JPS63105837A - Wire cut electric discharge machine - Google Patents

Wire cut electric discharge machine

Info

Publication number
JPS63105837A
JPS63105837A JP25292786A JP25292786A JPS63105837A JP S63105837 A JPS63105837 A JP S63105837A JP 25292786 A JP25292786 A JP 25292786A JP 25292786 A JP25292786 A JP 25292786A JP S63105837 A JPS63105837 A JP S63105837A
Authority
JP
Japan
Prior art keywords
machining
corner
amount
wire
control device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25292786A
Other languages
Japanese (ja)
Inventor
Takuji Magara
卓司 真柄
Toshio Suzuki
俊雄 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP25292786A priority Critical patent/JPS63105837A/en
Priority to DE3790661A priority patent/DE3790661C2/en
Priority to PCT/JP1987/000814 priority patent/WO1988003071A1/en
Priority to KR1019880700722A priority patent/KR910008244B1/en
Priority to DE19873790661 priority patent/DE3790661T1/de
Priority to US07/224,853 priority patent/US5021622A/en
Publication of JPS63105837A publication Critical patent/JPS63105837A/en
Priority to CH2526/88A priority patent/CH672607A5/de
Pending legal-status Critical Current

Links

Landscapes

  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

PURPOSE:To improve machining precision at a corner part, by providing a control device which predicts a change in a machining amount at a corner part and corrects a charge in a gap between the sides of electrodes occas ioned by a change in a machining amount. CONSTITUTION:A discriminator 12 discriminates whether, in finish machining, a present machining position is under circular movement of a corner part, and transmits a signal, by means of which a control device 14 is actuated, when it is under circular movement. A discharge gap amount during linear machining under each machining conditions and a machining amount during linear machining determined by an electrode shift amount are stored in a memory 15. A computer 16 calculates a machining amount at a corner part based on information from the memory 15, and information, e.g. the radius of a corner, the size of an electrode. A computer 17 calculates a correction amount of the program radius of a corner part, based on the calculating result of the computer 16, so that a shape after machining forms a desired shape even if a change in a machining amount occurs. By means of a signal from the discriminator 12 and from the calculating result of the computer 17, the control device 14 controls a control device 11 so that an actual machining locus is coincided with movement on a desired correction locus.

Description

【発明の詳細な説明】 し産業上の利用分野〕 、 この発明は、ワイヤカプト放電加工機に停ねり、特
にそのg精度化に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a wire cap electrical discharge machine, and particularly to improving g precision thereof.

〔従来の技術〕[Conventional technology]

