JP2000107651A - Two-fluid nozzle - Google Patents

Two-fluid nozzle

Info

Publication number
JP2000107651A
JP2000107651A JP10281768A JP28176898A JP2000107651A JP 2000107651 A JP2000107651 A JP 2000107651A JP 10281768 A JP10281768 A JP 10281768A JP 28176898 A JP28176898 A JP 28176898A JP 2000107651 A JP2000107651 A JP 2000107651A
Authority
JP
Japan
Prior art keywords
gas
liquid
flow path
orifice
nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10281768A
Other languages
Japanese (ja)
Other versions
JP4276311B2 (en
Inventor
Yoshinari Iwamura
吉就 岩村
Takeo Mizuno
毅男 水野
Hiroki Hiramatsu
弘樹 平松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
H Ikeuchi and Co Ltd
Original Assignee
H Ikeuchi and Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by H Ikeuchi and Co Ltd filed Critical H Ikeuchi and Co Ltd
Priority to JP28176898A priority Critical patent/JP4276311B2/en
Publication of JP2000107651A publication Critical patent/JP2000107651A/en
Application granted granted Critical
Publication of JP4276311B2 publication Critical patent/JP4276311B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/02Spray pistols; Apparatus for discharge
    • B05B7/04Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge
    • B05B7/0416Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing one gas and one liquid
    • B05B7/0441Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing one gas and one liquid with one inner conduit of liquid surrounded by an external conduit of gas upstream the mixing chamber
    • B05B7/0466Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing one gas and one liquid with one inner conduit of liquid surrounded by an external conduit of gas upstream the mixing chamber with means for deflecting the central liquid flow towards the peripheral gas flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/34Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl
    • B05B1/3405Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl to produce swirl
    • B05B1/341Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl to produce swirl before discharging the liquid or other fluent material, e.g. in a swirl chamber upstream the spray outlet
    • B05B1/3421Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl to produce swirl before discharging the liquid or other fluent material, e.g. in a swirl chamber upstream the spray outlet with channels emerging substantially tangentially in the swirl chamber
    • B05B1/3426Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl to produce swirl before discharging the liquid or other fluent material, e.g. in a swirl chamber upstream the spray outlet with channels emerging substantially tangentially in the swirl chamber the channels emerging in the swirl chamber perpendicularly to the outlet axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/02Spray pistols; Apparatus for discharge
    • B05B7/04Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge
    • B05B7/0416Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing one gas and one liquid
    • B05B7/0441Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing one gas and one liquid with one inner conduit of liquid surrounded by an external conduit of gas upstream the mixing chamber
    • B05B7/0458Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing one gas and one liquid with one inner conduit of liquid surrounded by an external conduit of gas upstream the mixing chamber the gas and liquid flows being perpendicular just upstream the mixing chamber

Landscapes

  • Nozzles (AREA)

Abstract

PROBLEM TO BE SOLVED: To atomize liquid without increasing a gas-to-water ratio and to keep the atomization on the increase in an atomized flow by turning the liquid flowing through a flow passage along the axis line of a nozzle body by a whirler, and throttling it by an orifice to cause gas to flow in from the outer periphery to spray the liquid as mixed fluid with the gas. SOLUTION: Liquid fed along the axis line of a flow passage 25a is made a turning flow by a whirler 27 and also it is hit against the inner peripheral surface of the flow passage 25a to atomize it. Next, after it flows to an orifice 28 and undergoes diameter contraction, it undergoes diameter expansion to the side of a gas inflow chamber 29 and is jetted. At this time, to the gas inflow chamber 29, compressed air is fed through a gas inflow paths 32A and 31, and a gas inflow hole 30, and it is hit against and mixed with the liquid jetted into the gas inflow chamber 29. By this, it is turned into gas-liquid mixed liquid in which particle diameters of water droplets are approximately uniformalized in both the inside and outside, and it flows into a gas-liquid mixing chamber 33 and is accelerated and is sprayed from a jetting hole 38 through a diameter contraction chamber 35 and a jetting port part 36. In this way, the liquid can be atomized without increasing the gas-to-water ratio.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、二流体ノズルに関
し、特に、空気と水とを混合した気液混合ミストの微粒
化を図るもので、ゴミ焼却炉内において発生する高温ガ
スの冷却用に好適に用いられるものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a two-fluid nozzle, and more particularly to a method for atomizing a gas-liquid mixture mist obtained by mixing air and water, for cooling high-temperature gas generated in a refuse incinerator. It is preferably used.

【0002】[0002]

【従来の技術】ゴミ焼却炉においては、焼却温度は80
0℃以上、さらに、1200℃〜1300℃まで高める
ことが好ましいとされている。よって、焼却時に発生す
るガスも非常に高温となり、焼却後に略150℃程度ま
で冷却する必要があり、そのため、ゴミ焼却炉にノズル
を設置して、冷却用噴霧をガスに噴射している。この冷
却用噴霧は、焼却灰や集塵機の濡れを防止すると共に、
ガスの冷却効率を高めてランニングコストを増大させな
いためには、噴霧を微粒化する必要があり、よって、水
に空気を混合した気液混合ミストを噴射する二流体ノズ
ルが用いられている。
2. Description of the Related Art In a refuse incinerator, the incineration temperature is 80.
It is said that it is preferable to increase the temperature to 0 ° C. or higher, and further to 1200 ° C. to 1300 ° C. Therefore, the gas generated at the time of incineration becomes very high temperature and needs to be cooled to about 150 ° C. after incineration. Therefore, a nozzle is installed in a refuse incinerator, and a cooling spray is injected into the gas. This cooling spray prevents incineration ash and dust collectors from getting wet,
In order not to increase the running cost by increasing the gas cooling efficiency, it is necessary to atomize the spray. Therefore, a two-fluid nozzle that jets a gas-liquid mixed mist obtained by mixing air with water is used.

