JPH0550646B2 - - Google Patents

Info

Publication number
JPH0550646B2
JPH0550646B2 JP2548386A JP2548386A JPH0550646B2 JP H0550646 B2 JPH0550646 B2 JP H0550646B2 JP 2548386 A JP2548386 A JP 2548386A JP 2548386 A JP2548386 A JP 2548386A JP H0550646 B2 JPH0550646 B2 JP H0550646B2
Authority
JP
Japan
Prior art keywords
fuel
medium
hole
nozzle
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2548386A
Other languages
Japanese (ja)
Other versions
JPS62186112A (en
Inventor
Yoshitaka Takahashi
Masahito Nozawa
Takashi Kawano
Kimya Sakamoto
Tadahisa Masai
Fumio Koda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP2548386A priority Critical patent/JPS62186112A/en
Publication of JPS62186112A publication Critical patent/JPS62186112A/en
Publication of JPH0550646B2 publication Critical patent/JPH0550646B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業条の利用分野) 本発明は流体燃料燃焼用バーナの燃料噴霧ノズ
ル装置に係り、特に油燃料や油と微粉炭の混合燃
料であるCOM燃料(Coal and Oil Mixture)お
よび水と微粉炭の混合燃料であるCWM燃料
(Coal and Water Mixture)などの流体燃料を
微粒化して噴霧し、燃焼させるバーナ用噴霧ノズ
ル装置に関するものである。
Detailed Description of the Invention (Field of Application of Industrial Articles) The present invention relates to a fuel spray nozzle device for a burner for burning fluid fuel, and in particular to COM fuel (Coal and Oil Mixture), which is oil fuel or a mixed fuel of oil and pulverized coal. ) and a spray nozzle device for a burner that atomizes, sprays, and burns fluid fuel such as CWM fuel (Coal and Water Mixture), which is a mixed fuel of water and pulverized coal.

(従来の技術) 液体燃料またはスラリ燃料を燃焼させるには、
従来よりそれら燃料を噴霧して微粒化することに
より、燃焼用空気との接触表面面積を大きくして
炉内で燃焼させる方式が多くとられている。その
場合燃料の微粒化には、燃料自身の持つている圧
力などの微粒化を助けるエネルギのほかに、圧縮
空気や蒸気などを噴霧媒体として用い、それらの
気体が持つエネルギの力を借りて燃料の噴霧微粒
化を行なう二流体噴霧方式が、微粒化を効率よく
行なう手段として知られている。
(Prior Art) To burn liquid fuel or slurry fuel,
Conventionally, many methods have been used to atomize these fuels by atomizing them to increase the surface area that comes into contact with combustion air and then burn them in a furnace. In this case, in order to atomize the fuel, in addition to the energy that helps atomization, such as the pressure of the fuel itself, compressed air or steam is used as an atomizing medium, and the energy of these gases is used to fuel the atomization. A two-fluid atomization method is known as a means for efficient atomization.

第5図はその中のもつとも実績の多い代表的な
一つであるYジエツト式バーナノズルの側断面図
を示す。このノズルは、液体を供給するための内
筒1および外筒2と、二つの流体を混合し微粒化
をはかるスプレヤプレート5とから構成される。
スプレヤプレート5の内部には、ドリルによつて
加工させる丸孔状の霧化媒体入口孔6、燃料入口
孔7と、この両者がY形に合流する混合孔8が設
けられている。通常は円管状の内筒1内を空気ま
たは蒸気などの霧化媒体4が通り、外筒2と内筒
1の間の環状通路33を液体燃料またはスラリ燃
料(COMまたはCWM)3が通る。
FIG. 5 shows a side sectional view of a Y-jet type burner nozzle, which is one of the most popular and popular types. This nozzle is composed of an inner cylinder 1 and an outer cylinder 2 for supplying liquid, and a sprayer plate 5 for mixing the two fluids and atomizing them.
Inside the sprayer plate 5, there are provided a round atomizing medium inlet hole 6, a fuel inlet hole 7, which are machined by a drill, and a mixing hole 8 where the two join in a Y shape. An atomizing medium 4 such as air or steam passes through the normally cylindrical inner cylinder 1 , and a liquid or slurry fuel (COM or CWM) 3 passes through an annular passage 33 between the outer cylinder 2 and the inner cylinder 1 .

