JPS63107061A - Manufacture of semiconductor memory - Google Patents

Manufacture of semiconductor memory

Info

Publication number
JPS63107061A
JPS63107061A JP61250659A JP25065986A JPS63107061A JP S63107061 A JPS63107061 A JP S63107061A JP 61250659 A JP61250659 A JP 61250659A JP 25065986 A JP25065986 A JP 25065986A JP S63107061 A JPS63107061 A JP S63107061A
Authority
JP
Japan
Prior art keywords
groove
film
transistor
capacitor
channel region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61250659A
Other languages
Japanese (ja)
Inventor
Akihiro Nitayama
仁田山 晃寛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP61250659A priority Critical patent/JPS63107061A/en
Publication of JPS63107061A publication Critical patent/JPS63107061A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/01Manufacture or treatment
    • H10B12/02Manufacture or treatment for one transistor one-capacitor [1T-1C] memory cells
    • H10B12/03Making the capacitor or connections thereto
    • H10B12/038Making the capacitor or connections thereto the capacitor being in a trench in the substrate
    • H10B12/0383Making the capacitor or connections thereto the capacitor being in a trench in the substrate wherein the transistor is vertical

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To eliminate completely a leak current between transistors of neigh bouring cells, and control the malfunction due to interference between the cells, by forming a transistor of TTC structure in the inside of a groove, and separat ing completely a transistor from a silicon substrate. CONSTITUTION:On a semiconductor substrate 1, an insulative film 2 is formed, this insulative film 2 is subjected to patterning in the form of a groove, a groove 4 is formed on the semiconductor substrate 1 by applying the film to a mask, a capacitor insulative film 5 is formed on the insidewall of the groove 4, and capacitor electrodes 6 and 7 are burried. Further, a gate electrode material is formed on the insidewall of the groove 4, and at least a part 13 of the capaci tor electrodes 6 and 7 is crystallized, and from this part a channel region 4 is formed by epitaxial growth. Then, a bit wire 15 connecting to the channel region 4 is formed. For example, after a gate oxide film 11 is formed, a surface 13 of the capacitor electrodes 6 and 7 is recrystallized by electron beam annealing or laser beam annealing, and a silicon film 14 which serves as the channel region of a transistor is formed by epitaxial growth applying the recrys tallized part as a seed.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、キャパシタに蓄積された電荷により情報記憶
をおこなう、1トランジスタ/1キヤパシタのメモリセ
ル構造をもつ半導体記m装■の製造方法に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a semiconductor memory device having a one-transistor/one-capacitor memory cell structure that stores information using charges accumulated in a capacitor. (2) Concerning the manufacturing method.

(従来の技術) 一般にダイナミックRAM (dRAM)のメモリセル
は、情報を電荷の形で保持するMOSキャパシタと、そ
の電荷を外部回路とやりとりするためのスイッチングM
OSトランジスタにより構成されている。dRAHの大
容量化が進むにつれて、一つのメモリセルの占有面積は
必然的に減少の一途を辿っていて、例えば16Mbit
 dRAHではセル面積は、数−2になると予測される
。このような小さな面積に、充分な情報電荷担を確保で
きる面積のキャ    −バシタと、正しいスイッチン
グ動作をするMOSトランジスタを形成するために、最
近半導体基板に溝を掘り、その内側面にキャパシタとト
ランジスタを形成する方法がテキサス・インスツルメン
ト社から提案された(TTC(トレンチ・トランジスタ
セル)第4図参照)。このセル構造は、ワード線とビッ
ト線の交点に位置する溝に、キャパシタとトランジスタ
全体がつくり込まれている構造で、クロスポイント型セ
ル構造とよばれている。
(Prior Art) In general, a dynamic RAM (dRAM) memory cell consists of a MOS capacitor that holds information in the form of charge, and a switching MOS capacitor that exchanges the charge with an external circuit.
It is composed of OS transistors. As the capacity of dRAH continues to increase, the area occupied by one memory cell is inevitably decreasing; for example, 16 Mbit
In dRAH, the cell area is predicted to be several -2. In order to form a capacitor large enough to carry sufficient information charge in such a small area and a MOS transistor that performs proper switching operations, we have recently dug trenches in the semiconductor substrate and placed capacitors and transistors on the inner surface of the trenches. A method for forming a TTC (Trench Transistor Cell) was proposed by Texas Instruments (see FIG. 4). This cell structure is called a cross-point cell structure, in which the entire capacitor and transistor is built into a trench located at the intersection of a word line and a bit line.

この構造は高集積化の一つの研究の形であり有望と考え
られる。
This structure is considered to be a promising form of research for high integration.

しかしながら、このセル構造を微細化すると、隣り合う
セルのキャパシタ同志は完全に分離されていて問題ない
が、第4図にも示したように隣り合うセルのトランジス
タのチャネル18同志の間、及び埋込みコンタクト(b
uried contact) 17同志の間は、Si
基板を通して近接していて、リーク電流によりお互いに
干渉し合う状態にあり、隣りのセルの情報及び動作によ
り、セルの誤動作がもたらされる。したがって現在は、
素子弁wi領域2を形成し、チャネル18同志及びbu
ried contact17同志のキヨリを充分にと
っているが、113Mbit又はそれ以上のa!1!積
化を考えた場合、この干渉は微細化の障害となる。
However, when this cell structure is miniaturized, the capacitors of adjacent cells are completely separated and there is no problem, but as shown in FIG. Contact (b
(uried contact) Between 17 comrades, Si
They are close to each other through the substrate and interfere with each other due to leakage current, and information and operations of neighboring cells cause malfunctions of the cells. Therefore, currently,
Form the element valve wi region 2, channel 18 comrades and bu
ried contact 17 I have enough information from my comrades, but it is 113Mbit or more. 1! When considering integration, this interference becomes an obstacle to miniaturization.

(発明が解決しようとする問題点) 以上のように、TTC@造では、隣り合うセルのトラン
ジスタが完全に分離されていないため、干渉しないよう
にセル間の距離を充分にとる必要があり、これが微細化
の障害になるという問題があった。
(Problems to be Solved by the Invention) As described above, in TTC @ construction, the transistors of adjacent cells are not completely separated, so it is necessary to maintain a sufficient distance between the cells to prevent interference. There was a problem that this became an obstacle to miniaturization.

本発明は、この様な問題を解決した半導体記憶装置の製
造方法を提供することを目的とする。
An object of the present invention is to provide a method for manufacturing a semiconductor memory device that solves these problems.

(発明の構成〕 (問題点を解決するための手段) 以上目的を達成するために、本発明においては、TTC
構造のトランジスタを溝の内部に形成し、トランジスタ
とシリコン基板とを完全に分離することを特徴とするも
のでおる。
(Structure of the Invention) (Means for Solving the Problems) In order to achieve the above objects, the present invention provides TTC
The structure is characterized in that the transistor is formed inside the trench, and the transistor and the silicon substrate are completely separated.

(作 用) 本発明の方法によれば、TTC構造のトランジスタを溝
の内部に形成し、絶縁膜を介して隣りのセルのトランジ
スタ及びコンタクトと完全に分離することによって、隣
接セルのトランジスタ間のリーク電流を完全に除去し、
セル間の干渉による誤動作を抑制することが可能となる
(Function) According to the method of the present invention, a transistor with a TTC structure is formed inside a trench and is completely separated from the transistor and contact of an adjacent cell through an insulating film. Completely eliminates leakage current,
It becomes possible to suppress malfunctions due to interference between cells.

(実施例) 以下、本発明の実施例を図面を参照して説明する。第1
図@〜0)は、一実施例の製造工程を示す断面図である
。第2図は仕上り上面図を示している。第3図は第2図
の線分8B’に沿う仕上り断面図を示している。第1図
(2)に示すように高濃度p型3i基板1上全面に′、
1u程度のシリコン酸化膜2を熱酸化法またはCVD法
により形成し、その上にレジスト3を塗布し、パターニ
ングする。
(Example) Hereinafter, an example of the present invention will be described with reference to the drawings. 1st
Figures @~0) are cross-sectional views showing the manufacturing process of one embodiment. FIG. 2 shows a finished top view. FIG. 3 shows a finished sectional view along line segment 8B' in FIG. As shown in FIG. 1(2), the entire surface of the highly doped p-type 3i substrate 1 is
A silicon oxide film 2 of about 1 μm is formed by thermal oxidation or CVD, and a resist 3 is applied thereon and patterned.

これをマスクに溝4をシリコン基板の表面から数−に達
する深さまで反応性イオンエツチングにより形成する。
Using this as a mask, grooves 4 are formed by reactive ion etching to a depth of several inches from the surface of the silicon substrate.

次に第1図臼に示すようにキャパシタ酸化膜として、熱
酸化法によりシリコン酸化1115を形成する。
Next, as shown in FIG. 1, silicon oxide 1115 is formed as a capacitor oxide film by thermal oxidation.

次に第1図(C)に示すように、キャパシタ電極となる
リンドープ多結晶シリコン膜6とノンドープ多結晶シリ
コン膜7を全面に堆積し、第1図1に示すようにシリコ
ン基板表面とほぼ同じ深さまで反応性イオンエツチング
によりエツチングして、キャパシタ電極を形成する。
Next, as shown in FIG. 1(C), a phosphorus-doped polycrystalline silicon film 6 and a non-doped polycrystalline silicon film 7, which will become capacitor electrodes, are deposited on the entire surface, and as shown in FIG. Etch to depth using reactive ion etching to form capacitor electrodes.

次に第1図(e)に示すように熱酸化によりキャパシタ
電極と、・トランジスタのゲート電極とを分離絶縁する
ための、シリコン酸化膜8,9を形成した後、ゲート材
料のリンドープ多結晶シリコン膜10をCVD法により
全面に堆積して、反応性イオンエツチングにより第1図
(わに示すように溝4の内壁にだけ多結晶シリコンli
o’ を残し、ゲート電極とする。
Next, as shown in FIG. 1(e), silicon oxide films 8 and 9 are formed by thermal oxidation to separate and insulate the capacitor electrode and the gate electrode of the transistor, and then the phosphorus-doped polycrystalline silicon of the gate material is formed. A film 10 is deposited on the entire surface by the CVD method, and polycrystalline silicon is etched only on the inner wall of the trench 4 by reactive ion etching as shown in FIG.
O' is left as a gate electrode.

次に、熱酸化法によりゲート酸化膜となるシリコン酸化
膜11を形成する(第1図ω参照)。次にキャパシタ電
極6,7上のシリコン酸化膜12を反応性イオンエツチ
ング法により除去した後、第1図(ハ)に示すようにキ
ャパシタ電極の表面13を電子ビームアニールまたはレ
ーザアニール等により再結晶化する。この部分を種にし
てトランジスタのチャネル領域となるシリコンll11
4をエビ成長させる(第1図(υ参照)。
Next, a silicon oxide film 11 which will become a gate oxide film is formed by a thermal oxidation method (see ω in FIG. 1). Next, after removing the silicon oxide film 12 on the capacitor electrodes 6 and 7 by reactive ion etching, the surface 13 of the capacitor electrode is recrystallized by electron beam annealing or laser annealing as shown in FIG. become Using this part as a seed, the silicon ll11 becomes the channel region of the transistor.
4 to grow shrimp (see Figure 1 (υ)).

次に、ビット線とゲートとの層間絶縁膜を充分な厚さに
するため熱酸化を行い、シリコン酸化膜11を厚くし、
シリコン酸化[11’を形成し、ビット線とのコンタク
トをとるためエビ膜14上にできた薄いシリコン酸化膜
11′ をエツチング除去する(第1図0.(つ参照)
Next, in order to make the interlayer insulating film between the bit line and the gate sufficiently thick, thermal oxidation is performed to thicken the silicon oxide film 11.
A silicon oxide film 11' is formed, and the thin silicon oxide film 11' formed on the shrimp film 14 is removed by etching in order to make contact with the bit line (see Figure 1).
.

次に、全面にリンドープ多結晶シリコン膜15を堆積し
、エピl[114と直接のコンタクトをとることにより
n型拡散層16が形成される。ビット線のパターニング
をすることにより工程が終了する。トランジスタは拡散
1116を介してビット線15と接続することになる。
Next, a phosphorus-doped polycrystalline silicon film 15 is deposited over the entire surface, and an n-type diffusion layer 16 is formed by making direct contact with the epitaxial layer 114. The process is completed by patterning the bit lines. The transistor will be connected to bit line 15 via diffusion 1116.

各セルのゲート電極10’は第1図(e)の工程の前に
溝4の間のシリコン酸化膜2をエツチングし、その後の
工程で多結晶シリコン膜が埋設されることにより形成さ
れる多結晶シリコン膜10″(第2図、第3図参照)、
により接続され、ワード線を形成する。
The gate electrode 10' of each cell is formed by etching the silicon oxide film 2 between the trenches 4 before the process shown in FIG. Crystalline silicon film 10″ (see Figures 2 and 3),
are connected to form a word line.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、クロスポイント型のセル構造において
、各セルの、キャパシタ電極及びトランジスタが′溝の
内部に形成され、セルの周囲に絶縁膜が形成されている
ことにより、隣接セル同志は完全に分離されている。リ
ーク電流及びカップリングによる隣接セルからの擾乱を
全くうけない非常に動作の安定な集積度の高いセル構造
が可゛能となる。
According to the present invention, in a cross-point cell structure, the capacitor electrode and transistor of each cell are formed inside the groove, and the insulating film is formed around the cell, so that adjacent cells are completely isolated from each other. separated into A highly integrated cell structure with very stable operation that is completely free from disturbances from adjacent cells due to leakage current and coupling becomes possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の製造工程を示す断面図、第
2図は本発明の一実施例によって得られたセルの上面図
、第3図は第1図と垂直な方向の断面図(第2図の線分
A−A’に沿う断面図)、第4図は従来例を示す断面図
である。 1・・・高濃度p型S1基板 2・・・シリコン酸化膜  3・・・レジスト4・・・
溝        5・・・シリコン酸化膜6・・・リ
ンドープ多結晶シリコン膜 7・・・ノンドープ多結晶シリコン膜 8・・・シリコン酸化膜  9・・・シリコン酸化膜1
0、10’ 、 10”・・・多結晶シリコン膜11、
11’ 、 11”・・・シリコン酸化膜12・・・シ
リコン酸化′I!A13・・・再結晶化領域14・・・
エビ成長シリコン膜 15・・・リンドープ多結晶シリコン膜16・・・n型
拡散層17・・・埋込みコンタクト18・・・縦型トラ
ンジスタのチャネル領域19・・・拡散層 代理人 弁理士 則 近 憲 佑 同    竹 花 喜久男 第1図
FIG. 1 is a sectional view showing the manufacturing process of an embodiment of the present invention, FIG. 2 is a top view of a cell obtained by an embodiment of the present invention, and FIG. 3 is a cross section taken in a direction perpendicular to FIG. 1. (a sectional view taken along line segment AA' in FIG. 2) and FIG. 4 are sectional views showing a conventional example. 1...High concentration p-type S1 substrate 2...Silicon oxide film 3...Resist 4...
Groove 5...Silicon oxide film 6...Phosphorus-doped polycrystalline silicon film 7...Non-doped polycrystalline silicon film 8...Silicon oxide film 9...Silicon oxide film 1
0, 10', 10''...polycrystalline silicon film 11,
11', 11''...Silicon oxide film 12...Silicon oxide 'I!A13...Recrystallized region 14...
Shrimp-grown silicon film 15...Phosphorus-doped polycrystalline silicon film 16...N-type diffusion layer 17...Buried contact 18...Vertical transistor channel region 19...Diffusion layer agent Patent attorney Nori Chika Ken Yudo Takehana Kikuo Figure 1

Claims (1)

【特許請求の範囲】[Claims]  半導体基板の上に絶縁膜を形成し、該絶縁膜を溝形状
にパターニングし、これをマスクに半導体基板に溝を形
成する工程と、該溝の内壁にキャパシタ絶縁膜を形成し
、キャパシタ電極を埋設する工程と、さらにゲート電極
材料を前記溝の内壁に形成する工程と、前記キャパシタ
電極の少なくとも一部を結晶化し、この領域からエピタ
キシャル成長によつてチャネル領域を形成する工程と、
該チャネル領域に接続するビット線を形成する工程とを
備えたことを特徴とする半導体記憶装置の製造方法。
A process of forming an insulating film on a semiconductor substrate, patterning the insulating film into a groove shape, forming a groove in the semiconductor substrate using this as a mask, forming a capacitor insulating film on the inner wall of the groove, and forming a capacitor electrode. further forming a gate electrode material on the inner wall of the trench; crystallizing at least a portion of the capacitor electrode and forming a channel region from this region by epitaxial growth;
A method of manufacturing a semiconductor memory device, comprising the step of forming a bit line connected to the channel region.
JP61250659A 1986-10-23 1986-10-23 Manufacture of semiconductor memory Pending JPS63107061A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61250659A JPS63107061A (en) 1986-10-23 1986-10-23 Manufacture of semiconductor memory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61250659A JPS63107061A (en) 1986-10-23 1986-10-23 Manufacture of semiconductor memory

Publications (1)

Publication Number Publication Date
JPS63107061A true JPS63107061A (en) 1988-05-12

Family

ID=17211136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61250659A Pending JPS63107061A (en) 1986-10-23 1986-10-23 Manufacture of semiconductor memory

Country Status (1)

Country Link
JP (1) JPS63107061A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5656544A (en) * 1992-03-12 1997-08-12 International Business Machines Corporation Process for forming a polysilicon electrode in a trench
US5677219A (en) * 1994-12-29 1997-10-14 Siemens Aktiengesellschaft Process for fabricating a DRAM trench capacitor
JPH11330422A (en) * 1998-03-25 1999-11-30 Siemens Ag Manufacture of semiconductor device, semiconductor device array, semiconductor product, vertical semiconductor device, and dram product

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5656544A (en) * 1992-03-12 1997-08-12 International Business Machines Corporation Process for forming a polysilicon electrode in a trench
US5677219A (en) * 1994-12-29 1997-10-14 Siemens Aktiengesellschaft Process for fabricating a DRAM trench capacitor
JPH11330422A (en) * 1998-03-25 1999-11-30 Siemens Ag Manufacture of semiconductor device, semiconductor device array, semiconductor product, vertical semiconductor device, and dram product

Similar Documents

Publication Publication Date Title
US5547889A (en) Method of forming a semiconductor device having vertical conduction transistors and cylindrical cell gates
JP2994239B2 (en) SOI trench structure and method of manufacturing the same
JPS6298766A (en) Dynamic memory device and manufacture of the same
US5523542A (en) Method for making dynamic random access memory cell capacitor
JPH0365905B2 (en)
US5357131A (en) Semiconductor memory with trench capacitor
US5350708A (en) Method of making dynamic random access semiconductor memory device
JPH04233272A (en) Dluble-trench semiconductor memory structure and its manufacture
US5292679A (en) Process for producing a semiconductor memory device having memory cells including transistors and capacitors
US5635740A (en) Semiconductor device and method of manufacturing the same
JPH04234166A (en) Semiconductor integrated circuit device
JPH0496272A (en) High integrated semiconductor memory device and manufacture thereof
JP2671899B2 (en) Semiconductor storage device
US5314835A (en) Semiconductor memory device
JP2519216B2 (en) Semiconductor memory device
JPS63107061A (en) Manufacture of semiconductor memory
JP3110013B2 (en) Method of manufacturing horizontal trench capacitor embedded in semiconductor substrate
KR930004985B1 (en) Dram cell having a stacked capacitor and method of fabricating therefor
JPS62193275A (en) Three-dimensional one transistor cell device and manufactureof the same
JP2760979B2 (en) Semiconductor memory device and method of manufacturing the same
JPH07176628A (en) Semiconductor memory and fabrication thereof
JP2795874B2 (en) Semiconductor storage device and semiconductor device
JPS6324657A (en) Manufacture of semiconductor memory
JP2943268B2 (en) Semiconductor memory and manufacturing method thereof
JPS6362370A (en) Manufacture of semiconductor device