (23) (24)
(25) Controlled by (27), 5l) It+C
The mixed gas of Jz+PHi+H1 is flowed into the reaction tube (33) via the first main pipe (29). Then, the inside of the reaction tube (33) is in a vacuum state of about 0.1 to 2.0 Torr, the substrate temperature is 200 to 400°C, and the high frequency power of the capacitive discharge electrode (34) is 50% to 3%1. , or in conjunction with the frequency being set to 1 to 10 MH2, glow discharge occurs, the gas decomposes, and an a-SiC film containing P is formed on the substrate at high speed.

〔実施例〕〔Example〕

次に本発明の実施例を詳細に説明する。 Next, embodiments of the present invention will be described in detail.

(例1) 本例においては、光導電性a−3iC層をアルミニウム
製成膜基板に生成し、そのC,)!、ガスの配合比率に
対する導電率を測定した。
Example 1 In this example, a photoconductive a-3iC layer is produced on an aluminum deposition substrate, and its C,)! The conductivity was measured with respect to the gas mixture ratio.

即ち、第25図に示した容量結合型グロー放電分解装置
を用いて第1タンク(11)よりSiH4ガスを100
secn+の流量で、第5タンク(15)よりH2ガス
を300secmの流量で放出し、第2タンク(12)
よりCzHzガスを10〜100scca+の流量で放
出し、グロー放電分解法に基いて約5μmの厚みのa−
SiC膜を製作し、その暗導電率及び光導電率を測定し
たところ、第26図に示す通りの結果が得られた。尚、
製造条件として基板温度を300℃、ガス圧を0.45
Torr、高周波電力を150Wに設定した。
That is, using the capacitively coupled glow discharge decomposition device shown in FIG.
At a flow rate of secn+, H2 gas is released from the fifth tank (15) at a flow rate of 300sec, and then the second tank (12)
CzHz gas is released at a flow rate of 10 to 100 scca+, and a-
When a SiC film was manufactured and its dark conductivity and photoconductivity were measured, the results shown in FIG. 26 were obtained. still,
The manufacturing conditions are a substrate temperature of 300°C and a gas pressure of 0.45.
Torr and high frequency power were set to 150W.

第26図によれば、横軸にCtHzガス流量(scca
+)を、縦軸に導電率〔(Ω・cm)−’)を表わし、
・印は暗導電率のプロット、O印は光導電率のプロット
であり、a、bはそれぞれの特性曲線である。
According to FIG. 26, the horizontal axis represents the CtHz gas flow rate (scca
+), the vertical axis represents the conductivity [(Ω・cm)-'),
- The mark is a plot of dark conductivity, the mark O is a plot of photoconductivity, and a and b are respective characteristic curves.

第26図から明らかな通り、暗導電率は10−”(Ω・
cm)−’以上と成り得、最大で10− ” (Ω・c
m)−’以上まで得られた。また、光導電率は暗導電率
に比べて1000倍以上となり、このa−SiC層が電
子写真感光体用として十分に満足し得る光導電性をもっ
ていることが判る。
As is clear from Fig. 26, the dark conductivity is 10-” (Ω・
cm)-' or more, with a maximum of 10-'' (Ω・c
m)-' or higher was obtained. Furthermore, the photoconductivity was 1000 times or more as compared to the dark conductivity, which indicates that this a-SiC layer has photoconductivity that is sufficiently satisfactory for use in electrophotographic photoreceptors.

(例2) 本例においては、(例1)に基いてPH3ガス(又はB
AH,ガス)を導入して暗導電率及び光導電率を測定し
たところ、第27図に示す通りの結果が得られた。
(Example 2) In this example, based on (Example 1), PH3 gas (or B
When dark conductivity and photoconductivity were measured by introducing AH, gas), the results shown in FIG. 27 were obtained.