孔の数はバーナの容量(単位時間あたりの燃料
の噴霧量)により異なるが、通常は3〜10個の噴
出孔17がノズル中心軸XXに対し同心円上に、
外拡がりを持つた状態に、かつ軸に対し対称ある
いは非対称に配置さている。
The number of holes varies depending on the capacity of the burner (the amount of fuel sprayed per unit time), but normally there are 3 to 10 nozzle holes 17 arranged concentrically with respect to the nozzle center axis XX.
It is arranged symmetrically or asymmetrically with respect to the axis with outward expansion.

(発明が解決しようとする問題点) 本発明者らの最近の実験によれば(未公開)、
噴霧に対し最も重要な部分は、混合孔8において
二つの流体が合流する部分から、外部へ噴出する
出口孔17の出口端部にいたる間の孔の形状であ
ることがわかつた。さらに霧化媒体と燃料との衝
突時の力関係が問題で、燃料の流速あるいは慣性
力が霧化媒体より大きいと、直進する霧化媒体の
流れを横切り混合孔の対抗壁8aに沿つて燃料液
膜のままの状態で噴出したり、反対に、第5図に
示すように噴霧媒体の流れの流速とそれによる慣
性力が燃料のそれより大きいと、燃料は噴霧媒体
と充分に混合されず、混合孔の合流個所で曲が
り、壁8bに沿つて液膜のまま噴出してしまう。
両方の場合とも全体的にみて燃料の微粒化が充分
には行なわれず、粗大粒子が生成されてしまうこ
とが判明した。粗大粒子の燃料は炉内で完全には
燃焼されず、燃焼排ガス中の未燃分やばいじんを
増加する原因となる。
(Problem to be solved by the invention) According to recent experiments by the present inventors (unpublished),
It has been found that the most important part for spraying is the shape of the hole between the part where the two fluids join in the mixing hole 8 and the outlet end of the outlet hole 17 where the fluid is spouted to the outside. Furthermore, there is a problem with the force relationship at the time of collision between the atomization medium and the fuel, and if the flow velocity or inertia of the fuel is greater than that of the atomization medium, the fuel will cross the flow of the atomization medium traveling straight and move along the opposing wall 8a of the mixing hole. If the fuel is ejected as a liquid film, or on the other hand, if the flow velocity of the spray medium and the resulting inertial force are greater than that of the fuel, as shown in Figure 5, the fuel will not be sufficiently mixed with the spray medium. , it bends at the point where the mixing holes meet and ejects as a liquid film along the wall 8b.
It was found that in both cases, overall, the fuel was not sufficiently atomized and coarse particles were produced. Coarse particle fuel is not completely burned in the furnace, causing an increase in unburned matter and soot in the combustion exhaust gas.

本発明の目的は、燃料と噴霧媒体が均一に混合
し、燃料の微粒化を促進し得る流体燃料燃焼用バ
ーナの燃料噴霧ノズル装置を提供することにあ
る。
SUMMARY OF THE INVENTION An object of the present invention is to provide a fuel spray nozzle device for a fluid fuel combustion burner that can uniformly mix fuel and spray medium and promote atomization of the fuel.

(問題点を解決するための手段) 本発明は上記した問題点を解決するため、噴霧
ノズル内に、燃料と噴霧媒体を混合させる混合孔
を2個以上設け、ここで混合され噴流となつた混
合流体を、混合孔の後流部に設けた混合室内で互
いに衝突させ微粒化を促進するとともに、混合室
内で混合流体の微粒化の均一化を行なつたのち、
ノズル出口端に設けた噴射孔を通して、燃焼炉内
に噴射し微粒化の仕上げを行なうごとく構成した
ノズル装置を提供するものである。
(Means for Solving the Problems) In order to solve the above-mentioned problems, the present invention provides two or more mixing holes in the spray nozzle for mixing the fuel and the spray medium, in which the fuel and the spray medium are mixed to form a jet stream. The mixed fluid is made to collide with each other in the mixing chamber provided at the downstream side of the mixing hole to promote atomization, and after uniformizing the atomization of the mixed fluid within the mixing chamber,
The present invention provides a nozzle device configured to inject into a combustion furnace through an injection hole provided at the nozzle outlet end to finish atomization.