−第2図は従来のワイヤカプト放電加工機の構成を示す
概略図であろう 図において、(1)はワイヤ状7極、(2)は被加工物
、(3)は被加工物(2)を図中左右方向に移動さぜろ
Xスライダー、(4)は被加工物(2)を図中前後方向
に移動さぜるYスライダー、(5)はXスライダー(3
)を駆かする廿−ボモータ、(6)はYスライダー(4
)を駆1するサーボモータ、(7)はサーボモータ(5
)に電流を供給するサーボアンプ、(8)はサーボモー
タ(6) tこ1流を供給するサーボアンプ、(9)は
ワイヤ状電極(1)と被加工物(2)の間にパルス状電
圧を供給する加工W源、αOはワイヤ状電極(1)と被
加工物(2)間の平均加工電圧を検出する検出器、αD
は検出器αGの信号および所定の加ニブログラムに基づ
いて苛−ポアンプ(788)を制御する制御装置である
、次に1作1ζついて説明する。ワイヤ状電極(1)は
所定の速度で走行され、加工irm(9+よりパルス状
電圧がワイヤ状電極(1)と被加工物(2)間に印加さ
することにより、ワイヤ伏型1)と被加工物(2)間に
放電を発生せしめ、加工を行うものである。その際、あ
Aかじめ制御装置αυに与えちnたプログリム軌跡ζζ
基づいて廿−ボアンプ(7)(81に婆か指令信号が送
信され、その信号によりサーボモータ(5)<6)がx
スライダー(3)およびYスライダー(4)を駆動する
ことにより所望の形状の加工が可能であろう一般に加工
の状態は随時変化するため、制御体@Iは検出器αOに
より検出さnた極間の平均電圧によってワイヤ状flf
i(1)と被加工物(2)の加工間隙が一定となるよう
最適な送り速度でXスライダ−(3)およびYスライダ
ー(4)を駆動するものである。、通常、加工は荒加工
のあと数回の端面仕上げ加工を実施することにより良好
な形状fiiJ慶、面粗さを得ることが可能となる。と
ころで、仕上げ加工後の形状精度は、W極側面間隙によ
って決定し、高精度の形状加工を行うためにはこの1M
極側面聞障を一定にすることが必要である。第8図は、
仕上げ加工中のワイヤ状電極(1)と被加工物(2)を
拡大した因であるが、従来の一般的な平均電圧一定制御
においては、取り量りが増加した場合に加工速度σが低
下し、その結果としてワイヤ側面部分(図中A部)にシ
ける加工積分効果が増して電極側面間隙G8が増大する
。すなわち、加工電気条件および平均サーボ!王が同一
であっても、取りfiLが変化した場合電極側面間隙は
一定にならず、加工後形状精度は劣化するつ第4図は加
工賓気条件シよび平均サーボ電圧が同一の場合におりで
、取りfiLと電極側面間隙Gsの関係を示したもので
あり、図かち取り量りの変化によって電極側面間隙Gs
が大きく?イヒしていることがわかる。、5j!際の形
状加工におhて取n1iLの変化が最大となるのはコー
ナー部分であり、第5図はインコーナー仕上げ加工時の
ワイヤ状11r4@(1)と被加工物(2)を拡大した
図である。■より11rfa加工時の取り量(’LO,
L5)に対してコーナー部での収り量(L2−L4)は
かなり大きな値に?化することがわかる。第6図はイン
コーナー部での取り量りの変化を示した図であり、図か
ちコーナー部にさしかかる手前のある距M(図中H1)
か9取りJiLは増加しはじめて一定の誠となり、コー
ナー部終了点の手前のある距離(図中H8)かち取りi
Lは減少しはじめて再び1線加工部分での取り量となる
- Figure 2 is a schematic diagram showing the configuration of a conventional wire cap electrical discharge machine, in which (1) is a wire-shaped 7 poles, (2) is a workpiece, and (3) is a workpiece (2). The X slider moves the workpiece (2) in the left and right directions in the figure, the Y slider (4) moves the workpiece (2) in the front and rear directions in the figure, and (5) the X slider (3)
), (6) is the Y slider (4).
) is the servo motor that drives 1, (7) is the servo motor that drives the servo motor (5
), (8) is a servo amplifier that supplies a current to the servo motor (6), and (9) is a servo amplifier that supplies a current to the servo motor (6). A machining W source that supplies voltage, αO is a detector that detects the average machining voltage between the wire-shaped electrode (1) and the workpiece (2), αD
1 is a control device that controls a caustic amplifier (788) based on a signal from a detector αG and a predetermined program. The wire-shaped electrode (1) is run at a predetermined speed, and a pulsed voltage is applied from the processing irm (9+) between the wire-shaped electrode (1) and the workpiece (2), thereby forming the wire lying mold 1). Machining is performed by generating electrical discharge between the workpieces (2). At that time, the program trajectory ζζ given to the control device αυ in advance
Based on this, a command signal is sent to the servo amplifier (7) (81), and the signal causes the servo motor (5) < 6) to
By driving the slider (3) and Y slider (4), it will be possible to process the desired shape.Generally, the process condition changes from time to time, so the control body wire-like flf by the average voltage of
The X slider (3) and Y slider (4) are driven at an optimal feed rate so that the machining gap between i (1) and the workpiece (2) is constant. Normally, it is possible to obtain a good shape and surface roughness by performing end face finishing several times after rough machining. By the way, the shape accuracy after finish machining is determined by the W pole side gap, and in order to perform high precision shape machining, this 1M
It is necessary to keep the polar hearing loss constant. Figure 8 shows
This is due to the enlargement of the wire-shaped electrode (1) and workpiece (2) during finishing machining, but in conventional general constant average voltage control, the machining speed σ decreases when the amount of material to be removed increases. As a result, the processing integral effect on the wire side portion (portion A in the figure) increases, and the electrode side gap G8 increases. Namely, machining electrical conditions and average servo! Even if the diameter is the same, if the depth fiL changes, the electrode side gap will not be constant and the shape accuracy will deteriorate after machining. This shows the relationship between the width fiL and the electrode side gap Gs.
Is it big? I can see that you are depressed. , 5j! During the final shape machining, the maximum change in take-out n1iL is at the corner, and Figure 5 is an enlarged view of the wire shape 11r4@(1) and workpiece (2) during in-corner finishing machining. It is a diagram. ■Amount removed during 11rfa machining ('LO,
Is the amount of storage at the corner (L2-L4) considerably larger than L5)? It can be seen that Figure 6 is a diagram showing the change in the take-off at the inside corner, and shows a certain distance M (H1 in the diagram) before reaching the inside corner.
Ka9 Tori JiL begins to increase and becomes a constant truth, and Ka9 Tori JiL starts to increase and becomes a certain distance (H8 in the figure) before the end point of the corner part.
L begins to decrease and returns to the amount removed in the 1-line machining section.