図中、横軸は5iHaとCzHtの合計流量に対するP
)Iff純量(これはH2ガスの希釈比率より換算して
求められるPH,の絶対流量のことである)である。尚
、Pl(3純量をB、H,純量に置き換えた場合も参考
例として記載する。
In the figure, the horizontal axis is P for the total flow rate of 5iHa and CzHt.
) Iff pure quantity (this is the absolute flow rate of PH calculated from the dilution ratio of H2 gas). In addition, a case where the pure amount of Pl (3) is replaced with the pure amount of B, H, is also described as a reference example.

第27図によれば、・印は暗導電率のプロットであり、
○印は光導電率のプロットであり、c、dはそれぞれの
特性曲線である。
According to FIG. 27, the mark is a plot of dark conductivity,
The circle mark is a plot of photoconductivity, and c and d are respective characteristic curves.

第27図から明らかな通り、光導電率は暗導電率に比べ
て1000倍以上となり、PやBをドーピングしたa−
SiC層が電子写真感光体用として満足し得る光導電性
をもっている。
As is clear from Fig. 27, the photoconductivity is more than 1000 times that of the dark conductivity, and the a-
The SiC layer has satisfactory photoconductivity for use in electrophotographic photoreceptors.

(例3) 本例においては、(例1)中CzHzガス流量を101
05eに設定して得られたa−SiC層に対して分光感
度特性を測定し、その結果は第28図に示された分光感
度向′RIAeとなった。尚、この図は各波長において
等エネルギー光を照射した時の光導電率を示す。
(Example 3) In this example, (Example 1) medium CzHz gas flow rate is 101
The spectral sensitivity characteristics of the a-SiC layer obtained with the setting of 05e were measured, and the results were the spectral sensitivity characteristics 'RIAe' shown in FIG. Note that this figure shows the photoconductivity when irradiated with equal energy light at each wavelength.

第28図より明らかな通り、可視光領域に光感度が認め
られ、これによって電子写真用の光導電体として十分に
用いることができる。
As is clear from FIG. 28, photosensitivity is observed in the visible light region, and as a result, it can be satisfactorily used as a photoconductor for electrophotography.

(例4) 本例においては、(例1)中CJzガス流量を1010
5eに設定して得られたa−SiC層(厚み30.cz
m)に対して表面電位、暗減衰及び光減衰のそれぞれの
特性を測定した。この測定は−5,6KVのコロナチャ
ージャで負帯電し、暗中での表面電位の経時変化と、6
50nmの単色光照射直後の表面電位の経時変化を追っ
たものである。
(Example 4) In this example, (Example 1) medium CJz gas flow rate is 1010
A-SiC layer obtained by setting 5e (thickness 30.cz
The characteristics of surface potential, dark decay, and light decay were measured for m). This measurement was performed by negatively charging the surface with a -5,6 KV corona charger, and measuring the change in surface potential over time in the dark and the
This figure follows the change in surface potential over time immediately after irradiation with 50 nm monochromatic light.

その結果は第29図に示す通りであり、flgはそれぞ
れ暗減衰曲線及び光減衰曲線である。
The results are shown in FIG. 29, where flg is the dark decay curve and the light decay curve, respectively.

第29図より明らかな通り、表面電位が約−530Vと
大きくなっており、暗減衰も5秒後で30%程度であり
、電荷保持能力に優れている。また、光導電率にも優れ
ており、残留電位も小さいと言える。
As is clear from FIG. 29, the surface potential is as large as about -530V, and the dark decay is about 30% after 5 seconds, indicating excellent charge retention ability. It can also be said that it has excellent photoconductivity and low residual potential.

尚、(例4)にて得られたa−SiC層を+5.6KV
おコロナチャージャで正帯電させたところ、表面電位が
数十Vであった。
In addition, the a-SiC layer obtained in (Example 4) was heated to +5.6KV.
When positively charged with a corona charger, the surface potential was several tens of volts.

そして、この(例4)に基づいて製作されたa−3iC
層感光体を、−5,6KVのコロナチャージャによって
負極性に帯電させ、次いで画像露光して磁気ブラシ現象
を行った結果、画像濃度が高く、高コントラストで良質
な画像が得られ、20万回の繰り返しテスト後において
も初期画像の劣化が見られず、耐久性も良好であること
が確認できた。
And a-3iC manufactured based on this (Example 4)
The layered photoreceptor was negatively charged with a -5.6KV corona charger, and then imagewise exposed to perform a magnetic brush phenomenon. As a result, a high-quality image with high image density and contrast was obtained, and it was repeated 200,000 times. Even after repeated tests, no deterioration of the initial image was observed, and it was confirmed that the durability was good.

(例5) 本例においては第1の態様の感光体を製作した。(Example 5) In this example, a photoreceptor of the first embodiment was manufactured.

即ち、基板用アルミニウム製ドラムを第25図に示した
容量結合型グロー放電分解装置の反応管(33)内に設
置し、そして、第1タンク(11)より5iHnガスを
、第2タンク(12)よりCJtガスを、第3タンク(
13)よりPH3ガスを、第5タンク(15)よりH2
ガスを、第6タンク(16)よりNOガスをそれぞれ放
出し、第1表に示す製造条件で第1の層領域及び第2の
層領域を形成した。
That is, the aluminum drum for the substrate is installed in the reaction tube (33) of the capacitively coupled glow discharge decomposition device shown in FIG. ) from the third tank (
PH3 gas from 13) and H2 from the fifth tank (15)
Gas and NO gas were released from the sixth tank (16), respectively, and the first layer region and the second layer region were formed under the manufacturing conditions shown in Table 1.

かくして得られた感光体の電子写真特性は、暗中で−5
,6KVの高圧源に接続されたコロナチャージャで負極
性に帯電させ、次いで分光された単色光(650nm)
を感光体表面に照射し、これによって下記の通りの特性
が得られた。尚、残留電位は露光開始の5秒後の値であ
る。
The electrophotographic properties of the photoreceptor thus obtained were -5 in the dark.
, charged to negative polarity with a corona charger connected to a high voltage source of 6KV, and then subjected to monochromatic light (650nm)
was irradiated onto the surface of the photoreceptor, and the following characteristics were obtained. Note that the residual potential is the value 5 seconds after the start of exposure.

表面電位・・・−720V 光感度・・・0.53cIl!erg−1残留電位・・
・30V (例6) 本例において第1の態様の感光体を(例4)と同様に製
作した。
Surface potential...-720V Photosensitivity...0.53cIl! erg-1 residual potential...
-30V (Example 6) In this example, the photoreceptor of the first embodiment was manufactured in the same manner as in (Example 4).

その製作条件は第2表に示す通りであり、電子写真特性
は下記の通りになった。
The manufacturing conditions were as shown in Table 2, and the electrophotographic properties were as follows.

表面電位・・・−680V 光感度・・・0.63cIII2erg−1残留量位・
・・3ov (例7) 本例においては第2の態様の感光体を第3表に示す条件
で製作し、これによって下記の電子写真特性が得られた
Surface potential...-680V Photosensitivity...0.63cIII2erg-1 residual amount
...3ov (Example 7) In this example, a photoreceptor of the second embodiment was manufactured under the conditions shown in Table 3, and the following electrophotographic characteristics were obtained.

表面電位・・・−720V 光感度・・・0.65CIl!erg−′残留電位・・
・25V (例8) 本例においては第3の態様の感光体を第4表に示す条件
で製作し、これによって下記の電子写真特性が得られた
Surface potential...-720V Photosensitivity...0.65CIl! erg-' residual potential...
-25V (Example 8) In this example, a photoreceptor of the third embodiment was manufactured under the conditions shown in Table 4, and the following electrophotographic characteristics were obtained.