すなわち、本発明は、流体燃料燃焼用バーナの
燃料噴霧ノズルにおいて、燃料を供給する燃料通
路と、該燃料を微細粒に粉砕する媒体を供給する
媒体通路とを交差させた交差部を有し、かつ内部
で燃料を媒体で粉砕するごとくなした混合孔を少
なくとも2個以上設け、上記混合孔はそれぞれの
孔を流出した燃料と媒体の混合流体が、互いに衝
突するごとき関係位置に設置するとともに、上記
混合流体の衝突位置には、衝突による燃料微細粒
の均一化を計る内混合室を設け、かつ内混合室よ
りノズル先端部に向け複数個の出口噴出孔を設け
て、内混合室で均一化された燃料と媒体の混合流
体を外部に噴射するごとく構成したことを特徴と
する。
That is, the present invention provides a fuel spray nozzle for a burner for burning fluid fuel, which has an intersection where a fuel passage for supplying fuel and a medium passage for supplying a medium for pulverizing the fuel into fine particles intersect, and at least two or more mixing holes are provided in the interior so that the fuel is pulverized by a medium, and the mixing holes are installed at positions such that the mixed fluid of fuel and medium that flows out of each hole collides with each other, An inner mixing chamber is provided at the collision position of the mixed fluid to ensure uniformity of fine fuel particles caused by collision, and multiple outlet jet holes are provided from the inner mixing chamber toward the nozzle tip to ensure uniformity in the inner mixing chamber. It is characterized in that it is configured to inject a mixed fluid of the converted fuel and medium to the outside.

(実施例) 第1図は本発明の一実施例を示す燃料噴霧ノズ
ル装置の断面図である。内筒1および外筒2の同
心軸19上の二重管先端にスプレヤヘツド18お
よびスプレヤプレート5が取り付けられている。
内筒内燃料通路32を流体燃料3が通り、内筒と
外筒の間の環状通路33を霧化媒体(通常、蒸気
または空気が用いられるが、以下、霧化媒体を略
して単に媒体という)が通る。つぎに燃料および
媒体はそれぞれスプレヤヘツド18に設けられた
燃料入口孔7および媒体入口孔6を通り円筒上の
孔で構成されている混合室8にて衝突混合した
後、スプレヤヘツド18とスプレヤプレート5に
て構成される内混合室9内に入り、スプレヤプレ
ート5に設けられた先端拡大形のテーパ状の噴出
孔17から燃焼炉内へ噴射される。出口噴出孔1
7の入口部は、内混合室9の先端内面34に対し
て、孔17の軸心を直角とせず外開きに傾斜させ
るため、ノズル軸心19に対して外側に位置する
部分11は、鋭角のエツジ部を形成している。
(Embodiment) FIG. 1 is a sectional view of a fuel spray nozzle device showing one embodiment of the present invention. A sprayer head 18 and a sprayer plate 5 are attached to the tips of the double tubes on the concentric shaft 19 of the inner cylinder 1 and the outer cylinder 2.
The fluid fuel 3 passes through the inner cylinder fuel passage 32, and the annular passage 33 between the inner cylinder and the outer cylinder is filled with an atomizing medium (usually steam or air is used, but hereinafter the atomizing medium is simply referred to as a medium). ) passes. Next, the fuel and the medium pass through the fuel inlet hole 7 and the medium inlet hole 6 provided in the sprayer head 18, respectively, and collide and mix in the mixing chamber 8, which is made up of cylindrical holes. The fuel enters the internal mixing chamber 9, which is comprised of , and is injected into the combustion furnace from a tapered jet hole 17 with an enlarged tip provided in the sprayer plate 5. Outlet nozzle 1
The inlet portion of the hole 17 is not perpendicular to the tip inner surface 34 of the inner mixing chamber 9 but is inclined outwardly, so that the portion 11 located on the outside with respect to the nozzle axis 19 is at an acute angle. It forms the edge of.

第2図は第1図におけるノズルをA方向から見
た正面図であり、噴出孔17はノズル軸心19に
対し放射状にかつ面35上で円周方向6等分の位
置に6個配置されている。
FIG. 2 is a front view of the nozzle in FIG. 1 viewed from direction A, and six jet holes 17 are arranged radially with respect to the nozzle axis 19 and at six equal positions in the circumferential direction on the surface 35. ing.

さて、二流体噴霧における燃料の微粒化は、蒸
気あるいは空気の媒体のもつエネルギを、流体燃
料やスラリ燃料の粉砕と微粒化に、いかに効率よ
く用いられるか、すなわち、運動量の交換がどれ
だけ効率よく行なわれているかにかかつている。
Now, the atomization of fuel in two-fluid spraying is a matter of how efficiently the energy of the steam or air medium is used to crush and atomize fluid fuel or slurry fuel.In other words, how efficiently is the exchange of momentum? It depends on how well it is done.