よって先に説明したように、特にインコーナー部にお^
では収り!kLの増加に伴うW極側面間隙GSの拡大が
発生するため、加工後形状は著しく劣化する(第7図)
つまた、アウトコーナーにおいては取りtLの減少に伴
うf極細1面間隙Gsの減少が発生するため、加工後形
状は同様に劣イヒする。
Therefore, as explained earlier, especially in the inner corner part^
Well settled! As the W pole side gap GS increases as kL increases, the shape after processing deteriorates significantly (Figure 7).
Furthermore, at the outer corners, the f ultra-fine one-plane gap Gs decreases as the removal tL decreases, so the shape after processing is similarly inferior.

〔発明が解決しようとする開−,り〕[Openings that the invention seeks to solve]

従来のワイヤカプト放ゴ加工機は以上の様に構成されて
いるため、特にコーナー部分等に発生する取り量の変化
に伴ってワイヤ電極側面間隙が1化し、その結果加工後
形状の精度が著しく劣化するなどの問題点があった。
Since the conventional wire cupto straightening machine is configured as described above, the gap between the wire electrode sides becomes 1 due to changes in the removal amount, especially at corners, etc., and as a result, the accuracy of the shape after processing deteriorates significantly. There were problems such as.

この発明は上記のような問題点を解決するためになされ
たもので、コーナー部における加工精度を著しく向上す
るワイヤカプト放電加工機を得ることを目的とするもの
である。
The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a wire-cut electrical discharge machine that significantly improves machining accuracy at corner portions.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係わるワイヤカット放電加工機は、予めコー
ナー部での取りit化を予測1し、取り」変化に伴う電
極側面間隙の変化を補正する制御手段を具備したもので
ある。
The wire-cut electric discharge machine according to the present invention is equipped with a control means that predicts in advance the cutting process at a corner portion and corrects a change in the electrode side gap due to a change in cutting position.

〔作用) この発明におけろコーナー部数rJ量変化の予測手段は
、予め与えちまた情報および現在の加工位置、状顧を示
す情報かへ、取り量変化に伴う電極側面間隙の変化を補
正する制御装置を動作さぜ、コーナー部での加工精度を
向上させる。
[Function] In the present invention, the means for predicting the change in the number of corner parts rJ is a control that corrects the change in the electrode side gap due to the change in the removal amount based on information given in advance and information indicating the current machining position and situation. Operate the equipment to improve machining accuracy at corners.

〔発明の実施例〕[Embodiments of the invention]

以下、この発明の一実施例を1に基づいて説明する。 An embodiment of the present invention will be described below based on Embodiment 1.