【0003】この種の二流体ノズルとしては、従来、特
開昭60−41565号公報において図8に示すノズル
が提供されている。該ノズルは、ノズル本体1の軸線に
沿って液流路2が設けられると共に、液流路2の気液混
合室2aの周壁3の外側に環状の空気流路4が設けら
れ、周壁3に螺旋ラインに沿って間隔をあけて孔3aが
設けられ、これら孔3aから気液混合室2aに空気を流
入させることにより気液を混合して、噴射口5より気液
混合ミストが噴射されるようにしている。
As a two-fluid nozzle of this type, a nozzle shown in FIG. 8 has been provided in Japanese Patent Application Laid-Open No. 60-41565. In the nozzle, a liquid flow path 2 is provided along the axis of the nozzle body 1, and an annular air flow path 4 is provided outside the peripheral wall 3 of the gas-liquid mixing chamber 2 a of the liquid flow path 2, and the peripheral wall 3 Holes 3a are provided at intervals along the spiral line, and gas is mixed by flowing air from the holes 3a into the gas-liquid mixing chamber 2a, and a gas-liquid mixed mist is injected from the injection port 5. Like that.

【0004】上記ノズルでは、孔3aを螺旋状に配置す
ることにより、全周にわたって均一に孔3aを配置し、
内部の液に対して全周より空気を流入して混合させるこ
とを特徴としている。混合気液の微粒化は、気液混合室
2a内において、液に対して外周より流入させる空気を
一度衝突させて行われているだけで、混合気液の微粒化
程度は低い。
[0004] In the above nozzle, the holes 3a are arranged spirally so that the holes 3a are uniformly arranged over the entire circumference.
It is characterized in that air flows into and mixes the liquid inside from all around. The atomization of the gas-liquid mixture is performed only by once colliding the air flowing into the liquid from the outer periphery in the gas-liquid mixing chamber 2a, and the degree of atomization of the gas-liquid mixture is low.

【0005】これに対して、混合気液をより微粒化する
ために、本出願人は先に特開平7−124502号公報
において図9に示すノズルを提供している。このノズル
はノズル本体6の供給端側の中心の空気供給路7より供
給される空気の外周に、液供給路8より液体を衝突させ
て供給し、この混合部9から噴射口10に至るまでの流
路に混合流体が衝突する壁面11a、11bを設けてい
る。
On the other hand, in order to make the gas-liquid mixture finer, the present applicant has previously provided a nozzle shown in FIG. 9 in Japanese Patent Application Laid-Open No. Hei 7-124502. This nozzle collides and supplies the liquid from the liquid supply path 8 to the outer periphery of the air supplied from the air supply path 7 at the center of the supply end side of the nozzle body 6, from the mixing section 9 to the injection port 10. Are provided with wall surfaces 11a and 11b against which the mixed fluid collides.

【0006】[0006]

【発明が解決しようとする課題】上記ノズルは、供給端
側の混合部9で混合されて混合流体が噴射口10から噴
霧されるまでの間で、多段の壁面に衝突して、衝突を複
数回繰り返すため、上記図8に示すノズルより水滴をよ
り微粒化することができる。
The above-mentioned nozzle collides with the multi-stage wall surface until the mixed fluid is mixed in the mixing section 9 on the supply end side and the mixed fluid is sprayed from the injection port 10, and a plurality of collisions occur. Since it is repeated twice, water droplets can be made finer than the nozzle shown in FIG.

【0007】しかしながら、このように衝突回数を増加
して微粒化を図るだけでは、最大粒径を200μよりも
小さくするには、気水比(空気量/水量)を200以上
にする必要があり、また、水滴は150μ以下とするこ
とが好ましいが、150μ以下とするには、気水比を5
00以上とする必要がある。このように、気水比を大き
くするために、圧力空気の使用量を増大させる必要があ
り、ランニングコストがかかる問題がある。
However, by merely increasing the number of collisions to achieve atomization as described above, in order to make the maximum particle diameter smaller than 200 μm, the air-water ratio (air amount / water amount) needs to be 200 or more. Further, it is preferable that the water droplet is 150 μm or less.
Must be 00 or more. As described above, in order to increase the air-water ratio, it is necessary to increase the amount of use of the compressed air, and there is a problem that the running cost is increased.

【0008】さらに、噴霧流量を増大させると水滴が大
きくなり、図9に示すノズルでは、例えば、気水比を1
50に設定した場合、最大粒子径を150μとするには
200リットル/時間とする必要がある。近時、ゴミ焼
却炉は大型化しているため、噴霧流量を増大させなけれ
ば所要温度まで冷却することが出来ないが、上記のよう
に、噴霧流量を増加させると粒子径が大きくなり、濡れ
等が発生する問題がある。
Further, when the spray flow rate is increased, water droplets become larger, and the nozzle shown in FIG.
When it is set to 50, it is necessary to be 200 liters / hour in order to make the maximum particle diameter 150 μm. Recently, the size of refuse incinerators cannot be reduced to the required temperature unless the spray flow rate is increased, but as described above, increasing the spray flow rate increases the particle size and increases wetness. There is a problem that occurs.

【0009】本発明は上記問題に鑑みてなされたもの
で、気水比を大きくすることなく微粒化が図れると共
に、噴霧流量を増加しても微粒化を保持できるノズルを
提供することを課題としている。
The present invention has been made in view of the above problems, and an object of the present invention is to provide a nozzle capable of achieving atomization without increasing the air-water ratio and maintaining atomization even when the spray flow rate is increased. I have.

【0010】[0010]

【課題を解決するための手段】上記課題を解決するた
め、本発明は、ノズル本体の基端側より先端噴射側にか
けて軸線に沿って流路を形成し、該流路の流入口に液体
供給管を接続すると共に、該流路に、液体を旋回させる
ワーラーと液体を絞るオリフィスとを介設し、これらワ
ーラーとオリフィスとの配置位置より噴射側の流路の周
壁に、周方向に間隔をあけて気体流入孔を設けると共に
これら気体流入孔の外端と連通する気体環状流路を設
け、かつ、該気体環状流路をノズル本体に形成した気体
流入通路と連通させ、軸線に沿って流入する液体をワー
ラーで旋回させると共にオリフィスで絞った後に、外周
より流入する気体と衝突混合させ、該混合流体を先端噴
射口より噴霧する構成としている二流体ノズルを提供し
ている。
In order to solve the above-mentioned problems, the present invention forms a flow path along an axis from a base end side of a nozzle body to a front end injection side, and supplies a liquid to an inlet of the flow path. In addition to connecting the pipe, a whirler for swirling the liquid and an orifice for restricting the liquid are interposed in the flow path, and a circumferential interval is provided in the circumferential wall of the flow path on the injection side from the arrangement position of the whirler and the orifice. In addition, a gas inflow hole is provided, and a gas annular passage communicating with the outer end of the gas inflow hole is provided, and the gas annular passage is communicated with a gas inflow passage formed in the nozzle body, and the gas flows in along the axis. The present invention provides a two-fluid nozzle configured to swirl a liquid to be swirled by a stirrer and squeeze it with an orifice, and then collide and mix with a gas flowing in from the outer periphery, and spray the mixed fluid from a tip injection port.