第1図において燃料3は、まずスプレヤヘツド
18の入口において、多数の燃料入口孔7に分け
られるが、この場合ノズル中心軸19に対しそれ
ぞれ約45度の拡がり角度をもつように構成され
る。このとき、固体粒子と液体からなるスラリ燃
料においては固体粒子が孔7に詰まり易いのであ
るが、孔7の角度を直角に近い急角度をとらせる
ことなく、上述したように約45度のなだらかな角
度としたので、燃料が流路32から孔7に分岐す
る部分でのスラリ中の固体粒子の滞留が防止で
き、スムーズに燃料を通すことができる。また、
燃料バーナの起動、停止時において燃料をパージ
する場合にも燃料を滞留させず排出することがで
きる。
In FIG. 1, the fuel 3 is first divided into a number of fuel inlet holes 7 at the inlet of the sprayer head 18, each of which is configured to have a divergence angle of about 45 degrees with respect to the nozzle central axis 19. At this time, in the case of slurry fuel consisting of solid particles and liquid, the solid particles tend to clog the holes 7, but instead of making the holes 7 take a steep angle close to a right angle, the angle of the holes 7 should not be made to be at a steep angle close to a right angle, but rather be made at a gentle angle of about 45 degrees as described above. Since the angle is set, solid particles in the slurry can be prevented from stagnation at the portion where the fuel branches from the flow path 32 to the hole 7, and the fuel can flow smoothly. Also,
Even when purging the fuel when starting or stopping the fuel burner, the fuel can be discharged without being retained.

つぎに、外筒2内を通つてきた媒体4が燃料入
口孔7と相対応して設けられた媒体入口孔6から
混合孔8に導かれ、ここで孔7からの燃料と角度
δでもつて衝突する。角度δは80〜100度程度が
好ましいが、とくに約90度とするのが好ましい。
ここで重要なのは、媒体孔6を衝突直前で絞つて
いることと、衝突角度δを上記角度にすることで
ある。直前の絞りは媒体の整流と加速を行ない、
燃料への衝突をムラなく大きな力となして燃料の
微粒化を良好に行なうためであり、また衝突角度
δを上記したのは、媒体および燃料の運動エネル
ギを有効に衝突粉砕に変換するためである。な
お、衝突角度δを100度以上とする方が衝突エネ
ルギが大きくなるが、その場合は、媒体と燃料の
両方の流れを互いに妨げる働きが大きくなるた
め、むやみに圧力が上昇したり、一方の圧力の影
響を他方の流体が受け易くなつて流量制御が難し
くなる。このため、δは80〜100度程度がよく、
特にδ=約90度とすることがもつとも好ましい。
Next, the medium 4 that has passed through the outer cylinder 2 is guided from a medium inlet hole 6 provided correspondingly to the fuel inlet hole 7 to a mixing hole 8, where it is connected to the fuel from the hole 7 at an angle δ. collide. The angle δ is preferably about 80 to 100 degrees, and particularly preferably about 90 degrees.
What is important here is that the medium hole 6 is constricted immediately before the collision, and that the collision angle δ is set to the above angle. The aperture just before rectifies and accelerates the medium,
This is to ensure that the fuel is evenly impacted with a large force to atomize the fuel, and the reason why the collision angle δ is set above is to effectively convert the kinetic energy of the medium and fuel into collision pulverization. be. Note that if the collision angle δ is 100 degrees or more, the collision energy will be larger, but in that case, the effect of interfering with the flow of both the medium and the fuel will be greater, and the pressure will increase unnecessarily or The other fluid becomes more susceptible to the influence of pressure, making flow control difficult. For this reason, δ is preferably about 80 to 100 degrees,
In particular, it is preferable that δ=about 90 degrees.

つぎに、混合孔8にて分散された燃料はさらに
内混合室9内に流入する。このとき、各混合孔8
の軸心を、ノズルの中心軸19上の一点Bに角度
αでもつて交差するようにすることが好ましい。
これによつて、各混合孔8にて十分に分散微粒化
できなかつた燃料が再度相互に衝突されるため、
全体的に均一に分散され微粒化される。このとき
の衝突角αは、その衝突によりそれぞれの速度エ
ネルギを有効に粉砕に活用するため30度以上とす
ることが好ましく、180度のときがもつともその
衝突効果は大きい。ただし、前記した第1の衝突
部と同様の理由により、約90度とすることが運用
上は好ましい。
Next, the fuel dispersed in the mixing holes 8 further flows into the internal mixing chamber 9. At this time, each mixing hole 8
Preferably, the axis of the nozzle intersects a point B on the central axis 19 of the nozzle at an angle α.
As a result, the fuel that has not been sufficiently dispersed and atomized in each mixing hole 8 collides with each other again.
The particles are uniformly dispersed and atomized throughout. The collision angle α at this time is preferably 30 degrees or more in order to effectively utilize each velocity energy for crushing, and even when it is 180 degrees, the collision effect is large. However, for the same reason as the first collision part described above, it is preferable for operation to set the angle to about 90 degrees.