第1図において、(1)はワイヤ状胃tffi、(2)
は被加工物、(3)は被加工物(2)を図中左右方向に
移動さぜるXスライダー、(4)は被加工物(2)を図
中前後方向に#&勧させるYスライダー、(5)はX、
Xライダー(3)を駆」スる峠−ボモータ、(6)はY
スライダー(4)e駆ヤするサーボモータ、(7)はサ
ーボモータ(5)に7流を供給するサーボアンプ、(8
)は廿−ポモータ(6)に軍流を供給するサーボアンプ
、(9)はワイヤ状實極(1)と被加工物(2)の間に
バMス状電圧を供給する加工電源、QOはワイヤ状電極
(1)と被加工物(2)開の平均加工電圧を検出する検
出器、9℃は検出器αOの信号および所定の加ニブログ
ラムに基ツいて廿−ポアンプ(7)(8)を制御する制
wJ装置、αのは加工位置がコーナー部円弧柊勧中かそ
うでないかを判別する第一の判別器、(至)は予め予想
される直線加工時の取り鎗を記憶するメモリー、αGは
該メ、モリ−の情報からコーナー部での取り量変化を計
1する演X器、αηは敗り量の変化に対してコーナー部
プロダラム軌跡の補正量を計算する演算器、α41+虚
判別器(2)の信号および演算器aηの計算結果から補
正軌跡の怪1を制御する制御装置である。
In FIG. 1, (1) is a wire-shaped stomach tffi, (2)
is the workpiece, (3) is the X slider that moves the workpiece (2) in the horizontal direction in the figure, and (4) is the Y slider that moves the workpiece (2) in the front and rear directions in the figure. , (5) is X,
Drive the X Rider (3) through the pass - Bomota, (6) is Y
Slider (4) e is driven by a servo motor, (7) is a servo amplifier that supplies 7 currents to the servo motor (5), and (8)
) is a servo amplifier that supplies a current to the motor (6), (9) is a processing power supply that supplies a bus voltage between the wire-shaped actual pole (1) and the workpiece (2), and QO is a detector that detects the average machining voltage between the wire electrode (1) and the workpiece (2); ) is the control wJ device that controls the machine, α is the first discriminator that determines whether the machining position is in the corner circular arc shape or not, and (to) is the memory that stores the previously anticipated pick-up for straight-line machining. A memory, αG, is an operator that calculates the change in the amount taken at the corner from the information in the memory, and αη is an operator that calculates the amount of correction of the program trajectory at the corner with respect to the change in the loss amount. This is a control device that controls the error 1 of the corrected trajectory from the signal of α41+imaginary discriminator (2) and the calculation result of arithmetic unit aη.

次にこの発明の実施例のp作jζついて説明する。Next, p operation jζ of the embodiment of the present invention will be explained.

従来例同様ワイヤ状電極(1)は所定の速度で走行さn
、加工11J(9)よりパルス状1圧がワイヤ状電極(
1)と被加工物(2)間に印加されることにより、ワイ
ヤ状T極(1)と被加工物(2)間に放雷を9生ぜしめ
て加工を行うものであり、予め制御装置αDに与えちn
たプログラム軌跡に基づbてサーボアンプ(7)(8)
に移17指令信号が送信さn、その信号によりサーボ−
E:−タ(5)(8)カXス? 、(,51”−(3)
オ! ヒY、r、 ? イダー(4)を駆動して所望の
形状の加工を行う、崇制御装置(6)は検出器αQによ
り検出さまた横開の平均電圧によってワイヤ状電tl@
(1)と被加工物(2)の加工間隙が一定となるよう、
最適な送り速度でX7.ライダー(3)およびYスライ
ダー(4)を駆動し、荒加工のあと数回の端面仕上げ加
工を実施することtζより良好な形状精度、面粗さを得
ろものである。先にも述べたように、仕上げ加工後の形
状精度は電極側面間隙によって決定し、高精度の形状加
工を行うためにはこの電極(I’11面間隙全間隙にす
ることが重要である。
Similar to the conventional example, the wire-shaped electrode (1) runs at a predetermined speed.
, from processing 11J (9), one pulsed pressure is applied to the wire-shaped electrode (
1) and the workpiece (2), a lightning bolt is generated between the wire-shaped T pole (1) and the workpiece (2) to perform processing. given to
Servo amplifier (7) (8) based on the programmed trajectory
17 A command signal is transmitted, and the signal causes the servo to
E: -ta (5) (8) KaXs? , (,51”−(3)
Oh! Hey, r, ? The control device (6) drives the cutter (4) to process the desired shape, and the wire-shaped electric current tl@ is detected by the detector αQ and the average voltage of the horizontal opening
In order to keep the machining gap between (1) and workpiece (2) constant,
X7 at optimal feed speed. By driving the rider (3) and Y slider (4) and performing end face finishing several times after rough machining, better shape accuracy and surface roughness can be obtained. As mentioned above, the shape accuracy after finishing is determined by the gap between the side surfaces of the electrode, and in order to perform high-precision shape machining, it is important to make the entire gap between the surfaces of the electrode (I'11).