【0011】上記流路に介設するワーラーとオリフィス
との配置順序は限定されず、オリフィスを流入口側、ワ
ーラーを噴射口側として、流入液体をオリフィスで絞っ
た後にワーラーで旋回させ、その後、外周より流入する
気体と衝突混合させてもよい。また、ワーラーとオリフ
ィスとは夫々1個でも良いが、複数段に設けても良い。
さらに、流路外周に設ける気体流入孔は、その流路に接
する開口を流路と接線方向に連通するようにしても良い
し、流路と直交させて連通してもよい。また、この気体
流入孔は周方向に一定ピッチで形成すれば、その個数は
限定されず、流路が大径の場合は気体流入孔の個数を増
加することが好ましい。さらに、この流路外周に設ける
気体流入穴は、流路の軸線方向に対しても多段に設けて
もよい。
The arrangement order of the stirrer and the orifice provided in the flow path is not limited. The orifice is set to the inflow side and the stirrer is set to the injection port side. You may make it mix with the gas which flows in from an outer periphery by collision. The number of the orifices and the number of the orifices may be one, respectively, or may be provided in a plurality of stages.
Further, the gas inflow hole provided on the outer periphery of the flow path may have an opening in contact with the flow path in tangential direction with the flow path, or may be in communication with the flow path at right angles to the flow path. The number of the gas inflow holes is not limited as long as they are formed at a constant pitch in the circumferential direction. When the flow path has a large diameter, it is preferable to increase the number of the gas inflow holes. Further, the gas inflow holes provided in the outer periphery of the flow path may be provided in multiple stages in the axial direction of the flow path.

【0012】上記ワーラーとは流路に横断的に配置され
るもので、軸心部から複数枚の羽根が突出し、これら羽
根の先端が流路内周面と当接し、羽根の間を通って流体
が流れるこのとにより、強制的に旋回流を発生させるも
のである。このワーラーとしては、従来、X型ワーラ
ー、卍型ワーラー等が用いられているが、いずれの形状
でもよい。
The whirler is disposed transversely to the flow path, and a plurality of blades protrude from the axis, and the tips of the blades abut the inner circumferential surface of the flow path and pass between the blades. With this flow of the fluid, a swirling flow is forcibly generated. As the whirler, an X-type whirler, a swastika-type whirler, or the like is conventionally used, but any shape may be used.

【0013】上記のように、ノズル本体の流路に流入す
る液体をワーラーを通し、液体に旋回流を発生させ、ワ
ーラーの羽根や流路内壁に衝突させることにより、ま
ず、水滴を微粒化できる。さらに、オリフィスを通すこ
とにより、オリフィスの入口で液体が壁に衝突して微粒
化し、かつ、オリフィスから出た液体が高圧力で出口側
の内壁に衝突することにより微粒化する。このワーラー
とオリフィスを通して微粒化した液体に外周より気体を
流入させて液体と衝突させることにより微粒化が促進さ
れると共に粒子径の均一化が図られる。このように、液
体に気体を衝突混合させるだけでなく、その前にワーラ
ーとオリフィスを通すことにより、従来のノズルよりも
微粒化が図れ、気水比を低下しても、また、噴霧流量を
増加しても、濡れを発生させない最大粒子径150μ以
下に保持することができる。
As described above, by causing the liquid flowing into the flow path of the nozzle body to pass through the whirler, to generate a swirling flow, and to collide with the blades of the whirler and the inner wall of the flow path, first, water droplets can be atomized. . Further, by passing through the orifice, the liquid collides with the wall at the inlet of the orifice and is atomized, and the liquid discharged from the orifice collides with the inner wall on the outlet side at high pressure to be atomized. By causing a gas to flow into the atomized liquid from the outer periphery through the stirrer and the orifice and causing the gas to collide with the liquid, the atomization is promoted and the particle diameter is made uniform. In this way, not only is the gas impinged and mixed into the liquid, but also by passing it through a stirrer and an orifice before that, the atomization can be achieved as compared with the conventional nozzle, and even if the water-to-water ratio is lowered, the spray flow rate is also reduced. Even if it increases, it is possible to maintain the maximum particle diameter of 150 μm or less that does not cause wetting.

【0014】上記ノズル本体の軸線に沿った流路には、
流入口側から噴射口側にかけて、ワーラーとオリフィス
を順次配置し、オリフィスの出口側の流路内壁に気体流
入孔を設けることが好ましい。即ち、オリフィスを出て
拡散した液体に対して、外周より気体を供給して混合す
ると、気液の混合を均一化できると共に、水滴をより微
粒化することができる。
In the flow path along the axis of the nozzle body,
It is preferable that the whirler and the orifice are sequentially arranged from the inflow port side to the injection port side, and a gas inflow hole is provided in the flow path inner wall on the outlet side of the orifice. That is, when a gas is supplied from the outer periphery to the liquid diffused out of the orifice and mixed, gas-liquid mixing can be made uniform and water droplets can be made finer.

【0015】また、上記気体流入孔を設けた位置から先
端噴射口までの流路の間に拡径した気液混合室を設け、
該気液混合室の先端側に段差を設けて縮径室を連続さ
せ、該縮径室の先端に円錐形状とした噴口部を設け、該
噴口部の外壁に多孔の噴射孔を設けている。
[0015] Further, a gas-liquid mixing chamber having an enlarged diameter is provided between the flow path from the position where the gas inflow hole is provided to the tip injection port,
A step is provided at the tip side of the gas-liquid mixing chamber to make the reduced diameter chamber continuous, a conical injection port is provided at the tip of the reduced diameter chamber, and a porous injection hole is provided on the outer wall of the injection port section. .