第3の特徴としては、内混合室9を設けている
点で、これによつて衝突後の分散・微粒化に必要
な滞留時間を確保し、スラリ混合体の均一化を計
ることができ、粗粒や燃料の液膜が残ることを防
止することができる。
The third feature is that an internal mixing chamber 9 is provided, which ensures the residence time necessary for dispersion and atomization after collision, and makes it possible to homogenize the slurry mixture. It is possible to prevent coarse particles and fuel liquid film from remaining.

最後の仕上げともいえる構造上の特徴として
は、スプレヤプレート5に設けられた出口噴出孔
17を先拡がりの切頭円錐状とし、かつ、ノズル
中心軸に対して孔17の取付角βを90度以上180
度以下とした点である。噴出孔17の拡がり角γ
は、通常二流体噴霧時の液体拡がり角が約20度で
ある結果を得たので、孔17の内壁面での混合流
体粒の接触再凝集を防止するために、少なくとも
この角度以上とすることが好ましい。
The final structural feature is that the outlet jet hole 17 provided in the sprayer plate 5 is shaped like a truncated cone with a widening tip, and the mounting angle β of the hole 17 is 90 degrees with respect to the nozzle center axis. over 180 degrees
The point is that it is less than 100%. Spreading angle γ of the jet hole 17
obtained a result that the liquid spreading angle during two-fluid spraying is usually about 20 degrees, so in order to prevent contact re-agglomeration of the mixed fluid particles on the inner wall surface of the hole 17, it is necessary to set the angle to be at least this angle or more. is preferred.

噴出孔17を先拡がりの切頭円錐状(したがつ
て孔17の中心軸を含む面での切断面は先拡がり
のテーパ状となる)とすることと、拡がり角βを
前記した値にすることによつて、図に示すように
内混合室の先端内壁面34と出口噴出孔17の入
口部とは、鋭角の楔形エツジ部11をノズル中心
軸19からもつとも遠い個所に形成し、角噴出孔
17の11部と反対側すなわちノズル中心軸に近い
個所では鈍角部36を形成する。
The ejection hole 17 is shaped like a truncated cone that widens toward the tip (therefore, the cut surface of the hole 17 on the plane that includes the central axis becomes a tapered shape that widens toward the tip), and the divergence angle β is set to the value described above. In particular, as shown in the figure, the tip inner wall surface 34 of the internal mixing chamber and the inlet of the outlet jet hole 17 have an acute wedge-shaped edge part 11 formed at the farthest point from the nozzle central axis 19, resulting in an angular jet. An obtuse angle portion 36 is formed on the opposite side of the hole 17 from the 11th portion, that is, at a portion close to the nozzle center axis.

エツジ部11は内混合室から燃焼路内経噴出す
る際の燃料粒子を、媒体の大気圧への圧力降下に
よる高速エネルギによつて超微細粒に砕く効果を
有し、一方鈍角部は媒体と燃料の混合流体10が
直進して外部の炉内に出ようとする際に衝突する
壁の役目を果たし、ここで燃料はさらに微細な粒
となる。このため、出口噴出孔の1孔はある程度
の長さが必要であるとともに、孔の拡がり角γは
あまり大きくない方が効果を発揮し易い。またエ
ツジ部11は鋭角が小さいほど燃料の細粒化には
効果があるが、欠陥や摩耗の面を考慮すると極端
に小さくはできない。このため、孔17の拡がり
角γは25〜60度程度にとるのが実用的である。
The edge portion 11 has the effect of breaking the fuel particles into ultra-fine particles when ejected from the internal mixing chamber into the combustion path using high-speed energy due to the pressure drop of the medium to atmospheric pressure, while the obtuse portion It serves as a wall against which the fuel mixture 10 travels straight to exit into the outer furnace, where the fuel becomes finer particles. For this reason, one hole of the outlet jet hole needs to have a certain length, and the effect is more likely to be exhibited if the expansion angle γ of the hole is not too large. Further, the smaller the acute angle of the edge portion 11 is, the more effective it is in making the fuel particles fine, but it cannot be made extremely small in consideration of defects and wear. For this reason, it is practical to set the expansion angle γ of the hole 17 to about 25 to 60 degrees.