表面電位・・・−790■ 光感度・・・0.65cfflzerg−I残留電位・
・・30V また、この感光体の表面電位、暗減衰及び光減衰のそれ
ぞれの特性を(例4)と同様に測定したところ、第30
図に示す通りの結果が得られた。図中、h、iはそれぞ
れ暗減衰曲線及び光減衰曲線である。
Surface potential: -790 ■ Photosensitivity: 0.65 cfflzerg-I residual potential:
...30V In addition, when the surface potential, dark decay, and light decay characteristics of this photoreceptor were measured in the same manner as in (Example 4), the 30th
The results shown in the figure were obtained. In the figure, h and i are a dark decay curve and a light decay curve, respectively.

第30図より明らかな通り、表面電位が約−790vと
著しく大きくなっており、暗減衰も5秒後で24χ程度
であって電荷保持能力に優れている。
As is clear from FIG. 30, the surface potential is significantly large at approximately -790V, and the dark decay is approximately 24χ after 5 seconds, indicating excellent charge retention ability.

(例9) 本例においては第4の態様の感光体を第5表に示す条件
で製作し、これによって下記の電子写真特性が得られた
(Example 9) In this example, a photoreceptor of the fourth embodiment was manufactured under the conditions shown in Table 5, and the following electrophotographic characteristics were obtained.

表面電位・・・−830v 光感度・・・0.63cm”erg−重残留電位・・・
40V (例10) 本例においては、第25図に示したグロー放電分解装置
を用いて下記の製造条件によって成膜速度を測定したと
ころ、第31図に示す通りの結果が得られた。
Surface potential...-830v Photosensitivity...0.63cm"erg-heavy residual potential...
40V (Example 10) In this example, the film formation rate was measured under the following manufacturing conditions using the glow discharge decomposition apparatus shown in FIG. 25, and the results shown in FIG. 31 were obtained.

鼠遣条佳 RF電力・・・150W ガス圧力・・・0.45Torr 基板温度・・・300℃ 5in4ガス流量・・・100sccIllH2ガス流
量・・・300sccrn 第31図中○印は測定結果のプロットであり、jはその
特性曲線である。
Nezukajoka RF power...150W Gas pressure...0.45Torr Substrate temperature...300℃ 5in4 gas flow rate...100sccIllH2 gas flow rate...300sccrn The ○ marks in Figure 31 are plots of measurement results. , and j is its characteristic curve.

第31図より明らかな通り、CJzガスの含有比率が大
きくなるのに伴って成膜速度が大きくなっており、約5
〜13μllノ時の成膜速度となった。
As is clear from Fig. 31, as the content ratio of CJz gas increases, the film formation rate increases, and the rate is approximately 5%.
The film formation rate was ~13 μl.

(例11) 本例においては、(例10 )と同一の製造条件によっ
てczozガスの含有比率を変えながら膜中の水素含有
量を追ったところ、第32図に示す通りの結果が得られ
た。
(Example 11) In this example, the hydrogen content in the film was tracked while changing the content ratio of czoz gas under the same manufacturing conditions as in (Example 10), and the results shown in Figure 32 were obtained. .

第32図中、O印及び・印はそれぞれC及びSiと結合
したHの結合量を示すプロットであり、k、1はそれぞ
れその特性曲線である。
In FIG. 32, marks O and * are plots showing the amount of H bonded to C and Si, respectively, and k and 1 are their characteristic curves, respectively.

第32図より明らかな通り、C,Htガスの含有比率が
太き(なるのに伴ってC−H結合が増大すると共にS−
H結合が減少することが判る。
As is clear from Fig. 32, as the content ratio of C and Ht gases becomes thicker, the number of C-H bonds increases and the S-
It can be seen that H-bonds are reduced.

〔発明の効果〕〔Effect of the invention〕

以上の通り、本発明の電子写真感光体の製法によれば、
全層に亘って光導電性を有するa−SiCが高い暗抵抗
値となり、且つ光感度特性にも優れていることによって
実質上表面保護層及びキャリア注入阻止層を不要とする
ことができ、その結果、光導電性a−5iC層だけから
成る電子写真感光体が提供できた。
As described above, according to the method for manufacturing an electrophotographic photoreceptor of the present invention,
Since a-SiC, which has photoconductivity throughout the entire layer, has a high dark resistance value and excellent photosensitivity characteristics, it is possible to substantially eliminate the need for a surface protection layer and a carrier injection blocking layer. As a result, an electrophotographic photoreceptor consisting only of a photoconductive a-5iC layer could be provided.

また、本発明の製法によれば、cznzガスとSt含有
ガスを組合せてグロー放電分解すると著しい高い成膜速
度が得られ、これによって製造効率及び製造コストが改
善される。
Further, according to the manufacturing method of the present invention, when glow discharge decomposition is performed using a combination of cznz gas and St-containing gas, a significantly high film formation rate can be obtained, thereby improving manufacturing efficiency and manufacturing cost.

更に本発明の製法によれば、層厚方向に亘って炭素及び
Va族元素の含有量を変えることによって表面電位を向
上させると共に光感度特性を高め、且つ残留電位を顕著
に小さくすることができる。
Furthermore, according to the manufacturing method of the present invention, by changing the content of carbon and Va group elements in the layer thickness direction, it is possible to improve the surface potential, enhance the photosensitivity characteristics, and significantly reduce the residual potential. .

特に、炭素の含有量を層厚方向に亘って変えると、抵抗
率が制御されて所要の層領域が得られ、その結果、格段
に高性能な電子写真感光体が提供できる。
In particular, when the carbon content is varied in the layer thickness direction, the resistivity can be controlled and a desired layer area can be obtained, and as a result, an electrophotographic photoreceptor with significantly higher performance can be provided.

また、本発明の製法によれば、負極性に有利に帯電する
ことができる負極性用電子写真感光体が提供される。
Further, according to the manufacturing method of the present invention, there is provided an electrophotographic photoreceptor for negative polarity that can be charged advantageously to negative polarity.

更に、従来のa−3i悪感光を長期間に亘って使用した
場合にはコロナ放電に伴って感光体表面の局所的な放電
破壊が発生し易くなり、これに起因して画像に流点が生
じるという問題があったが、本発明の製法によれば、a
−Stの誘電率がε=12であるのに対してa−SiC
はε・7と約半分程度であるために帯電能に優れており
、これにより、表面電位を高(しても何ら上記の放電破
壊が発生しなくなり、その結果、高品質且つ高信頬性の
電子写真感光体が提供される。
Furthermore, when the conventional a-3i photoreceptor is used for a long period of time, local discharge damage on the photoreceptor surface is likely to occur due to corona discharge, and this causes spots to appear on the image. However, according to the manufacturing method of the present invention, a
-St has a dielectric constant of ε=12, while a-SiC
is about half that of ε・7, so it has excellent charging ability, and as a result, the above-mentioned discharge breakdown does not occur even if the surface potential is high (and as a result, high quality and high reliability are achieved. An electrophotographic photoreceptor is provided.

また、本発明の電子写真感光体の製法によれば、それ自
体で帯電能及び耐環境性に優れていることから特に保護
層を設ける必要がなく、例えばコロナ放電による被曝或
いは現像剤の樹脂成分の感光体表面一・のフィルミング
等によって表面が劣化した場合、その劣化した表面を研
摩剤等で研摩再生を繰り返し行ってもその研摩量におい
て制限を受けずに感光体の初期特性を維持することがで
き、それによって初期における良好な画像を長期に亘り
安定して供給することが可能となる。
Further, according to the method for producing an electrophotographic photoreceptor of the present invention, since it has excellent charging ability and environmental resistance by itself, there is no need to provide a special protective layer, and, for example, it is not necessary to provide a protective layer due to exposure to corona discharge or the resin component of the developer. When the surface of a photoreceptor is deteriorated due to filming, etc., even if the deteriorated surface is repeatedly polished and regenerated with an abrasive, etc., the initial characteristics of the photoreceptor are maintained without being limited in the amount of polishing. This makes it possible to stably supply a good initial image over a long period of time.

更に本発明の製法により得られる電子写真感光体を、従
来のa−5t悪感光と比較しt場合、このa−5i悪感
光の問題点として耐湿性に劣っているので画像流れが生
じ易く、また、帯電能に劣っているのでゴースト現象が
発生するが、これを解決するためにa−Si感光体の使
用時にヒータを用いてその感光体を加熱し、その発生を
防止している。これに対して本発明の製法に係る電子写
真感光体は耐湿性且つ帯電能に優れているために上記の
ようにヒータを用いて使用する必要はないという長所が
ある。
Furthermore, when the electrophotographic photoreceptor obtained by the manufacturing method of the present invention is compared with the conventional A-5T photoreceptor, the problem with the A-5I photoreceptor is that it is inferior in moisture resistance and tends to cause image blurring. Furthermore, since the charging ability is poor, a ghost phenomenon occurs, but in order to solve this problem, a heater is used to heat the photoreceptor when using the a-Si photoreceptor, thereby preventing the occurrence of this phenomenon. On the other hand, the electrophotographic photoreceptor according to the manufacturing method of the present invention has excellent moisture resistance and charging ability, and therefore has the advantage that it does not require the use of a heater as described above.

また、本発明の電子写真感光体の製法はa−3i悪感光
と比べて炭素の含有量を変えるだけで幅広い分光感度特
性(ピーク600〜700nm )が得られると共に光
感度自体を増大させることができ、更に必要に応じて不
純物元素をドーピングすれば長波長側の増悪も可能にな
るという利点がある。
In addition, compared to the a-3i photoreceptor, the manufacturing method of the electrophotographic photoreceptor of the present invention allows a wide range of spectral sensitivity characteristics (peak 600 to 700 nm) to be obtained by simply changing the carbon content, and it is also possible to increase the photosensitivity itself. Furthermore, if necessary, doping with an impurity element has the advantage that deterioration on the long wavelength side is also possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の製法に係る電子写真感光体の層構成を
示す説明図、第2図は従来の電子写真感光体の層構造を
示す説明図、第3図は本発明に係る第1の態様の感光体
の71領域を示す説明図、第4図、第5図、第6図、第
7図、第8図及び第9図はそれぞれ本発明に係る第1の
態様の感光体の炭素含有量を示す説明図、第10図は本
発明に係る第2の態様の感光体の層領域を示す説明図、
第11図、第12図、第13図、第14図、第15図及
び第16図はそれぞれ本発明に係る第2の態様の感光体
の炭素含有量を示す説明図、第17図は本発明に係る第
3の態様の感光体の層領域を示す説明図、第18図、第
19図、第20図及び第21図はそれぞれ本発明に係る
第3の態様の感光体の炭素含有量を示す説明図、第22
図は本発明に係る第4の態様の感光体の層領域を示す説
明図、第23図及び第24図は本発明に係る第4の態様
の感光体の炭素含有量を示す説明図、第25図は本発明
の実施例に用いられる容量結合型グロー放電分解装置の
説明図、第26図はC2H,ガスの流量比率に対する導
電率を示す線図、第27図はPH,ガス及びBzHbガ
スのそれぞれの流量比率に対する導電率を示す線図、第
28図はアモルファスシリコンカーバイド層の分光感度
特性を示す線図、第29図はアモルファスシリコンカー
バイド層の暗減衰及び光減衰を示す線図、第30図は第
3の態様のアモルファスシリコンカーバイド層の暗減衰
及び光減衰を示す線図、第31図はC2H,ガスの流量
比率に対する成膜速度を示す線図、第32図はCzHz
ガスの流量比率に対する水素原子の結合比率を示す線図
である。 1・・・基板 5.5a、5b、5c・・・・光導電性アモルファスシ