仕上げ加工において判別器(2)は琲任の加工位置がコ
ーナー部円弧修動中かそうでないかを判別し、コーナー
部円弧遂勧中の際にはjliI+御釧■沿を動作させろ
信号を送信する。また、メモリーしには各加工条件にお
ける直線加工時の数百ギャップJJ七、1r極シフト量
(前W工面におけるオフセフトと更在のオフセフトとの
差)により求めちまたII直線加工時収り量が記憶さ1
ており、演l器α0はメモリー(至)の情報〉よびコー
ナー半径、Wl?i径などの情報によりコーナー部での
敗り及(慕3図L21を計1する。演′H,器0ηは演
算器<1(jで計算された結果をもとに取り量の変化に
対して77i]:r復の形状が所望なものとなるようゴ
ー十一部ブログラム軌跡の補正量を計1する7制御装置
α伺よ判別器(イ)から受は取った信号pよび演X器α
7)の結果により、実際の加工軌跡が所望の補正軌跡の
8慣となるよう制御装置圓を制蓚する、例えば、インコ
ーナー加工d場合、先に説明した様に取り量りの増加t
ど伴ってW極側面r!′I隙が拡大しオーバーカットと
なるか^、卸1徊装置α411よりイヤ状マ矩(1)が
コーナー中心方向に所定の補正量だけシフトした補正軌
跡を膓νするよう制チし7、結果として加工積分効果に
よるオーバーカプトが補正さnる。
During finishing machining, the discriminator (2) determines whether the machining position of the machining machine is in the middle of a corner arc adjustment or not, and when the corner part is in the process of completing a corner arc, it sends a signal to operate jliI+Osenku. do. In addition, the memory is calculated from the several hundred gap JJ7, 1r pole shift amount (difference between the off-theft on the previous W cutting surface and the off-theft of the additional work) during straight line machining under each machining condition, and the yield amount during straight line machining is Memorize 1
The operator α0 is the information in memory (to) and the corner radius, Wl? Based on the information such as the diameter i, the loss at the corner (the total of L21 in Figure 3) is 1. 77i]: The control device α receives the signal p from the discriminator (a) and calculates the correction amount for the program trajectory so that the shape of r X vessel α
Based on the result of step 7), the control device is controlled so that the actual machining trajectory becomes equal to the desired correction trajectory.
Along with the W pole side r! 'If the I gap is enlarged and overcut occurs, the ear-shaped machining device α411 is used to restrain the ear-shaped square (1) from following a correction trajectory shifted by a predetermined correction amount in the direction of the corner center 7. As a result, overcapture due to the processing integral effect is corrected.

これ久一連の動作は、作業者がiT[補正軌跡のプログ
ラムを作成することなしlζ自腔的lこ行わnる。
This series of operations has been performed automatically by the operator without creating a program for the correction trajectory.

なお、上記実施例では佃制御装置圓、判別器(2)、制
御装置α4、メモリー(社)、演算器110、演算器α
ηを独立して設けた例を示したが、同等の豊能が果せる
な^げこれ久をひとつの制御装置で行わせろようにして
も良り、また、上記実施例ではインコーナー部〒のみ補
正を行う一例を羊げたが、目的さするコーナーがインコ
ーナーかアウトコーナーかを判別する第二の判別器を設
けることにより、インコーナー、アウトコーナーの両方
に対して補正を行うことが可能である。
In addition, in the above embodiment, the Tsukuda control device En, the discriminator (2), the control device α4, the memory (company), the arithmetic unit 110, and the arithmetic unit α
Although we have shown an example in which η is provided independently, it is possible to achieve the same level of performance by using a single control device.Also, in the above embodiment, only the inside corner part 〒 is corrected. We have given an example of how to do this, but by providing a second discriminator that determines whether the target corner is an inside corner or an outside corner, it is possible to perform corrections for both inside corners and outside corners. .

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、あζかじめコーナー
部での取り量変化を予測し、取り量変化に伴うW極側面
間隙の変化を補正する制御手段を設けるとともに、実際
に収り量変化が発生する仕上げ加工時を判別することに
より、コーナー部分等で発生する敗り量の変化に伴って
W極測面間原が変化することによる加工清つの劣化を防
止するコトができるため、コーナー部における加工精度
が著しく向上する効果がある。
As described above, according to the present invention, there is provided a control means for predicting the change in removal amount at the A ζ corner portion in advance and correcting the change in the W pole side gap due to the change in removal amount, as well as actually controlling the change in the removal amount at the corner portion. By determining when a change in the amount occurs during finishing machining, it is possible to prevent deterioration of machining quality due to changes in the W pole surface area due to changes in the amount of damage that occur at corners, etc. This has the effect of significantly improving machining accuracy at corner portions.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例によるワイヤカット放電加
工機を示す構成図、第2図は従来のワイヤカット放電加
工機を示す構成図、第3図は仕上げ加工中のワイヤ状′
fIt極と被加工物の拡大図、第4図は敗り量と電極側
面lvl隙の関係を示す図、第5図はインコーナー仕上
げ加工時のワイヤ状vI極と被加工物の拡大図、第6図
はインコーナー部での収り量変化を示した図、第7図は
インコーナー部でのオーバーカットを示した図である。 図fζおりて、(1)はワイヤ状電極、(2)は被加工
物、<3)ハX、x 9 イrm、(4)l!Y ス9
 イ)f−1(5) (6) ハ+−ボモータ、(7)
(81は廿−ポアンプ、(9)は加工電源、aGは検出
器、αυは制御装置、@は判別器、αをは制御装置、(
2)はメモリー、α0α力は演I器である。
FIG. 1 is a block diagram showing a wire-cut electrical discharge machine according to an embodiment of the present invention, FIG. 2 is a block diagram showing a conventional wire-cut electrical discharge machine, and FIG.
An enlarged view of the fIt pole and the workpiece, Figure 4 is a diagram showing the relationship between the amount of defeat and the lvl gap on the side of the electrode, and Figure 5 is an enlarged view of the wire-like vI pole and the workpiece during inside corner finishing. FIG. 6 is a diagram showing changes in the amount of accommodation at the inside corner, and FIG. 7 is a diagram showing overcut at the inside corner. In the figure fζ, (1) is the wire-shaped electrode, (2) is the workpiece, <3) CX, x9irm, (4) l! Y Su9
A) f-1 (5) (6) C+-bo motor, (7)
(81 is a power amplifier, (9) is a processing power source, aG is a detector, αυ is a control device, @ is a discriminator, α is a control device, (
2) is a memory, and α0α power is a performer.

Claims (2)

【特許請求の範囲】[Claims] (1)対向するワイヤ状電極と被加工物間に電圧を印加
することにより放電を発生させるとともにワイヤ状電極
と被加工物を相対移動せしめることにより加工を行うワ
イヤカット放電加工機において、加工位置がコーナー部
円弧移動中かそうでないかを判別する第一の判別器と、
あらかじめ予想される直線加工時の取り量を記憶するメ
モリーと、該メモリーの情報からコーナー部での取り量
変化を計算する第一の演算器と、取り量の変化に対して
コーナー部プログラム軌跡の補正量を計算する第二の演
算器と、該第一、第二の演算器の計算結果と第一の判別
器の信号から補正軌跡の移動を制御する制御装置を設け
たことを特徴とするワイヤカット放電加工機。
(1) In a wire-cut electric discharge machine that generates electrical discharge by applying a voltage between opposing wire-shaped electrodes and the workpiece, and also moves the wire-shaped electrode and the workpiece relative to each other to perform processing, the machining position a first discriminator that determines whether the corner portion is moving in an arc or not;
A memory that stores the expected removal amount during straight line machining, a first computing unit that calculates the change in removal amount at the corner section from the information in the memory, and a computer that calculates the change in removal amount at the corner section based on the information in the memory, and The present invention is characterized by being provided with a second arithmetic unit that calculates the amount of correction, and a control device that controls movement of the correction trajectory based on the calculation results of the first and second arithmetic units and the signal of the first discriminator. Wire cut electrical discharge machine.
(2)目的とするコーナーがインコーナーかアウトコー
ナーかを判別する第二の判別器を有し、前記載の第一お
よび第二の判別器からの信号と、第一、第二の演算器の
計算結果から補正軌跡の移動を制御する制御装置を設け
たことを特徴とする特許請求の範囲第1項記載のワイヤ
カット放電加工機。
(2) It has a second discriminator that discriminates whether the target corner is an inside corner or an out corner, and the signals from the first and second discriminators described above and the first and second arithmetic units are used. 2. The wire-cut electrical discharge machine according to claim 1, further comprising a control device for controlling movement of the correction trajectory based on the calculation result.
JP25292786A 1986-10-24 1986-10-24 Wire cut electric discharge machine Pending JPS63105837A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP25292786A JPS63105837A (en) 1986-10-24 1986-10-24 Wire cut electric discharge machine
DE3790661A DE3790661C2 (en) 1986-10-24 1987-10-23 Electric discharge machining using wire electrode
PCT/JP1987/000814 WO1988003071A1 (en) 1986-10-24 1987-10-23 Wire cut electrical discharge machine
KR1019880700722A KR910008244B1 (en) 1986-10-24 1987-10-23 Wire cut electrical discharge machine
DE19873790661 DE3790661T1 (en) 1986-10-24 1987-10-23
US07/224,853 US5021622A (en) 1986-10-24 1987-10-23 Wire cut electrical discharge machine
CH2526/88A CH672607A5 (en) 1986-10-24 1988-10-23

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25292786A JPS63105837A (en) 1986-10-24 1986-10-24 Wire cut electric discharge machine

Publications (1)

Publication Number Publication Date
JPS63105837A true JPS63105837A (en) 1988-05-11

Family

ID=17244103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25292786A Pending JPS63105837A (en) 1986-10-24 1986-10-24 Wire cut electric discharge machine

Country Status (1)

Country Link
JP (1) JPS63105837A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010023138A (en) * 2008-07-16 2010-02-04 Fanuc Ltd Machining route preparation device for wire electric discharge machining machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010023138A (en) * 2008-07-16 2010-02-04 Fanuc Ltd Machining route preparation device for wire electric discharge machining machine

Similar Documents

Publication Publication Date Title
US5021622A (en) Wire cut electrical discharge machine
JP4255634B2 (en) Wire electric discharge machining apparatus and wire electric discharge machining method
KR920006654B1 (en) Wire electrode type electric discharge machining apparatus
TWI788637B (en) Wire electrical discharge machine and wire electrical discharge machining method
TW201328804A (en) Wire electric discharge machining device
JP2005066738A (en) Machining control method for wire-cut electric discharge machine
JP7364358B2 (en) Wire electrical discharge machine and wire electrical discharge machining method
JPS63105837A (en) Wire cut electric discharge machine
JP2914101B2 (en) Wire electric discharge machining method and apparatus
JPH01501051A (en) Wire cut electric discharge machine
JPS63105829A (en) Wire cut electric discharge machine
JP2624099B2 (en) Wire electric discharge machine
JPS63105828A (en) Wire cut electric dicharge machine
JPS63105825A (en) Wire-cut electric discharge machine
JPH1076429A (en) Wire electrical discharge machining device and machining method thereof
JPS63105826A (en) Wire cut electric discharge machine
JPH01228727A (en) Wire cut electric discharge machining method
JP2541205B2 (en) Wire cut electric discharge machine
JPS63207520A (en) Wire cut electric discharge machine
KR102669331B1 (en) Wire electrical discharge machine and wire electrical discharge machining method
JPS63105824A (en) Wire-cut electric discharge machine
WO2022219760A9 (en) Numerical value control device and computer-readable storage medium
JPH0732968B2 (en) Wire cut electric discharge machine
JP2549045B2 (en) Wire electric discharge machining method and device
JPH0732221A (en) Wire electric discharge machine