噴出孔17の軸心の拡がり角βは、第4図に示
すようにバーナ装置を構成するスロート12やエ
アレジスタ13との関係において、ノズル50の
位置関係をみると、エアレジスタを経て炉内に入
る燃焼用空気14と混合を促進する上で、できる
だけ大きくとることが好ましいが、燃焼用空気の
流れ4によつて燃料の噴出流が曲げられない場合
は、バーナ、スロート12の壁面に燃料が付着し
て都合が悪い。したがつて、噴出孔17の拡がり
角βは、空気流14のノズル軸方向の速度ベクト
ルのノズルのスプレヤプレート5からの燃料噴出
流の速度ベクトルとの相対関係にて決定され、燃
料の種類やノズルの噴射容量などの条件によつて
異なるが、β=90〜180度とするのが、着火と安
定燃焼の点から好ましい。
The expansion angle β of the axis of the nozzle 17 is determined by the positional relationship of the nozzle 50 in relation to the throat 12 and air register 13 that constitute the burner device, as shown in FIG. It is preferable to make the fuel as large as possible in order to promote mixing with the combustion air 14 entering the combustion air, but if the jet flow of fuel is not bent by the combustion air flow 4, the fuel is It is inconvenient that it gets stuck. Therefore, the divergence angle β of the jet hole 17 is determined by the relative relationship between the velocity vector of the air flow 14 in the nozzle axial direction and the velocity vector of the fuel jet flow from the spray plate 5 of the nozzle, and depends on the type of fuel. From the viewpoint of ignition and stable combustion, it is preferable to set β to 90 to 180 degrees, although this differs depending on conditions such as the injection capacity of the nozzle and the injection capacity of the nozzle.

以上、本発明の実施例の説明で述べた特徴点は
各々独立して採用しても効果があるが、複合して
採用すれば少ない媒体量、媒体圧力にて微細な噴
霧燃料が得られる。
The features described above in the description of the embodiments of the present invention are effective even if each is adopted independently, but if they are adopted in combination, finely atomized fuel can be obtained with a small amount of medium and medium pressure.

本発明を実施することにより得られる微細な噴
霧燃料粒子は、バーナノズル部を出た直後の初期
着火性を向上し、その結果、バーナからの燃料噴
霧直後での雰囲気温度を高くできる。これまでの
発明者らによる低NOx燃焼バーナの開発での経
験により、低NOx燃焼を行なうにはバーナから
火炉に噴射された燃料を、まず高温の還元火炎と
して一次燃焼を行ない、ついで燃焼用空気を追加
することにより、第2次の完全燃焼を行なうこと
が必要であることがわかつた(特願昭58−172147
参照)。したがつて、本発明は低NOx燃焼用バー
ナに好適に適用することができる。
The fine atomized fuel particles obtained by carrying out the present invention improve the initial ignitability immediately after leaving the burner nozzle portion, and as a result, the atmospheric temperature immediately after the fuel is sprayed from the burner can be increased. Based on the inventors' experience in developing low NOx combustion burners, in order to achieve low NOx combustion, the fuel injected from the burner into the furnace is first subjected to primary combustion as a high-temperature reducing flame, and then the combustion air is It was found that it was necessary to perform a second complete combustion by adding
reference). Therefore, the present invention can be suitably applied to a low NOx combustion burner.

なお、第1図にて本発明の実施例において、燃
料3は内筒内の通路32から燃料入口孔7を経て
混合孔8に供給され、一方、媒体は内筒1と外筒
2の間の環状通路33を通り、媒体入口孔6を経
て混合孔8に供給されることを示したが、本発明
はこの実施例に限定させるものではなく、媒体を
内筒内通路32から供給し、燃料を環状通路33
から供給するようにしても差し支えなく、このよ
うにすることも本発明に含まれる。
In the embodiment of the present invention shown in FIG. 1, the fuel 3 is supplied from the passage 32 in the inner cylinder through the fuel inlet hole 7 to the mixing hole 8, while the medium is supplied between the inner cylinder 1 and the outer cylinder 2. Although it is shown that the medium is supplied to the mixing hole 8 through the annular passage 33 and through the medium inlet hole 6, the present invention is not limited to this embodiment. Fuel is passed through the annular passage 33
There is no problem even if it is supplied from the source, and this is also included in the present invention.