リコンカーバイド層 6・・・第1の層領域 7・・・第2の層領域 8・・・第3の層領域 9・・・第4の層領域 10・・・アモルファスシリコンカーバイド表面保護層 特許出願人 (663)京セラ株式会社同    河村
孝夫
FIG. 1 is an explanatory diagram showing the layer structure of an electrophotographic photoreceptor according to the manufacturing method of the present invention, FIG. 2 is an explanatory diagram showing the layer structure of a conventional electrophotographic photoreceptor, and FIG. FIGS. 4, 5, 6, 7, 8, and 9 are explanatory diagrams showing 71 areas of the photoreceptor according to the first embodiment of the present invention, respectively. An explanatory diagram showing the carbon content, FIG. 10 is an explanatory diagram showing the layer region of the photoreceptor of the second embodiment according to the present invention,
FIG. 11, FIG. 12, FIG. 13, FIG. 14, FIG. 15, and FIG. 16 are explanatory diagrams showing the carbon content of the photoreceptor of the second embodiment according to the present invention, respectively, and FIG. Explanatory diagrams showing the layer regions of the photoreceptor of the third aspect of the invention, FIGS. 18, 19, 20, and 21 respectively show the carbon content of the photoreceptor of the third aspect of the invention. Explanatory diagram showing, 22nd
23 and 24 are explanatory diagrams showing the layer regions of the photoreceptor according to the fourth embodiment of the present invention, and FIGS. Fig. 25 is an explanatory diagram of a capacitively coupled glow discharge decomposition device used in the embodiment of the present invention, Fig. 26 is a diagram showing conductivity versus flow rate ratio of C2H and gas, and Fig. 27 is a diagram showing PH, gas, and BzHb gas. 28 is a diagram showing the spectral sensitivity characteristics of the amorphous silicon carbide layer. FIG. 29 is a diagram showing the dark attenuation and light attenuation of the amorphous silicon carbide layer. Fig. 30 is a diagram showing the dark decay and optical decay of the amorphous silicon carbide layer of the third embodiment, Fig. 31 is a diagram showing the film formation rate with respect to the flow rate ratio of C2H and gas, and Fig. 32 is a diagram showing CzHz.
FIG. 3 is a diagram showing the bonding ratio of hydrogen atoms to the gas flow rate ratio. 1...Substrate 5.5a, 5b, 5c...Photoconductive amorphous silicon carbide layer 6...First layer region 7...Second layer region 8...Third layer region 9...Fourth layer region 10...Amorphous silicon carbide surface protective layer Patent applicant (663) Kyocera Corporation Takao Kawamura

Claims (3)

【特許請求の範囲】[Claims] (1)アモルファスシリコンカーバイド生成用ガスをグ
ロー放電分解して負極性に帯電可能な光導電性アモルフ
ァスシリコンカーバイド層を基板上に形成した電子写真
感光体の製法であって、前記ガスはアセチレン及びケイ
素含有ガスから成り、そのガス組成比を0.01:1乃
至3:1の範囲内に設定し、成膜中にアセチレン含有組
成比を変えて前記アモルファスシリコンカーバイド層に
少なくとも第1の層領域、第2の層領域、第3の層領域
及び第4の層領域を基板側から感光体表面へ向けて順次
具備し、且つ第3の層領域は第2の層領域に比べて、第
4の層領域は第3の層領域に比べてそれぞれ炭素が多く
含まれ前記第2の層領域の形成時に前記アモルファスシ
リコンカーバイド生成用ガスに0乃至1モル%の周期律
表第Va族元素含有ガスを含むとともに第1の層領域の
形成時にアモルファスシリコンカーバイド生成用ガス中
における周期律表第Va族元素含有ガスの占める割合が
第2の層領域の形成時に比べて大きいことを特徴とする
電子写真感光体の製法。
(1) A method for manufacturing an electrophotographic photoreceptor in which a photoconductive amorphous silicon carbide layer that can be charged to a negative polarity is formed on a substrate by glow discharge decomposition of an amorphous silicon carbide generating gas, the gas being acetylene and silicon. containing gas, the gas composition ratio is set within the range of 0.01:1 to 3:1, and the acetylene content composition ratio is changed during film formation to form at least a first layer region on the amorphous silicon carbide layer; A second layer region, a third layer region, and a fourth layer region are sequentially provided from the substrate side toward the surface of the photoreceptor, and the third layer region is larger than the second layer region. Each layer region contains more carbon than the third layer region, and when forming the second layer region, 0 to 1 mol% of a gas containing Group Va elements of the periodic table is added to the amorphous silicon carbide generating gas. and an electrophotographic photosensitive method characterized in that when forming the first layer region, the proportion of the gas containing Group Va elements of the periodic table in the amorphous silicon carbide generating gas is larger than when forming the second layer region. How the body is made.
(2)前記アモルファスシリコンカーバイド層は1乃至
90原子%の炭素を含有していることを特徴とする特許
請求の範囲第(1)項記載の電子写真感光体の製法。
(2) The method for manufacturing an electrophotographic photoreceptor according to claim (1), wherein the amorphous silicon carbide layer contains 1 to 90 atomic percent carbon.
(3)前記アモルファスシリコンカーバイド層は1乃至
90原子%の炭素と5乃至50原子%の水素を含有して
いることを特徴とする特許請求の範囲第(1)項記載の
電子写真感光体の製法。
(3) The electrophotographic photoreceptor according to claim (1), wherein the amorphous silicon carbide layer contains 1 to 90 atomic % carbon and 5 to 50 atomic % hydrogen. Manufacturing method.
JP22895586A 1986-09-27 1986-09-27 Production of electrophotographic sensitive body Pending JPS6382420A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22895586A JPS6382420A (en) 1986-09-27 1986-09-27 Production of electrophotographic sensitive body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22895586A JPS6382420A (en) 1986-09-27 1986-09-27 Production of electrophotographic sensitive body

Publications (1)

Publication Number Publication Date
JPS6382420A true JPS6382420A (en) 1988-04-13

Family

ID=16884478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22895586A Pending JPS6382420A (en) 1986-09-27 1986-09-27 Production of electrophotographic sensitive body

Country Status (1)

Country Link
JP (1) JPS6382420A (en)

Similar Documents

Publication Publication Date Title
JPS6382420A (en) Production of electrophotographic sensitive body
JPS6382417A (en) Production of electrophotographic sensitive body
JP2657491B2 (en) Electrophotographic photoreceptor
JPS6382419A (en) Production of electrophotographic sensitive body
JPS6381439A (en) Electrophotographic sensitive body
JP2657490B2 (en) Electrophotographic photoreceptor
JPS6382422A (en) Production of electrophotographic sensitive body
JPS6382421A (en) Production of electrophotographic sensitive body
JPS6382418A (en) Production of electrophotographic sensitive body
JPS63108348A (en) Manufacture of electrophotographic sensitive body
JPS6381441A (en) Electrophotographic sensitive body
JPS6382416A (en) Electrophotographic sensitive body
JPS63104063A (en) Electrophotographic sensitive body
JPS63104062A (en) Electrophotographic sensitive body
JPS6381442A (en) Electrophotographic sensitive body
JPS6382424A (en) Production of electrophotographic sensitive body
JPS6381440A (en) Electrophotographic sensitive body
JPS6382423A (en) Production of electrophotographic sensitive body
JPS6381438A (en) Electrophotographic sensitive body
JPH01271761A (en) Electrophotographic sensitive body
JPS6381443A (en) Electrophotographic sensitive body
JPS63108347A (en) Manufacture of electrophotographic sensitive body
JPS6381444A (en) Electrophotographic sensitive body
JPH01274155A (en) Electrophotographic sensitive body
JPH0789233B2 (en) Electrophotographic photoreceptor