【0016】上記のように、気体流入孔の配置位置より
噴射口側に気液混合室を設けて、混合気液を拡径した気
液混合室に通すと、該気液混合室で気体と液体とを均一
に混合させることができる。さらに、この気液混合室よ
り縮径室に通す時に、段差部に混合気液を再度衝突させ
て微粒化を図ることができる。なお、噴射口に設ける噴
射孔は多孔に限定されず、単孔でも良いが、多孔とする
方が微粒化が図れ、かつ、ガス冷却用として用いる場合
には、噴霧範囲が広げられる点から多孔とすることが好
ましい。
As described above, the gas-liquid mixing chamber is provided on the injection port side from the position where the gas inflow hole is disposed, and when the mixed gas-liquid is passed through the gas-liquid mixing chamber having an enlarged diameter, gas and liquid are mixed in the gas-liquid mixing chamber. The liquid can be uniformly mixed. Further, when the gas-liquid mixture is passed through the gas-liquid mixing chamber to the reduced-diameter chamber, the mixed gas-liquid can again collide with the stepped portion to achieve atomization. In addition, the injection hole provided in the injection port is not limited to a single hole, and may be a single hole. However, when the single hole is used, atomization can be achieved, and when used for gas cooling, the spray range is widened. It is preferable that

【0017】[0017]

【発明の実施の形態】以下、本発明の二流体ノズルの実
施形態を図面を参照して説明する。図1に示すように、
ノズル本体20は基部21、コア22、チップ23から
なり、基部21の先端にコア22を連接した状態で、チ
ップ23の基部側筒部23aを外嵌して螺着し、基部2
1、コア22、チップ23を一体的に固定している。こ
れら基部21、コア22、チップ23からなるノズル本
体20には、基端側(X)より先端噴射側(Y)にかけ
て軸線Lに沿って流路25を形成し、該流路25の流入
口25aを液体供給管40に接続するようにしている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a two-fluid nozzle according to the present invention will be described below with reference to the drawings. As shown in FIG.
The nozzle body 20 includes a base 21, a core 22, and a chip 23. In a state where the core 22 is connected to the tip of the base 21, a base-side cylindrical portion 23 a of the chip 23 is externally fitted and screwed into the base 2.
1, the core 22, and the chip 23 are integrally fixed. In the nozzle body 20 including the base 21, the core 22, and the tip 23, a flow path 25 is formed along the axis L from the base end side (X) to the front end jet side (Y). 25a is connected to the liquid supply pipe 40.

【0018】上記基部21に形成される流路25bは一
定径の長尺な流路で供給される液体の整流作用を行うよ
うにしている。上記流路25bと連通してコア22に形
成される流路25cは、その流入端側に、流路25bと
略同径のワーラー収容部26を設けている。このワーラ
ー収容部26内には、図2(A)(B)に示すX型ワー
ラー27を収容している。なお、図3および図4に示す
卍型ワーラーを用いてもよい。なお、ワーラーを基部と
別体とせず、基部と一体的に設けてもよい。
The flow path 25b formed in the base 21 performs a rectifying action on the liquid supplied through a long flow path having a constant diameter. The flow path 25c formed in the core 22 in communication with the flow path 25b is provided with a whirler accommodating portion 26 having substantially the same diameter as the flow path 25b on the inflow end side. The X-type whirler 27 shown in FIGS. 2A and 2B is housed in the whirler housing 26. Note that a swastika type whirler shown in FIGS. 3 and 4 may be used. The whirler may be provided integrally with the base, instead of being provided separately from the base.

【0019】上記ワーラー収容部26より噴射口側に向
かって順次縮径させて小径のオリフィス28を設け、該
オリフィス28の出口側に拡径した気体流入室29を設
けている。この気体流入室29の周壁には周方向に一定
ピッチで気体流入孔30を水平方向に貫通して設け、コ
ア22とチップ23との間に形成する気体環状流路31
に連通させている。また、コア22には、気体環状流路
31と連通する気体流入路32Aを軸芯方向に貫通して
形成し、基部21に連通して形成した気体流入路32B
と連続させている。この気体流入路32Bは圧搾空気供
給管41を連通し、よって、気体流入室29には所要圧
力の空気が外周より均一に気体が流入されるようにして
いる。
An orifice 28 having a small diameter is provided by sequentially reducing the diameter of the orifice 28 toward the injection port side, and a gas inflow chamber 29 having an enlarged diameter is provided at the outlet side of the orifice 28. A gas inflow hole 30 is provided in the peripheral wall of the gas inflow chamber 29 at a constant pitch in the circumferential direction so as to penetrate in the horizontal direction, and a gas annular flow path 31 formed between the core 22 and the chip 23.
Is communicated to. In the core 22, a gas inflow path 32A communicating with the gas annular flow path 31 is formed so as to penetrate in the axial direction, and a gas inflow path 32B formed in communication with the base 21 is formed.
And is continuous. The gas inflow passage 32B communicates with the compressed air supply pipe 41, so that air at a required pressure flows into the gas inflow chamber 29 uniformly from the outer periphery.

【0020】コア22とチップ23に、上記気体流入室
29と連通した気液混合室33を拡径して形成してい
る。さらに、チップ23には、気液混合室33の噴射口
側に段差34を介して縮径室35を設け、該縮径室35
の先端に円錐形状とした噴口部36を設け、噴口部36
の外壁37に多孔の噴射孔38を設けている。
A gas-liquid mixing chamber 33 communicating with the gas inflow chamber 29 is formed in the core 22 and the chip 23 so as to have a larger diameter. Further, the tip 23 is provided with a reduced diameter chamber 35 via a step 34 on the injection port side of the gas-liquid mixing chamber 33.
A conical orifice 36 is provided at the tip of the nozzle.
Is provided with a porous injection hole 38 on the outer wall 37 of the slab.

【0021】次に、上記構成のノズルの作用を説明す
る。流路25aの軸線に沿って供給される液体(本実施
形態では水)は、基部21の流路25aを通ってワーラ
ー27に達する。ワーラー27の羽根27aに液体が衝
突して、羽根27aにより旋回され、液体は旋回流とな
る。また、羽根27aに液体が衝突すると共に流路内周
面に衝突して、液体の水滴は微粒化される。
Next, the operation of the nozzle having the above configuration will be described. The liquid (water in the present embodiment) supplied along the axis of the flow path 25a reaches the whirler 27 through the flow path 25a of the base 21. The liquid collides with the blades 27a of the whirler 27 and is swirled by the blades 27a, so that the liquid forms a swirling flow. In addition, the liquid collides with the blades 27a and also collides with the inner peripheral surface of the flow path, whereby water droplets of the liquid are atomized.

【0022】上記ワーラー27により旋回流となった液
体はオリフィス28へと縮径されて流れ込み、オリフィ
ス28の出口から気体流入室29側に拡径して噴出され
る。このオリフィス28を通過することによって、水滴
は微粒化されて噴出される。
The swirling flow of the liquid by the whirler 27 is reduced in diameter and flows into the orifice 28, and is expanded from the outlet of the orifice 28 toward the gas inflow chamber 29 and is ejected. By passing through this orifice 28, water droplets are atomized and ejected.

【0023】気体流入室29に噴出された液体に対し
て、外周の気体流入孔30より流入する圧搾空気が衝突
混合する。この衝突混合により、主として外周部の粒径
の大きな水滴は小さい粒径の水滴となり、中心部の水滴
と略均等な水滴となる。ここで気液混合液となって、気
液混合室33へと流入し、拡径した気液混合室33内で
気体と液体との混合が加速され、気液が均一に混合す
る。
The compressed air flowing in from the gas inlet hole 30 on the outer periphery collides with the liquid jetted into the gas inlet chamber 29. By this collision mixing, mainly water droplets having a large particle diameter at the outer peripheral portion become water droplets having a small particle diameter, and become substantially equal to water droplets at the central portion. Here, the mixture becomes a gas-liquid mixture, flows into the gas-liquid mixing chamber 33, and the mixing of the gas and the liquid is accelerated in the expanded gas-liquid mixing chamber 33, whereby the gas-liquid is uniformly mixed.

【0024】気液混合室33より縮径室35へと流入す
るが、其の際、段部34に混合気液が衝突して、再度、
特に外周部の水滴が微粒化される。縮径室35より噴口
部36へと流入して、噴射孔38より微粒化された気液
混合ミズトが噴霧される。
The gas flows from the gas-liquid mixing chamber 33 into the reduced-diameter chamber 35. At this time, the gas-liquid mixture collides with the step portion 34, and again.
In particular, water droplets on the outer periphery are atomized. The gas flows from the reduced diameter chamber 35 into the injection port 36, and the atomized gas-liquid mixture is sprayed from the injection hole 38.

【0025】上記のように、ノズル本体20の軸線に沿
った流路25に供給された液体は、噴射孔38より噴射
されるまでに、まず、ワーラー27に衝突して旋回され
て微粒化されると共に中心流と外周流の水滴が均一化さ
れる。この旋回流がオリフィス28を通ることにより絞
られてオリフィス28の出口側で水滴が微粒化して噴出
される。このように、気体と混合されるまでに、液体は
ワーラーとオリフィスとにより微粒化されている。つい
で、オリフィス28から噴射された液体に対して、外周
より気体が流入して衝突混合されて、さらに、水滴が微
粒化される。ついで、気液混合室33で気液の混合の均
一化が図られ、縮径室35へ流入する時に段部34と衝
突して再度微粒化が図られ、さらに、噴口部36で多孔
の噴射孔38より噴射される時にも最終的に微粒化され
て噴射される。このように、液体に対して気体を衝突混
合して微粒化しているだけでなく、微粒化を図るための
多数の手段を併用しているため、従来提供されているノ
ズルと比較して、水滴の微粒化を達成でき、超微粒子を
噴霧することができる。
As described above, before the liquid supplied to the flow path 25 along the axis of the nozzle body 20 is ejected from the injection hole 38, the liquid first collides with the whirler 27 and is turned and atomized. In addition, water droplets in the central flow and the peripheral flow are made uniform. This swirling flow is throttled by passing through the orifice 28, and water droplets are atomized and ejected at the outlet side of the orifice 28. Thus, before being mixed with the gas, the liquid is atomized by the stirrer and the orifice. Then, a gas flows into the liquid ejected from the orifice 28 from the outer periphery and is impact-mixed, so that water droplets are further atomized. Then, the gas-liquid mixing chamber 33 achieves uniform mixing of gas and liquid. When the gas flows into the reduced diameter chamber 35, it collides with the stepped portion 34, so that the particles are again atomized. Even when the fuel is injected from the hole 38, the fuel is finally atomized and injected. As described above, since not only the gas is impact-mixed with the liquid to atomize the liquid, but also a large number of means for atomizing the liquid are used in combination, the water droplet is compared with the conventionally provided nozzle. Can be achieved, and ultrafine particles can be sprayed.

【0026】上記実施形態の二流体ノズルと、従来の図
9に示す二流体ノズルとを用いて、最大粒子径と気水比
との関係を実験した。粒子径の測定はノズルの噴射口よ
り1000mm離れた位置で測定した。其の結果は、図
5に示す通りであり、本実施形態のノズルでは、気水比
を150とすると最大粒子径を150μとすることが出
来たが、従来のノズルでは気水比を150とすると、最
大粒子径は220μであった。従来のノズルでは最大粒
子径を150μとするには、気水比を500以上にする
必要があると認められた。
Using the two-fluid nozzle of the above embodiment and the conventional two-fluid nozzle shown in FIG. 9, the relationship between the maximum particle diameter and the water / water ratio was tested. The particle diameter was measured at a position 1000 mm away from the injection port of the nozzle. The result is as shown in FIG. 5. In the nozzle of the present embodiment, the maximum particle diameter could be set to 150 μ when the air-water ratio was 150, but in the conventional nozzle, the air-water ratio was 150. As a result, the maximum particle size was 220 μ. In the conventional nozzle, it has been recognized that the air-water ratio needs to be 500 or more in order to make the maximum particle diameter 150 μm.

【0027】上記実験結果より、本発明のノズルを用い
ると、圧搾空気量を増加させることなく最大粒子径を所
要の150μ以下とすることができ、従来のノズルより
圧搾空気使用量を減少でき、それだけ、ランニングコス
トを低下できることが立証された。
From the above experimental results, the use of the nozzle of the present invention makes it possible to reduce the maximum particle size to 150 μm or less without increasing the amount of compressed air, and to reduce the amount of compressed air used compared to the conventional nozzle. It has been proved that running costs can be reduced accordingly.

【0028】また、上記実施形態のノズルと従来の図9
に示すノズルとを用いて、最大粒子径と噴霧流量との関
係を実験した。粒子径の測定はノズルの噴射口より10
00mm離れた位置で測定した。その結果は図6に示す
通りであり、本発明のノズルでは噴霧流量を900リッ
トル/時間としても最大粒子径を150μとすることが
出来たが、従来のノズルでは最大粒子径を150μとす
るには噴霧流量を300リットル/時間以下とする必要
があることが確認できた。
The nozzle of the above embodiment and the conventional nozzle shown in FIG.
The relationship between the maximum particle size and the spray flow rate was tested using the nozzle shown in FIG. Measurement of particle size is 10
The measurement was performed at a position separated by 00 mm. The results are as shown in FIG. 6. In the nozzle of the present invention, the maximum particle diameter could be made 150 μ even when the spray flow rate was 900 liter / hour, but in the conventional nozzle, the maximum particle diameter was made 150 μ. Confirmed that the spray flow rate needed to be 300 liters / hour or less.

【0029】上記実験結果より、本発明のノズルを用い
ると、噴霧流量を従来のノズルの3倍としても最大粒子
径を150μとすることができ、粒子径を増大させるこ
となく噴霧流量を増加でき、冷却効率を高めることがで
きることが立証された。
From the above experimental results, when the nozzle of the present invention is used, even if the spray flow rate is three times that of the conventional nozzle, the maximum particle diameter can be 150 μm, and the spray flow rate can be increased without increasing the particle diameter. It has been proved that the cooling efficiency can be increased.

【0030】図7は他の実施形態を示し、気体流入室2
9の外周に設ける気体流入孔を流路の軸線方向に2段に
設け、気体流入孔30A、30Bを設けている。これら
二段の気体流入孔30A、30Bは前記実施形態と同様
に、それぞれ周方向に一定のピッチで複数設けている。
このように、気体流入孔を周方向に一定ピッチで複数個
設けるとともに、軸線方向にも複数段設けて、気体を液
体へと流入させると、気体と液体との衝突混合をより促
進して、気液の混合が促進できる。
FIG. 7 shows another embodiment, in which the gas inflow chamber 2 is provided.
9 are provided in two stages in the axial direction of the flow path, and gas inflow holes 30A and 30B are provided. A plurality of these two-stage gas inlet holes 30A and 30B are provided at a constant pitch in the circumferential direction, similarly to the above-described embodiment.
In this way, a plurality of gas inlet holes are provided at a constant pitch in the circumferential direction, and a plurality of gas inlet holes are also provided in the axial direction, and when the gas flows into the liquid, the collision mixing of the gas and the liquid is further promoted, Gas-liquid mixing can be promoted.

【0031】[0031]

【発明の効果】以上の説明より明らかなように、本発明
の二流体ノズルによれば、液体を気体と混合するまで
に、ワーラーとオリフィスとに通して二段階で水滴を微
粒化しており、その後、気体と衝突混合させているた
め、従来の衝突混合だけで水滴を微粒化する場合と比較
して、より微粒化を促進できる。
As is apparent from the above description, according to the two-fluid nozzle of the present invention, before the liquid is mixed with the gas, the water droplet is atomized in two stages through the stirrer and the orifice. Thereafter, since the particles are collision-mixed with the gas, the atomization can be further promoted as compared with the case where water droplets are atomized only by the conventional collision mixing.

【0032】さらに、気体を液体に衝突混合して生成し
た混合気液を流路段部に衝突混合させることにより、再
度、水滴の微粒化を図ることができる。
Further, by impinging and mixing the gas-liquid mixture produced by impinging and mixing the gas with the liquid on the step portion of the flow path, the water droplets can be atomized again.

【0033】このように、従来のノズルに比して水滴の
微粒化が図れるため、高温ガスの冷却用として噴霧した
場合、焼却灰に濡れを発生させず、かつ、空気集塵機の
濡れに伴う交換回数を減少でき、メンテナンスコストを
低下させることができる。
As described above, since the water droplets can be atomized as compared with the conventional nozzle, when sprayed for cooling a high-temperature gas, the incineration ash does not cause wetting, and replacement due to the wetting of the air dust collector occurs. The number of times can be reduced, and the maintenance cost can be reduced.

【0034】さらに、混合する圧搾空気量を増加させる
ことなく、所要の超微粒子を得ることが出来き、よっ
て、空気使用量を減少してランニングコストの低下を図
ることができる。さらにまた、噴霧流量を増加しても所
要の超微粒子を得ることができるために、噴霧流量を増
加して冷却効率を高めることができる。即ち、高温ガス
の冷却用として用いた場合に、急激に所要温度まで低下
させることができ、蒸発時間を短くできるため、結果的
に冷却塔の高さを低くでき、イニシャルコストも低減す
ることができる。
Furthermore, the required ultrafine particles can be obtained without increasing the amount of compressed air to be mixed, so that the amount of air used can be reduced and the running cost can be reduced. Furthermore, since the required ultrafine particles can be obtained even if the spray flow rate is increased, the cooling efficiency can be increased by increasing the spray flow rate. That is, when used for cooling a high-temperature gas, the temperature can be rapidly lowered to a required temperature, and the evaporation time can be shortened. As a result, the height of the cooling tower can be reduced, and the initial cost can be reduced. it can.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の二流体ノズルの実施形態を示す断面
図である。
FIG. 1 is a sectional view showing an embodiment of a two-fluid nozzle of the present invention.

【図2】 (A)(B)は上記ノズルに用いているワー
ラーの図面である。
FIGS. 2A and 2B are drawings of a whirler used for the nozzle.

【図3】 (A)(B)は他のワーラーを示す図面であ
る。
FIGS. 3A and 3B are views showing another whirler. FIG.

【図4】 (A)(B)は他のワーラーを示す図面であ
る。
FIGS. 4A and 4B are views showing another whirler.

【図5】 本発明のノズルと従来例のノズルとにおい
て、気水比と粒子径との関係を比較実験した結果を示す
線図である。
FIG. 5 is a diagram showing the results of a comparative experiment of the relationship between the air-water ratio and the particle diameter between the nozzle of the present invention and the nozzle of the conventional example.

【図6】 本発明のノズルと従来例のノズルとにおい
て、噴霧流量と粒子径との関係を比較実験した結果を示
す線図である。
FIG. 6 is a diagram showing the results of a comparative experiment of the relationship between the spray flow rate and the particle diameter between the nozzle of the present invention and the nozzle of the conventional example.

【図7】 本発明の他の実施形態を示す要部断面図であ
る。
FIG. 7 is a sectional view of a main part showing another embodiment of the present invention.

【図8】 従来例のノズルの断面図である。FIG. 8 is a cross-sectional view of a conventional nozzle.

【図9】 他の従来例のノズルの断面図である。FIG. 9 is a sectional view of another conventional nozzle.

【符号の説明】[Explanation of symbols]

20 ノズル本体 21 基部 22 コア 23 チップ 25 流路 27 ワーラー 28 オリフィス 29 気体流入室 30 気体流入孔 31 気体流入路 33 気液混合室 34 段部 35 縮径室 36 噴口部 38 噴射孔 40 液体供給管 41 圧搾空気供給管 Reference Signs List 20 Nozzle body 21 Base 22 Core 23 Chip 25 Flow path 27 Whirler 28 Orifice 29 Gas inflow chamber 30 Gas inflow hole 31 Gas inflow path 33 Gas-liquid mixing chamber 34 Step 35 Reduced diameter chamber 36 Injection port 38 Injection hole 40 Liquid supply pipe 41 Compressed air supply pipe

フロントページの続き Fターム(参考) 4F033 QA04 QB02Y QB03X QB12Y QB15X QD04 QD15 QD16 QE21 QF23 Continued on the front page F term (reference) 4F033 QA04 QB02Y QB03X QB12Y QB15X QD04 QD15 QD16 QE21 QF23

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 ノズル本体の基端側より先端噴射側にか
けて軸線に沿って流路を形成し、該流路の流入口に液体
供給管を接続すると共に、該流路にワーラーとオリフィ
スとを介設し、これらワーラーとオリフィスとの配置位
置より噴射側の流路の周壁に、周方向に間隔をあけて気
体流入孔を設けると共にこれら気体流入孔の外端と連通
する気体環状流路を設け、かつ、該気体環状流路をノズ
ル本体に形成した気体流入通路と連通させ、軸線に沿っ
て流入する液体をワーラーで旋回させると共にオリフィ
スで絞った後に、外周より流入する気体と衝突混合さ
せ、該混合流体を先端噴射口より噴霧する構成としてい
る二流体ノズル。
1. A flow path is formed along an axis from a base end side of a nozzle body to a front end injection side, a liquid supply pipe is connected to an inlet of the flow path, and a whirler and an orifice are connected to the flow path. A gas inlet hole is provided at the circumferential wall of the flow path on the injection side from the arrangement position of these whirlers and orifices at intervals in the circumferential direction, and a gas annular flow path communicating with the outer ends of the gas inlet holes is provided. And, the gas annular flow path is communicated with a gas inflow passage formed in the nozzle body, and the liquid flowing along the axis is swirled by a stirrer and squeezed by an orifice. , A two-fluid nozzle configured to spray the mixed fluid from a tip injection port.
【請求項2】 上記ワーラーは流入口側に配置すると共
に、上記オリフィスはワーラーよりも噴射口側に配置
し、かつ、オリフィスの出口側の流路内壁に上記気体流
入孔を設けている請求項1に記載の二流体ノズル。
2. The gas turbine according to claim 1, wherein the whirler is arranged on the inflow side, the orifice is arranged on the injection port side with respect to the whirler, and the gas inflow hole is provided on the inner wall of the flow path on the outlet side of the orifice. 2. The two-fluid nozzle according to 1.
【請求項3】 上記気体流入孔を設けた位置から先端噴
射口までの流路の間に拡径した気液混合室を設け、該気
液混合室の先端側に段差を設けて縮径室を連続させ、該
縮径室の先端に円錐形状とした噴口部を設け、該噴口部
外壁のノズルヘッドに多孔の噴射孔を設けている請求項
1または請求項2に記載の二流体ノズル。
3. A reduced-diameter chamber having a gas-liquid mixing chamber having an enlarged diameter provided between a flow path from the position where the gas inlet hole is provided to a tip injection port, and a step provided at a front end side of the gas-liquid mixing chamber. 3. The two-fluid nozzle according to claim 1, wherein a conical injection port is provided at an end of the reduced diameter chamber, and a porous injection hole is provided in a nozzle head on an outer wall of the nozzle port. 4.
JP28176898A 1998-10-02 1998-10-02 Two-fluid nozzle Expired - Lifetime JP4276311B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28176898A JP4276311B2 (en) 1998-10-02 1998-10-02 Two-fluid nozzle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28176898A JP4276311B2 (en) 1998-10-02 1998-10-02 Two-fluid nozzle

Publications (2)

Publication Number Publication Date
JP2000107651A true JP2000107651A (en) 2000-04-18
JP4276311B2 JP4276311B2 (en) 2009-06-10

Family

ID=17643711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28176898A Expired - Lifetime JP4276311B2 (en) 1998-10-02 1998-10-02 Two-fluid nozzle

Country Status (1)

Country Link
JP (1) JP4276311B2 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000062910A2 (en) * 1999-04-16 2000-10-26 Peter Holmes Ellmers A venturi feed device and fluid mixing device
JP2002159889A (en) * 2000-11-24 2002-06-04 Ikeuchi:Kk Two-fluid nozzle
JP2005131486A (en) * 2003-10-29 2005-05-26 Kyoritsu Gokin Co Ltd Spray nozzle and spraying method
JP2006110611A (en) * 2004-10-18 2006-04-27 Nippon Steel Corp Mist cooling device of hot-rolled steel plate
JP2006167601A (en) * 2004-12-16 2006-06-29 Ikeuchi:Kk Two-fluid nozzle
JP2006167599A (en) * 2004-12-16 2006-06-29 Ikeuchi:Kk Two-fluid nozzle
JP2007319853A (en) * 2006-05-02 2007-12-13 Kyoritsu Gokin Co Ltd Two-fluid nozzle and spray method using the two-fluid nozzle
JP2008086637A (en) * 2006-10-04 2008-04-17 Shin Meiwa Ind Co Ltd Fire extinguishing nozzle
KR101232340B1 (en) 2012-08-13 2013-02-13 이영오 Airfog spray apparatus
KR101389733B1 (en) * 2013-10-01 2014-04-28 훈 최 Housing for injecting nozzle and spray device using the same
JP2014122728A (en) * 2012-12-20 2014-07-03 Daikin Ind Ltd Outdoor unit of air conditioner
CN104368456A (en) * 2013-08-12 2015-02-25 三星电机株式会社 Nozzle tip
CN104384037A (en) * 2014-10-28 2015-03-04 亿川科技(成都)有限责任公司 Two-fluid atomization nozzle
JP2015100720A (en) * 2013-11-21 2015-06-04 スプレーイングシステムスジャパン株式会社 Air-spraying microbubble nozzle
JP2016087575A (en) * 2014-11-07 2016-05-23 株式会社共立合金製作所 Spray nozzle
JP2016163034A (en) * 2015-03-05 2016-09-05 株式会社いけうち Two-fluid nozzle
CN107649303A (en) * 2017-10-27 2018-02-02 山东佩森环保科技股份有限公司 A kind of high efficiency nozzle of ship desulphurization system
CN109513531A (en) * 2018-12-29 2019-03-26 重庆博奥镁铝金属制造有限公司 A kind of new coating nozzle
JP2019141791A (en) * 2018-02-21 2019-08-29 パナソニックIpマネジメント株式会社 Spray device
KR102177684B1 (en) * 2020-01-08 2020-11-11 이지민 Two fluid nozzle and nozzle assembly comprising the same
KR20230128823A (en) * 2022-02-28 2023-09-05 스프레이시스템코리아 유한회사 Twin fluid atomizing nozzle

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101043005B1 (en) 2009-06-01 2011-06-21 웰이앤씨 주식회사 Automatic Cleaning Apparatus
CN101927339B (en) * 2010-09-07 2012-05-09 宁波宝迪汽车部件有限公司 Cooling joint for casting mold
DE102013203339A1 (en) * 2013-02-28 2014-08-28 Lechler Gmbh Two-fluid nozzle and method for spraying a liquid-gas mixture

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000062910A3 (en) * 1999-04-16 2001-01-11 Peter Holmes Ellmers A venturi feed device and fluid mixing device
WO2000062910A2 (en) * 1999-04-16 2000-10-26 Peter Holmes Ellmers A venturi feed device and fluid mixing device
JP2002159889A (en) * 2000-11-24 2002-06-04 Ikeuchi:Kk Two-fluid nozzle
JP2005131486A (en) * 2003-10-29 2005-05-26 Kyoritsu Gokin Co Ltd Spray nozzle and spraying method
JP2006110611A (en) * 2004-10-18 2006-04-27 Nippon Steel Corp Mist cooling device of hot-rolled steel plate
JP2006167601A (en) * 2004-12-16 2006-06-29 Ikeuchi:Kk Two-fluid nozzle
JP2006167599A (en) * 2004-12-16 2006-06-29 Ikeuchi:Kk Two-fluid nozzle
JP2007319853A (en) * 2006-05-02 2007-12-13 Kyoritsu Gokin Co Ltd Two-fluid nozzle and spray method using the two-fluid nozzle
JP2008086637A (en) * 2006-10-04 2008-04-17 Shin Meiwa Ind Co Ltd Fire extinguishing nozzle
KR101232340B1 (en) 2012-08-13 2013-02-13 이영오 Airfog spray apparatus
JP2014122728A (en) * 2012-12-20 2014-07-03 Daikin Ind Ltd Outdoor unit of air conditioner
CN104368456A (en) * 2013-08-12 2015-02-25 三星电机株式会社 Nozzle tip
KR101389733B1 (en) * 2013-10-01 2014-04-28 훈 최 Housing for injecting nozzle and spray device using the same
WO2015050306A1 (en) * 2013-10-01 2015-04-09 최훈 Spray-nozzle housing and two-fluid spraying device using same
JP2015100720A (en) * 2013-11-21 2015-06-04 スプレーイングシステムスジャパン株式会社 Air-spraying microbubble nozzle
CN104384037A (en) * 2014-10-28 2015-03-04 亿川科技(成都)有限责任公司 Two-fluid atomization nozzle
JP2016087575A (en) * 2014-11-07 2016-05-23 株式会社共立合金製作所 Spray nozzle
JP2016163034A (en) * 2015-03-05 2016-09-05 株式会社いけうち Two-fluid nozzle
CN107649303A (en) * 2017-10-27 2018-02-02 山东佩森环保科技股份有限公司 A kind of high efficiency nozzle of ship desulphurization system
JP2019141791A (en) * 2018-02-21 2019-08-29 パナソニックIpマネジメント株式会社 Spray device
CN109513531A (en) * 2018-12-29 2019-03-26 重庆博奥镁铝金属制造有限公司 A kind of new coating nozzle
CN109513531B (en) * 2018-12-29 2023-09-12 重庆博奥镁铝金属制造有限公司 Paint nozzle
KR102177684B1 (en) * 2020-01-08 2020-11-11 이지민 Two fluid nozzle and nozzle assembly comprising the same
KR20230128823A (en) * 2022-02-28 2023-09-05 스프레이시스템코리아 유한회사 Twin fluid atomizing nozzle
KR102701632B1 (en) * 2022-02-28 2024-09-02 스프레이시스템코리아 유한회사 Twin fluid atomizing nozzle

Also Published As

Publication number Publication date
JP4276311B2 (en) 2009-06-10

Similar Documents

Publication Publication Date Title
JP4276311B2 (en) Two-fluid nozzle
US4343434A (en) Air efficient atomizing spray nozzle
JP4049893B2 (en) Pressure atomizing nozzle
US8820663B2 (en) Pressurized air assisted spray nozzle assembly
JP6487041B2 (en) Atomizer nozzle
US5697553A (en) Streaked spray nozzle for enhanced air/fuel mixing
JPH0994494A (en) Atomizer nozzle for internal mixed gas
US5868321A (en) Enhanced efficiency atomizing and spray nozzle
JPH04271860A (en) Cone-shaped air atomizing nozzle assembly
JP3382573B2 (en) Two-fluid nozzle
JP2004216320A (en) Spray nozzle
JP4434690B2 (en) Spray nozzle and spray method
JP2002159889A (en) Two-fluid nozzle
US4364522A (en) High intensity air blast fuel nozzle
JP6356577B2 (en) Spray nozzle
US5269495A (en) High-pressure atomizing nozzle
US5931387A (en) Liquid atomizer
JP3382320B2 (en) Two-fluid nozzle
US4063686A (en) Spray nozzle
JP2003220354A (en) Spray nozzle
JPS5842041Y2 (en) Sewage spray nozzle
JP4266239B1 (en) Two-fluid atomizing nozzle
CN214763037U (en) Medium-low pressure fine water mist spray head with strong diffusibility
JP2547243Y2 (en) Two-fluid injection nozzle
JP2606318Y2 (en) Two-fluid spray nozzle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090210

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090306

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120313

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150313

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term