第3図は本発明の他の実施例を示すもので、第
1図のものと異なる点は、内混合室からノズル外
部に燃料を噴射するための出口噴出孔17の孔中
心軸が、ノズル中心軸と交差せず、第2図と第3
図を比較して明らかなように、ノズル中心軸から
出る放射軸YYに対し角θだけ偏心した構造とし
たことである。この場合は、スプレヤプレート5
に設けた出口噴出孔17の長さが第2図に示した
ものに比し長くとれるため、内混合室9から出る
燃料10が確実に出口噴出孔壁面に衝突し微粒化
が向上する。
FIG. 3 shows another embodiment of the present invention, which differs from the one in FIG. Do not intersect the central axis, Figures 2 and 3
As is clear from comparing the figures, the structure is eccentric by an angle θ with respect to the radiation axis YY emerging from the nozzle center axis. In this case, sprayer plate 5
Since the length of the outlet orifice 17 provided in the fuel cell is longer than that shown in FIG. 2, the fuel 10 coming out of the internal mixing chamber 9 reliably collides with the wall surface of the outlet orifice, improving atomization.

(発明の効果) 本発明を実施すれば、流体の微粒化が十分に行
なわれる結果、 (1) 媒体使用量を低減し、かつ噴霧燃料の粗粒子
形成を防止した微細噴霧粒を達成できる。
(Effects of the Invention) When the present invention is carried out, the fluid is sufficiently atomized, and as a result, (1) the amount of medium used can be reduced, and fine atomized particles can be achieved in which the formation of coarse particles in the atomized fuel is prevented.

(2) 微細噴霧粒によつて燃料の着火と燃焼の安定
性が向上し、未燃分、ばいじん量を低減でき
る。
(2) The fine atomized particles improve the stability of fuel ignition and combustion, reducing the amount of unburned matter and soot.

(3) 微細燃料粒による着火性の向上によつて
NOxを低減した燃焼が可能となる。
(3) Improved ignitability due to fine fuel particles
Combustion with reduced NOx becomes possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示すバーナノズル
の側断面図、第2図は第1図のA方向からみた正
面図、第3図は他の実施例を示すノズル正面図、
第4図は本発明によるノズル装置を設置したとき
のバーナ全体構成説明図、第5図は従来のバーナ
用ノズル装置を示す側断面図である。 1……内筒、2……外筒、5……スプレヤプレ
ート、6……媒体入口孔、7……燃料入口孔、8
……混合孔、9……内混合室、17……出口噴出
孔、18……スプレヤヘツド、19……ノズル中
心軸。
FIG. 1 is a side sectional view of a burner nozzle showing one embodiment of the present invention, FIG. 2 is a front view seen from direction A in FIG. 1, and FIG. 3 is a front view of a nozzle showing another embodiment.
FIG. 4 is an explanatory diagram of the entire burner configuration when the nozzle device according to the present invention is installed, and FIG. 5 is a side sectional view showing a conventional burner nozzle device. 1... Inner cylinder, 2... Outer cylinder, 5... Sprayer plate, 6... Medium inlet hole, 7... Fuel inlet hole, 8
... Mixing hole, 9 ... Inner mixing chamber, 17 ... Outlet jet hole, 18 ... Sprayer head, 19 ... Nozzle center axis.

Claims (1)

【特許請求の範囲】[Claims] 1 流体燃料燃焼用バーナの燃料噴霧ノズルにお
いて、燃料を供給する燃料通路と、該燃料を微細
粒に粉砕する媒体を供給する媒体通路とを交差さ
せた交差部を有し、かつ内部で燃料を媒体で粉砕
するごとくなした混合孔を少なくとも2個以上設
け、上記混合孔はそれぞれの孔を流出した燃料と
媒体の混合流体が、互いに衝突するごとき関係位
置に設置するとともに、上記混合流体の衝突位置
には、衝突による燃料微細粒の均一化を計る内混
合室を設け、かつ内混合室よりノズル先端部に向
け複数個の出口噴出孔を設けて、内混合室で均一
化された燃料と媒体の混合流体を外部に噴射する
ごとく構成したことを特徴とする流体燃料燃焼用
バーナの燃料噴霧ノズル装置。
1. A fuel spray nozzle for a burner for burning fluid fuel, which has an intersection where a fuel passage for supplying fuel intersects with a medium passage for supplying a medium for pulverizing the fuel into fine particles, and a fuel spray nozzle for internally discharging fuel. At least two or more mixing holes are provided so that the mixture is crushed by a medium, and the mixing holes are located at positions where the mixed fluid of the fuel and the medium that flows out of each hole collides with each other, and the mixing holes are arranged so that the mixed fluid that flows out of each hole collides with each other. An internal mixing chamber is provided at the position to homogenize the fuel fine particles caused by collision, and multiple outlet jet holes are provided from the internal mixing chamber toward the nozzle tip to mix the fuel homogenized in the internal mixing chamber. A fuel spray nozzle device for a burner for burning fluid fuel, characterized in that it is configured to inject a mixed fluid of media to the outside.
JP2548386A 1986-02-07 1986-02-07 Fuel spray nozzle device of burner for liquid fuel combustion Granted JPS62186112A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2548386A JPS62186112A (en) 1986-02-07 1986-02-07 Fuel spray nozzle device of burner for liquid fuel combustion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2548386A JPS62186112A (en) 1986-02-07 1986-02-07 Fuel spray nozzle device of burner for liquid fuel combustion

Publications (2)

Publication Number Publication Date
JPS62186112A JPS62186112A (en) 1987-08-14
JPH0550646B2 true JPH0550646B2 (en) 1993-07-29

Family

ID=12167298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2548386A Granted JPS62186112A (en) 1986-02-07 1986-02-07 Fuel spray nozzle device of burner for liquid fuel combustion

Country Status (1)

Country Link
JP (1) JPS62186112A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014076812A1 (en) * 2012-11-16 2014-05-22 バブコック日立株式会社 Spray nozzle, burner equipped with spray nozzle, and combustion device equipped with burner

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4982716A (en) * 1988-02-19 1991-01-08 Toyota Jidosha Kabushiki Kaisha Fuel injection valve with an air assist adapter for an internal combustion engine
US5035358A (en) * 1989-03-22 1991-07-30 Toyota Jidosha Kabushiki Kaisha Fuel injector for use in an engine
US5732885A (en) * 1994-10-07 1998-03-31 Spraying Systems Co. Internal mix air atomizing spray nozzle
US5553783A (en) * 1995-01-09 1996-09-10 Bete Fog Nozzle, Inc. Flat fan spray nozzle
US5692682A (en) * 1995-09-08 1997-12-02 Bete Fog Nozzle, Inc. Flat fan spray nozzle
US7004749B2 (en) 2002-08-29 2006-02-28 Noritz Corporation Combustion apparatus
US6908299B2 (en) 2002-08-29 2005-06-21 Noritz Corporation Combustion apparatus
US7500849B2 (en) * 2004-01-16 2009-03-10 Air Products And Chemicals, Inc. Emulsion atomizer nozzle, and burner, and method for oxy-fuel burner applications
JP6029375B2 (en) 2012-08-06 2016-11-24 三菱日立パワーシステムズ株式会社 Spray nozzle, burner equipped with the same, and combustion apparatus
JP6317631B2 (en) 2014-06-12 2018-04-25 三菱日立パワーシステムズ株式会社 Spray nozzle, combustion apparatus equipped with spray nozzle, and gas turbine plant
JP6491898B2 (en) 2015-02-05 2019-03-27 三菱日立パワーシステムズ株式会社 Spray nozzle, combustion apparatus using spray nozzle, and gas turbine plant

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014076812A1 (en) * 2012-11-16 2014-05-22 バブコック日立株式会社 Spray nozzle, burner equipped with spray nozzle, and combustion device equipped with burner
JPWO2014076812A1 (en) * 2012-11-16 2017-01-05 三菱日立パワーシステムズ株式会社 Spray nozzle, burner with spray nozzle and combustion apparatus with burner

Also Published As

Publication number Publication date
JPS62186112A (en) 1987-08-14

Similar Documents

Publication Publication Date Title
JPS6161015B2 (en)
JPH09509733A (en) Fuel nozzle introduced from the tangential direction
JP2003021309A (en) Multi-fluid spraying nozzle and combustion method with addition of water
JPH0550646B2 (en)
JPH0849816A (en) Method and equipment for distributing fuel in burner also proper to liquid fuel and also proper to gas fuel
JPH0694218A (en) Fuel injection valve
JPH0721326B2 (en) Spraying method of coal / water slurry burner
JPS63226513A (en) Atomizer
JP2739749B2 (en) Burner for slurry fuel
JPS6057910B2 (en) Internal/external mixing type atomizer
JPS6349612A (en) Twin fluid atomizer
JPS6233214A (en) Coal water slurry atomizer
JPS5987061A (en) Internal mixing atomizer
JPS62242719A (en) Atomization method and apparatus for slurry-like fuel
JPH0318819Y2 (en)
JPS62158906A (en) Low nox combustion burner for coal and water slurry
JPH06221517A (en) Liquid fuel burning device
JPS58190614A (en) Fuel injection atomizer
JPH08145362A (en) Multihole two-fluid injection device and atomization type combustion equipment equipped therewith
JPS6298111A (en) Burner device
JPH0447209B2 (en)
JPS61293568A (en) Two-fluid atomizer nozzle equipped with throttle
JPH0617737B2 (en) Slurry fuel combustion device
JPS63259313A (en) Method of burning coal-water mixed fuel
JPH0586524B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees