JPS63108104A - Liquid fuel atomizer - Google Patents

Liquid fuel atomizer

Info

Publication number
JPS63108104A
JPS63108104A JP25408586A JP25408586A JPS63108104A JP S63108104 A JPS63108104 A JP S63108104A JP 25408586 A JP25408586 A JP 25408586A JP 25408586 A JP25408586 A JP 25408586A JP S63108104 A JPS63108104 A JP S63108104A
Authority
JP
Japan
Prior art keywords
fuel
passage
medium
protrusion
annular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25408586A
Other languages
Japanese (ja)
Other versions
JPH07107441B2 (en
Inventor
Yoshitaka Takahashi
高橋 芳孝
Tadahisa Masai
政井 忠久
Fumio Koda
幸田 文夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK, Hitachi Ltd filed Critical Babcock Hitachi KK
Priority to JP25408586A priority Critical patent/JPH07107441B2/en
Publication of JPS63108104A publication Critical patent/JPS63108104A/en
Publication of JPH07107441B2 publication Critical patent/JPH07107441B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Nozzles For Spraying Of Liquid Fuel (AREA)

Abstract

PURPOSE:To control the flow rate of fuel stably and inject fine spray efficiently through nozzles, by a method wherein the sectional area of a flow passageway in a primary mixing section, in which the fuel is mixed with atomizing medium primarily, is made larger than the total area of the sectional areas of the fuel and the atomizing medium. CONSTITUTION:Fuel 4 is supplied through the central path of an inner tube 2 while atomizing medium 3 is supplied through an annular path between an outer tube 1 and the inner tube 2. The inlet port of a primary mixing section 7a is tapered, therefore, the fuel flows in the form of a thin film and the atomizing medium 3 hits the fuel 4 orthogonally whereby collision energy of the atomizing medium 3 may be used effectively for atomizing the fuel 4. At the same time, the relation between the areas of respective fuel flow paths and medium flow paths is such that A1+A2<A3, therefore, respective flow speeds of the atomizing medium 3 and the fuel 4 will never be affected by either one of the atomizing medium 3 and the fuel 4 during mixing both of them. Further, the atomizing medium 3 is supplied to the primary mixing section 7a from a disc-type medium path 6a, therefore, the atomizing medium 3 collides against the fuel uniformly and the fuel 4 may be atomized uniformly and efficiently.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は液体状燃料、例えば油等の液体燃料及び石炭等
の固体と液体との混合系スラIJ 、慾r’lを噴霧す
るアトマイザに係り、特に石炭−水スラリを高圧の空気
又は蒸気等の噴1″5媒体によって噴霧燃焼する際の微
粒化性能を向」ニするのに好適な液体状燃料噴霧アトマ
イザに関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is applied to an atomizer that sprays a liquid fuel, for example, a mixed system of a liquid fuel such as oil, a solid such as coal, and a liquid. In particular, the present invention relates to a liquid fuel spray atomizer suitable for improving atomization performance when a coal-water slurry is spray-combusted using a spray medium such as high-pressure air or steam.

〔従来の技術〕[Conventional technology]

石炭の流体化技術の一つに石炭−水スラリかある。これ
は、微粉炭に代わる新しい石炭の利用形態であり、電力
用叉は産業用ボイラへの利用が進められている。石炭−
水スラリは、石炭を従来の石油系燃料と同様に、ポンプ
でバーナまで供給できるために、微粉炭の空気輸送と比
較して流量の制御の簡便さと燃料供給管径の縮小などの
輸送面の利点がある。また、ボイラ用の燃料としての石
炭−水スラリを考えると、燃料の発熱量を高くする必要
性から、石炭−水スラリに含まれる石炭の濃度を62〜
70重量%にまで高くした高濃度の石炭−水スラリがボ
イラ用燃料として用いられている。
One of the coal fluidization technologies is coal-water slurry. This is a new form of coal usage that replaces pulverized coal, and its use in power and industrial boilers is progressing. Coal-
Water slurry allows coal to be supplied to the burner using a pump in the same way as conventional petroleum-based fuels, so compared to pneumatic transportation of pulverized coal, water slurry has easier flow control and transportation advantages such as a smaller fuel supply pipe diameter. There are advantages. In addition, when considering coal-water slurry as a fuel for boilers, it is necessary to increase the calorific value of the fuel, so the concentration of coal contained in the coal-water slurry is increased from 62 to 60%.
Highly concentrated coal-water slurries, up to 70% by weight, are used as fuel for boilers.

さて、このような流体として取扱い可能な石炭水スラリ
を燃焼する際には、液体状の石炭−水スラリを微小な噴
霧粒子にまで小さくするアトマイザが必要となる6石炭
−水スラリは石炭粒子を含み、また高粘度の流体である
ため、アトマイザには空気叉は蒸気を噴霧媒体として用
いて、気体の運動エネルギで石炭−水スラリを微小粒子
にまで噴霧する二流体アトマイザが主として用いられて
いる。 二流体アトマイザは種々の構造が提案されてい
る。
Now, when burning a coal-water slurry that can be handled as a fluid, an atomizer is required to reduce the liquid coal-water slurry to minute atomized particles.6 The coal-water slurry reduces coal particles. Because the fluid contains coal and water and has a high viscosity, two-fluid atomizers are mainly used, which use air or steam as the atomizing medium and use the kinetic energy of the gas to atomize the coal-water slurry into minute particles. . Various structures have been proposed for two-fluid atomizers.

二流体アトマイザには炉内への噴出孔出口直前で石炭−
水スラリと噴霧媒体とが混合される中間混合式(一般に
Yジェット式と称される)と、二流体が衝突した後、混
合室に一度入り、その後混合流体を炉内へ噴出する内部
混合方式が一般によく知られている。第4図は、従来の
内部混合方式のアトマイザの断面図である(特開昭60
−36811号)、第4図において、外筒41及び内筒
42との間に形成される環状通路に噴霧媒体3が通り、
内筒42の内部に形成される円柱状通路を燃料4が通る
0次に中間混合プレート43の中央通路43aを燃料4
が入り、一方、噴霧媒体3は媒体通路45から中間混合
プレート43の中央通路43aに対し放射41:に設け
られた放射状通路46を通って中央通路(−人混合部)
43aで燃料4と合流する。さらに合流混合した燃料4
と噴霧媒体3は、中間混合プレート43とスプレヤプレ
ート47とによって形成される混合室48に入り、スプ
レヤプレート47に設けられた噴出孔49から炉内に噴
射される。
In the two-fluid atomizer, the coal-
An intermediate mixing method (generally referred to as the Y-jet method) in which the water slurry and spray medium are mixed; and an internal mixing method in which the two fluids enter a mixing chamber after colliding, and then the mixed fluid is ejected into the furnace. is generally well known. FIG. 4 is a cross-sectional view of a conventional internal mixing type atomizer (Japanese Patent Application Laid-Open No. 60-19692).
-36811), FIG. 4, the spray medium 3 passes through an annular passage formed between the outer cylinder 41 and the inner cylinder 42,
The fuel 4 passes through the cylindrical passage formed inside the inner cylinder 42, and then the fuel 4 passes through the central passage 43a of the intermediate mixing plate 43.
On the other hand, the spray medium 3 passes from the medium passage 45 to the central passage 43a of the intermediate mixing plate 43 through the radial passage 46 provided in the radial direction 41: to the central passage (-human mixing section).
It merges with fuel 4 at 43a. Further mixed fuel 4
and the spray medium 3 enter a mixing chamber 48 formed by an intermediate mixing plate 43 and a sprayer plate 47, and are injected into the furnace from an injection hole 49 provided in the sprayer plate 47.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記した内部混合方式のアトマイザにおいて、−人混合
部43aにおいては、噴霧媒体3と燃料4が合流し、そ
の合計流量の流体が通過するので流速が急激に増加する
。同時に一人混合部43aに流入した噴霧媒体3は、−
人混合部43aの媒体通路(放射状通路)46出ロ付近
で拡がりを持つために内筒42によって形成される燃料
通路50側に噴霧媒体3の一部が逆流し、燃料通路50
の上流側における摩耗や燃料4側への逆圧がかかり易く
なる。このため、噴霧媒体3の圧力変動により燃料4側
へも変動を与え、燃料の流計が不安定となる不具合が生
じ易い。
In the above-mentioned internal mixing type atomizer, the spray medium 3 and the fuel 4 join together in the human mixing part 43a, and the total flow rate of the fluid passes therethrough, so that the flow rate increases rapidly. The spray medium 3 flowing into the single-person mixing section 43a at the same time is -
Because it expands near the outlet of the medium passage (radial passage) 46 of the human mixing part 43a, a part of the spray medium 3 flows back toward the fuel passage 50 side formed by the inner cylinder 42, and the fuel passage 50
wear on the upstream side of the fuel 4 and adverse pressure on the fuel 4 side are likely to be applied. Therefore, pressure fluctuations in the spray medium 3 also cause fluctuations in the fuel 4 side, which tends to cause a problem in which the fuel flowmeter becomes unstable.

次に混合室4日においては、燃料4と噴霧媒体3との混
合流体が図中、矢印で示すように循環流を形成しながら
、噴出孔49から噴射される。混合室48内の燃料4は
、噴霧媒体3と混合され、均一状態となって噴出孔49
から噴射されることが望ましい。しかしながら、スプレ
ヤプレート47の内壁に衝突した燃料4は、噴霧媒体3
と分離し、スブレヤプレート47の内壁面に沿って液膜
状となって流れる。この液膜は、噴出孔49から炉内に
出たときに十分に霧状になることなく、粗粒状となって
炉内に噴出される。特に1人混合部43aから混合室4
8に入った燃料4は、スプレヤプレート47の内壁面に
衝突し、その内壁面に沿って放射状の液膜となって混合
室48内を循環する途中に噴出孔49が位置しているこ
とから、この液膜は噴出孔49から炉内に出て粗粒状の
噴霧を発生する。また、混合室48内の中間プレート4
3側のコーナ部では、燃料循環流の小さな渦状停滞部が
できるため、この付近に燃料4の液11菜が停滞し、生
長し易い。
Next, in the mixing chamber 4, the mixed fluid of the fuel 4 and the spray medium 3 is injected from the ejection holes 49 while forming a circulating flow as shown by the arrows in the figure. The fuel 4 in the mixing chamber 48 is mixed with the atomizing medium 3 and is in a homogeneous state.
It is desirable that it be injected from However, the fuel 4 that collided with the inner wall of the sprayer plate 47 is
and flows along the inner wall surface of the spray plate 47 in the form of a liquid film. When this liquid film exits into the furnace from the jetting hole 49, it does not become sufficiently atomized, but becomes coarse particles and is jetted into the furnace. Especially from the one-person mixing section 43a to the mixing room 4.
The fuel 4 that has entered the sprayer plate 47 collides with the inner wall surface of the sprayer plate 47, becomes a radial liquid film along the inner wall surface, and circulates within the mixing chamber 48, and the injection hole 49 is located therein. Therefore, this liquid film exits into the furnace from the jet hole 49 and generates a coarse spray. Also, the intermediate plate 4 in the mixing chamber 48
At the corner part on the third side, a small spiral stagnation part of the fuel circulation flow is formed, so the liquid 11 of the fuel 4 stagnates in this vicinity and tends to grow.

このように−人混合部43aで蒸気等の噴霧媒体3によ
り燃料4への圧力影響(背圧)を受けるため、燃料の流
量変動を来す問題がある。また、混合室48に形成され
る液膜が混合室4日の内壁面及びコーナ部にて発生し、
この液膜が噴出孔49から排出されたときに粗粒状の噴
霧を来す問題がある。
As described above, since the fuel 4 is affected by pressure (back pressure) due to the spray medium 3 such as steam in the human-mixing section 43a, there is a problem in that the flow rate of the fuel fluctuates. In addition, a liquid film is formed in the mixing chamber 48 on the inner wall surface and corners of the mixing chamber 4,
There is a problem in that when this liquid film is discharged from the jet hole 49, a coarse spray is generated.

本発明の目的は、上記した従来技術の問題点を解消し、
燃料の流量制御を安定して行うことができ、かつ噴出孔
から微粒状の噴霧を効率的に行うことができる液体状噴
霧燃料アトマイザを提供することにある。
The purpose of the present invention is to solve the problems of the prior art described above,
An object of the present invention is to provide a liquid atomizer that can stably control the flow rate of fuel and efficiently spray fine particles from a nozzle.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、液体状燃料と噴霧媒体とを1次的に混合す
る1次混合部に連通される燃料通路が環状通路を構成し
、前記1次混合部に連通される噴霧媒体通路は環状の燃
料通路に対し、その外周側側からほぼ直交する方向の円
盤状通路で構成され、1次混合部における燃料と噴霧媒
体との混合流体形成部およびその後流側の混合流体i1
1過断面積は、前記円盤状の噴霧媒体通路の流体通過断
面積と前記環状の燃料通路の流体通過断面積との合計面
積よりも大きくされ、1次混合部からの混合流体が導入
される混合室における前記1次混合部側に位置する隅部
を該混合室内の循環流の流れに対応した面状に形成され
、前記噴出孔に近接した混合室内壁面に少なくとも噴出
孔よりもバーナ軸側に形成された突起部を設けることに
よって達成される。
The above object is such that a fuel passage communicating with a primary mixing part that primarily mixes liquid fuel and a spray medium constitutes an annular passage, and a spray medium passage communicating with the primary mixing part constitutes an annular passage. It is composed of a disk-shaped passage extending in a direction substantially perpendicular to the outer peripheral side of the fuel passage, and includes a mixed fluid forming part of fuel and atomizing medium in the primary mixing part and a mixed fluid i1 on the downstream side thereof.
1. The excess cross-sectional area is made larger than the total area of the fluid passing cross-sectional area of the disk-shaped spray medium passage and the fluid passing cross-sectional area of the annular fuel passage, and the mixed fluid from the primary mixing part is introduced. A corner of the mixing chamber located on the primary mixing part side is formed in a planar shape corresponding to the flow of the circulation flow in the mixing chamber, and a wall surface of the mixing chamber adjacent to the jet hole is at least closer to the burner shaft than the jet hole. This is achieved by providing a protrusion formed in the.

〔作用〕[Effect]

1次混合部における燃料と噴霧媒体との混合部およびそ
の後流側の通過断面積は、燃料および噴霧媒体のそれぞ
れの通過断面積の合計面積よりも大きいから、噴霧媒体
圧が仮に燃料圧よりも高くなっても圧力降下をとれる下
流側の通路に流れ易くなり、燃料の上流側へ背圧を受け
にくい、このために燃料圧(流量)の制御が容易となる
。また、環状の燃料通路に対し、噴霧媒体通路は円盤状
に構成され、かつ燃料通路に対し直交する方向から導入
されるので薄膜状の燃料に対し、噴霧媒体の存する衝突
エネルギーは、薄膜状の燃料を貫通しながら燃料の微粒
化を果たす。
The passage cross-sectional area of the mixing part of fuel and spray medium in the primary mixing part and its downstream side is larger than the total passage cross-sectional area of each of the fuel and spray medium, so if the spray medium pressure is higher than the fuel pressure, Even if the fuel pressure rises, it is easier to flow to the downstream passage where the pressure can be lowered, and the upstream side of the fuel is less likely to receive back pressure, making it easier to control the fuel pressure (flow rate). In addition, since the atomizing medium passage is configured in a disk shape and is introduced from a direction perpendicular to the fuel passage in contrast to the annular fuel passage, the collision energy of the atomizing medium is transferred to the thin film-like fuel. It atomizes the fuel while penetrating the fuel.

1次混合部から噴出された燃料と噴霧媒体の混合流体中
の燃料は、液膜となって混合室の内壁面に沿って循環す
る。この液膜は、直ちに噴出孔から炉内に噴出されるこ
となく、噴出孔に近接した突起部により再度1次混合部
の出口側に循環し、1次混合部からの噴出流により微粒
化された後、噴出孔から炉内に噴射される。混合室内の
隅部にはなくなり、各隅部は混合室内における循環流に
流れに対応した面状に形成されており、循環流は隅部に
滞留することなく、効率良<wi環し、1次混合部から
の噴出流により微流化された後、噴出孔から炉内に噴射
される。
The fuel in the mixed fluid of fuel and spray medium ejected from the primary mixing section becomes a liquid film and circulates along the inner wall surface of the mixing chamber. This liquid film is not immediately ejected into the furnace from the nozzle hole, but is circulated again to the outlet side of the primary mixing section by the protrusion close to the nozzle hole, and is atomized by the jet flow from the primary mixing section. After that, it is injected into the furnace from the nozzle. There are no corners in the mixing chamber, and each corner is formed into a surface shape that corresponds to the circulating flow in the mixing chamber, so that the circulating flow does not stagnate in the corners and circulates efficiently. After being atomized by the jet flow from the next mixing section, it is injected into the furnace from the jet hole.

〔発明の実施例〕[Embodiments of the invention]

第1図は本発明の一実施例を示す断面図、第2図は第1
図のA−A断面図、第3図は第1図のB−B視図である
FIG. 1 is a sectional view showing one embodiment of the present invention, and FIG.
FIG. 3 is a sectional view taken along line AA in the figure, and FIG. 3 is a view taken along line BB in FIG.

第1図〜第3図において、円筒状の外筒lの内部にこの
外筒lと同心円上に円筒上の内筒2が配置されている。
In FIGS. 1 to 3, a cylindrical inner tube 2 is arranged inside a cylindrical outer tube 1 concentrically with the outer tube 1. As shown in FIGS.

内筒2の一端部(噴出孔側)には鍔状の人口ブレート1
7が形成されている。内筒2と外筒1とによって形成さ
れる環状通路は噴霧媒体3の通路を構成し、内筒2の内
部に形成される円柱状通路は燃料4の通路を構成してい
る。また鍔状の入口ブレート17の外周面と外筒1の円
周面との間に形成される環状通路は媒体通路5aを構成
している。さらに外筒l内には入口ブレート17とバー
ナ軸方向に対して所定の間隔を有する円環状の中間混合
プレート16が配置され、人口ブレート17と中間混合
プレート16とによって形成される環状通路は媒体放射
状通路6aを構成している。
A flange-shaped artificial plate 1 is attached to one end of the inner cylinder 2 (on the blowhole side).
7 is formed. The annular passage formed by the inner cylinder 2 and the outer cylinder 1 constitutes a passage for the spray medium 3, and the cylindrical passage formed inside the inner cylinder 2 constitutes a passage for the fuel 4. Further, an annular passage formed between the outer peripheral surface of the brim-shaped inlet plate 17 and the circumferential surface of the outer cylinder 1 constitutes a medium passage 5a. Furthermore, an annular intermediate mixing plate 16 having a predetermined distance from the inlet plate 17 in the burner axial direction is disposed inside the outer cylinder l, and the annular passage formed by the artificial plate 17 and the intermediate mixing plate 16 is It constitutes a radial passage 6a.

次に内筒2と中間混合プレート17の中心軸上には軸芯
11が配置されている。この軸芯11は、内筒2側の端
部に円錐突起部14が形成され、この円錐突起部14に
一端部が連続する円柱体状部の他端部はテーバ状に形成
され、このテーパ部11aは上記円柱状部よりも径の小
さい円柱状部Ilbに連続している。そして前記軸芯1
1の円柱状部11bと中間混合プレート16によって形
成される環状通路は一人混合部7aを構成している。
Next, a shaft core 11 is arranged on the central axis of the inner cylinder 2 and the intermediate mixing plate 17. This shaft core 11 has a conical protrusion 14 formed at its end on the inner cylinder 2 side, and the other end of a cylindrical body whose one end is continuous with the conical protrusion 14 is formed into a tapered shape. The portion 11a is continuous with a cylindrical portion Ilb having a smaller diameter than the cylindrical portion. and the axis 1
The annular passage formed by the cylindrical portion 11b and the intermediate mixing plate 16 constitutes a single-person mixing section 7a.

前記テーバ部11aは媒体放射状通路6aの出口面と対
応している。
The tapered portion 11a corresponds to the exit surface of the medium radial passage 6a.

前記外筒1に連接して円錐台状のスプレヤプレート10
が設けられ、このスプレヤプレート10には第3図に示
すように円状に沿って所定の間隔をおいて複数個の噴出
孔9が配設されている。これらの噴出孔9に近接して噴
出孔9よりもスブレヤプレートlOの軸側に環状突起部
13が形成されている。この環状突起部I3は、スブレ
ヤプレート10の軸側から外側に向けて次第に突起状部
の高さが高くなり、噴出孔9側でスブレヤプレート10
の内壁面に対し垂直な面が形成されている。
A truncated conical sprayer plate 10 is connected to the outer cylinder 1.
As shown in FIG. 3, the sprayer plate 10 is provided with a plurality of ejection holes 9 arranged at predetermined intervals along a circle. An annular protrusion 13 is formed close to these ejection holes 9 and closer to the axis of the spray plate IO than the ejection holes 9 are. The height of the annular protrusion I3 gradually increases from the shaft side of the soubreya plate 10 toward the outside, and the soubreya plate 10
A surface perpendicular to the inner wall surface is formed.

また前記中間混合プレート16とスプレヤプレート10
によって形成される空間部は混合室8を構成するととも
に中間混合プレート16の混合室8に面する面側の円周
縁部に環状突起部15が形成されている。この環状突起
部15は中間混合プレート16の円周方向端部側になる
につれて次第に高くなっている。
Also, the intermediate mixing plate 16 and the sprayer plate 10
The space formed by this constitutes the mixing chamber 8, and an annular protrusion 15 is formed on the circumferential edge of the surface of the intermediate mixing plate 16 facing the mixing chamber 8. The annular protrusion 15 gradually becomes higher toward the end of the intermediate mixing plate 16 in the circumferential direction.

ここで第1図中に示すd、とd2との関係はd、<d、
となっている。また軸芯11と内筒2との間に形成され
る環状通路の通過断面積A、と媒体通路6aの通過断面
積A2と和は、−人混合部7aの通過断面積A3よりも
小さくされている。
Here, the relationship between d and d2 shown in FIG. 1 is d, < d,
It becomes. Further, the sum of the passage cross-sectional area A of the annular passage formed between the axis 11 and the inner cylinder 2 and the passage cross-sectional area A2 of the medium passage 6a is smaller than the passage cross-sectional area A3 of the -person mixing section 7a. ing.

次に上記のように構成されるアトマイザの作用について
説明する。
Next, the operation of the atomizer configured as described above will be explained.

燃料4は内筒2内の円柱状の中央通路を通り、噴霧媒体
3は外筒1と内筒2との間に形成される環状i[11路
を通って供給される。次に燃料4は円錐状突起部14に
より円柱状の流れから円環状の流れになって環状通路に
導入され、一方噴霧媒体3は媒体通路5aから円盤状の
媒体通路6aを通って燃料4の通路に対し、直交する方
向から一人混合部7aに流入し、燃料4と合流する(合
流部12)。このとき、−人混合部7aの人口はテーパ
状となっているため、燃料4番よ束杖となることなり、
′1illI*状の流れとなり、この状態の燃料4に対
しほぼ直角方向に噴霧媒体3が当たる。この結果、噴霧
媒体3の有する衝突エネルギは、薄膜状の燃料4を貫通
しながら、燃料4を微粒化するのに有効に使われる。同
時に各燃料流路および媒体流路は、上記したようにA 
1  + At < Alの関係にあるから、噴霧媒体
3と燃料4はそれぞれの流速を噴霧媒体3及び燃料4の
いずれか一方の影響を受けることがなく、両者の混合が
行われる。
The fuel 4 is supplied through a cylindrical central passage in the inner cylinder 2, and the atomizing medium 3 is supplied through an annular passage formed between the outer cylinder 1 and the inner cylinder 2. Next, the fuel 4 changes from a cylindrical flow to an annular flow by the conical protrusion 14 and is introduced into the annular passage, while the spray medium 3 passes from the medium passage 5a through the disc-shaped medium passage 6a. It flows into the single-person mixing section 7a from a direction perpendicular to the passage and merges with the fuel 4 (merging section 12). At this time, since the population of the negative-person mixing section 7a is tapered, it becomes a constraint for fuel No. 4,
The flow becomes '1illI*, and the spray medium 3 hits the fuel 4 in this state in a direction substantially perpendicular to it. As a result, the collision energy of the spray medium 3 is effectively used to atomize the fuel 4 while penetrating the thin film of fuel 4. At the same time, each fuel flow path and medium flow path is
Since there is a relationship of 1 + At < Al, the respective flow velocities of the spray medium 3 and the fuel 4 are not influenced by either the spray medium 3 or the fuel 4, and the two are mixed.

また、−人混合部7aには円盤状の媒体通路6aから噴
霧媒体3が供給されるため、燃料4に対し均一に噴霧媒
体3が衝突することから燃料4の微粒化が均一に、かつ
効率よく行われる。さらに円盤状の媒体通路6aは上記
の効果の他に入口ブレート17と中間混合プレート】6
の二つの部品間の間隙により形成されるから、加工が容
易となる。
In addition, since the spray medium 3 is supplied to the human mixing part 7a from the disk-shaped medium passage 6a, the spray medium 3 collides uniformly with the fuel 4, so that the atomization of the fuel 4 is uniform and efficient. It is often done. In addition to the above-mentioned effects, the disk-shaped medium passage 6a also has an inlet plate 17 and an intermediate mixing plate]6.
The gap between the two parts facilitates machining.

次に混合室8の形状は、スブレヤプレート10に設けた
噴出孔9からの噴出流が一定の拡がりを有するように円
Sit台状と形成されている。そして混合室8における
中心軸に対してその周囲に循Iマ流が形成され、噴出孔
9から所定量の燃料4と噴霧媒体3が噴出する。このと
き、環状突起部15により循環流は混合室8のコーナ部
で停滞することなく、循環流速を維持し、−人混合部7
aから環状の流れとなって出てくる噴出流と衝突し、壁
面に沿った液膜は再微粒化される。さらにスプレヤプレ
ート10の内壁前面に沿って循環する液膜は、環状突起
部13によって直ちに噴出孔9より噴出されることなく
、図中矢印で示すように一人混合部7aの噴出口付近ま
で循環し、−人混合部7aからの噴出流により再微粒化
された後、噴出孔9から炉内に噴出する。
Next, the shape of the mixing chamber 8 is formed into a trapezoidal shape so that the jet flow from the jet holes 9 provided in the sprayer plate 10 has a constant spread. A circulating flow is formed around the central axis of the mixing chamber 8, and a predetermined amount of fuel 4 and spray medium 3 are ejected from the ejection holes 9. At this time, the annular protrusion 15 maintains the circulating flow velocity without causing the circulating flow to stagnate at the corner of the mixing chamber 8.
The liquid film along the wall surface is re-atomized by colliding with the jet stream coming out as an annular flow from a. Further, the liquid film circulating along the front surface of the inner wall of the sprayer plate 10 is not immediately ejected from the ejection hole 9 by the annular protrusion 13, but is circulated to the vicinity of the ejection port of the single-person mixing section 7a as shown by the arrow in the figure. After being re-atomized by the jet flow from the -human mixing part 7a, it is jetted into the furnace from the jet hole 9.

このように−人混合部7aにおける効率的な燃料の微粒
化a能と混合室8における燃料の選択的及び効率的な微
粒化機能及び噴出機能との組合わせにより、燃料の最適
な噴霧微粒化が達成される。
In this way, by combining the efficient fuel atomization function in the human mixing section 7a with the selective and efficient fuel atomization function and jetting function in the mixing chamber 8, the optimal atomization of the fuel is achieved. is achieved.

第1図に示す実施例において、環状突起部15は断面三
角形状となっているが、本発明において、環状突起部1
5の代わりにi環流と接する面側の断面形状が円形又は
円形類似の形状とすることが望ましい。この場合、混合
室8における循環流の形成がよりスムースになり、かつ
循環流の乱れがなく、高速な循環流を達成した状態で循
環液膜に一人混合部7aから、噴出流が衝突するので混
合室8における燃料の微粒化が更に向上する。
In the embodiment shown in FIG. 1, the annular protrusion 15 has a triangular cross section, but in the present invention, the annular protrusion 1
Instead of 5, it is preferable that the cross-sectional shape of the surface in contact with the reflux be circular or a shape similar to a circular shape. In this case, the formation of the circulating flow in the mixing chamber 8 becomes smoother, and the jetted flow from the single-person mixing section 7a collides with the circulating liquid film in a state where the circulating flow is not disturbed and a high-speed circulating flow is achieved. Atomization of the fuel in the mixing chamber 8 is further improved.

また噴出孔9付近に形成される環状突起部13は、アト
マイザ中心軸に対する環状形となっているが、各々噴出
孔9の中心軸に対する環状形の突起部とすることもでき
る。この場合、循環液膜は突起部の中心部に窪みが形成
された噴出孔9内に入りにく(なり、窪み状の噴出孔9
の上方を通過して一人混合部7aからの噴出流により微
粒化された後、噴出孔9より噴出する。突起部の外周面
はその高さ方向の底部になるにつれて鋸状に拡がる形状
が望ましい、ただし突起部には高速のva環流が衝突す
るので耐摩耗性の観点からセラミックス製がよ(、また
突起部を形成する部品を噴出孔9に嵌合する加工方式を
採用すればアトマイザの加工が簡便となる。
Further, the annular protrusion 13 formed near the ejection hole 9 has an annular shape with respect to the central axis of the atomizer, but may also be an annular protrusion relative to the central axis of the ejection hole 9. In this case, it is difficult for the circulating liquid film to enter the jet hole 9, which has a recess formed in the center of the protrusion.
After passing above the water and being atomized by the jet stream from the single-person mixing section 7a, it is jetted out from the jet hole 9. It is desirable that the outer circumferential surface of the protrusion has a sawtooth shape that widens toward the bottom in the height direction. However, since the high-speed VA circulation collides with the protrusion, it is recommended that the protrusion be made of ceramic (or the protrusion). If a processing method is adopted in which the parts forming the part are fitted into the ejection hole 9, the processing of the atomizer becomes simple.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、燃料と噴霧媒体を1次的
に混合する1人混合部においてその流路断面積を、燃料
の通路断面積と噴霧媒体の通路断面積との合計面積より
も大きくしているので、噴霧媒体圧・2a量変化に対す
る燃料側の圧力・流量変動が軽減されるとともに1人混
合部において薄膜状の燃料に直交する方向から噴霧媒体
が衝突するから、燃料の微粒化が促進され、かつ混合室
での燃料の循環流の形成が促進されるとともにこの循環
流は直ちに噴出孔から炉内に噴出されることなく、1人
混合部からの噴出流により再微粒化される。したがって
、噴出孔から確実に微粒化された燃料が炉内に噴射され
るため、燃料の着火性が向上する。
As described above, according to the present invention, the cross-sectional area of the flow path in the one-person mixing section that primarily mixes the fuel and the spray medium is determined from the total area of the cross-sectional area of the fuel passage and the passage cross-sectional area of the spray medium. Since the pressure and flow rate on the fuel side are also increased due to changes in the spray medium pressure and 2a amount, the spray medium collides with the thin film of fuel in the single-person mixing section from a direction perpendicular to the fuel, which reduces the amount of fuel. Atomization is promoted, and the formation of a circulating flow of fuel in the mixing chamber is promoted, and this circulating flow is not immediately ejected into the furnace from the nozzle hole, but is re-atomized by the ejected flow from the one-person mixing section. be converted into Therefore, since the atomized fuel is reliably injected into the furnace from the injection hole, the ignitability of the fuel is improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明にかかる液体状燃料噴霧アトマイザの断
面図、第2図は第1図のA−A断面図、第3図は第1図
のB−B視図、第4図は従来の液体状燃料噴霧アトマイ
ザの断面図である。 1・・・・・・外筒、2・・・・・・内筒、3・・・・
・・噴霧媒体、4・・・・・・燃料、5a・・・・・・
媒体通路、6a・・・・・・放射状媒体通路、7・・・
・・・−次混合部、8・・・・・・混合室、9・・・・
・・噴出孔、10・・・・・・スプレヤプレート、11
・・・・・・軸芯、13.15・・・・・・環状突起部
、14・・・・・・円錐突起部、16・・・・・・中間
混合プレート、17・・・・・・入口ブレート。 代理人 弁理士 西 元 勝 − 第1図
FIG. 1 is a sectional view of a liquid fuel spray atomizer according to the present invention, FIG. 2 is a sectional view taken along line A-A in FIG. 1, FIG. 3 is a view taken along line B-B in FIG. 1, and FIG. 4 is a conventional 1 is a cross-sectional view of a liquid fuel atomizer of FIG. 1... Outer cylinder, 2... Inner cylinder, 3...
... Spray medium, 4... Fuel, 5a...
Medium passage, 6a...Radial medium passage, 7...
...-Next mixing section, 8...Mixing chamber, 9...
...Blowout hole, 10...Sprayer plate, 11
...Axis, 13.15...Annular protrusion, 14...Conical protrusion, 16...Intermediate mixing plate, 17...・Entrance plate. Agent: Patent attorney Masaru Nishimoto - Figure 1

Claims (4)

【特許請求の範囲】[Claims] (1)アトマイザの内部で液体状の燃料と噴霧媒体とを
1次混合する1次混合部と、該1次混合部からの混合流
を混合室を経て複数個設けられた噴出孔により噴出させ
る液体状燃料アトマイザにおいて、前記1次混合部に連
通される燃料通路が環状通路を構成し、前記1次混合部
に連通される噴霧媒体通路は環状の燃料通路に対し、そ
の外周側からほぼ直交する方向の円盤状通路で構成され
、1次混合部における燃料と噴霧媒体との混合流体形成
部およびその後流側の混合流体通過断面積は、前記円盤
状の噴霧媒体通路の流体通過断面積と前記環状の燃料通
路の流体通過断面積との合計面積よりも大きくされ、前
記混合室における前記1次混合部側に位置する隅部を該
混合室内の循環流の流れに対応した面状に形成され、前
記噴出孔に近接した混合室内壁面に少なくとも噴出孔よ
りもバーナ軸側に形成された突起部を設けたことを特徴
とする液体状燃料噴霧アトマイザ。
(1) A primary mixing section that primarily mixes liquid fuel and a spray medium inside the atomizer, and a mixed flow from the primary mixing section that passes through a mixing chamber and is ejected through a plurality of ejection holes. In the liquid fuel atomizer, the fuel passage communicating with the primary mixing part constitutes an annular passage, and the atomizing medium passage communicating with the primary mixing part is substantially perpendicular to the annular fuel passage from the outer peripheral side thereof. The mixed fluid passage cross-sectional area of the mixed fluid forming part of the fuel and spray medium in the primary mixing part and the downstream side thereof is equal to the fluid passage cross-sectional area of the disc-shaped spray medium passage. A corner portion of the mixing chamber located on the primary mixing section side is formed into a planar shape that corresponds to the flow of the circulation flow within the mixing chamber, and is larger than the total area of the annular fuel passage and the fluid passage cross-sectional area thereof. A liquid fuel spray atomizer, characterized in that a protrusion is provided on an inner wall surface of the mixing chamber close to the ejection hole, the protrusion being formed at least closer to the burner shaft than the ejection hole.
(2)前記突起部は、バーナ軸に対する円周上に環状に
設けられるとともに噴出孔よりもバーナ軸側に位置する
突起部であることを特徴とする特許請求の範囲第(1)
項記載の液体状燃料噴霧アトマイザ。
(2) Claim (1) characterized in that the protrusion is a protrusion that is provided in an annular shape on the circumference of the burner axis and is located closer to the burner axis than the ejection hole.
The liquid fuel atomizer described in Section 1.
(3)前記突起部は、噴出孔の周囲を囲む環状の突起部
からなることを特徴とする特許請求の範囲第(1)項記
載の液体状燃料噴霧アトマイザ。
(3) The liquid fuel spray atomizer according to claim (1), wherein the protrusion is an annular protrusion surrounding the ejection hole.
(4)前記燃料通路は、バーナの中心軸上にその先端部
に円錐突起部を有する軸心が配置され、該軸心の周囲に
形成される環状通路であることを特徴とする特許請求の
範囲第(1)項記載の液体状燃料噴霧アトマイザ。
(4) The fuel passage is an annular passage formed around the axis, with an axis having a conical protrusion at its tip disposed on the central axis of the burner. A liquid fuel spray atomizer according to scope item (1).
JP25408586A 1986-10-25 1986-10-25 Liquid fuel atomizer Expired - Fee Related JPH07107441B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25408586A JPH07107441B2 (en) 1986-10-25 1986-10-25 Liquid fuel atomizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25408586A JPH07107441B2 (en) 1986-10-25 1986-10-25 Liquid fuel atomizer

Publications (2)

Publication Number Publication Date
JPS63108104A true JPS63108104A (en) 1988-05-13
JPH07107441B2 JPH07107441B2 (en) 1995-11-15

Family

ID=17260015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25408586A Expired - Fee Related JPH07107441B2 (en) 1986-10-25 1986-10-25 Liquid fuel atomizer

Country Status (1)

Country Link
JP (1) JPH07107441B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4989675A (en) * 1989-03-14 1991-02-05 British Petroleum Company P.L.C. Spray nozzle for fire control
WO2012096318A1 (en) * 2011-01-12 2012-07-19 バブコック日立株式会社 Spray nozzle, and combustion device having spray nozzle

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4989675A (en) * 1989-03-14 1991-02-05 British Petroleum Company P.L.C. Spray nozzle for fire control
WO2012096318A1 (en) * 2011-01-12 2012-07-19 バブコック日立株式会社 Spray nozzle, and combustion device having spray nozzle
JP2012145026A (en) * 2011-01-12 2012-08-02 Babcock Hitachi Kk Spray nozzle, and combustion device having spray nozzle
TWI465291B (en) * 2011-01-12 2014-12-21 Babcock Hitachi Kk Combustion apparatus having the spray nozzle and the spray nozzle
KR101494989B1 (en) * 2011-01-12 2015-02-23 바브콕-히다찌 가부시끼가이샤 Spray nozzle, and combustion device having spray nozzle

Also Published As

Publication number Publication date
JPH07107441B2 (en) 1995-11-15

Similar Documents

Publication Publication Date Title
US6669115B2 (en) Vortex twin-fluid nozzle with self-cleaning pintle
US3790086A (en) Atomizing nozzle
EP1331441B1 (en) Liquid atomizing nozzle
US5697553A (en) Streaked spray nozzle for enhanced air/fuel mixing
CA1238072A (en) Air swirl nozzle
GB2306002A (en) Swirl atomiser for a combustor
EP2626626B1 (en) Improved liquid fuel swirler
US4946105A (en) Fuel nozzle for gas turbine engine
JP2000107651A (en) Two-fluid nozzle
JPS61130722A (en) Slurry atomizer and nozzle
US4365753A (en) Boundary layer prefilmer airblast nozzle
JPH0550646B2 (en)
JPS63108104A (en) Liquid fuel atomizer
JP2020081995A (en) Spray nozzle
JPS58190614A (en) Fuel injection atomizer
JPS63226513A (en) Atomizer
RU2202734C2 (en) Mechanical steam injector
JP2004230228A (en) Vortices type two-fluid nozzle equipped with self-cleaning pintle
KR102219875B1 (en) Liquid fuel-injection injector for incineration
JPH0617737B2 (en) Slurry fuel combustion device
KR102257041B1 (en) fuel-injection apparatus for incineration
JPH0141891B2 (en)
JPS5987061A (en) Internal mixing atomizer
JPS6057910B2 (en) Internal/external mixing type atomizer
JPS58184411A (en) Fuel atomizer

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees