JPS63105828A - Wire cut electric dicharge machine - Google Patents

Wire cut electric dicharge machine

Info

Publication number
JPS63105828A
JPS63105828A JP25291986A JP25291986A JPS63105828A JP S63105828 A JPS63105828 A JP S63105828A JP 25291986 A JP25291986 A JP 25291986A JP 25291986 A JP25291986 A JP 25291986A JP S63105828 A JPS63105828 A JP S63105828A
Authority
JP
Japan
Prior art keywords
machining
corner
wire
discriminator
control device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25291986A
Other languages
Japanese (ja)
Inventor
Takuji Magara
卓司 真柄
Toshio Suzuki
俊雄 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP25291986A priority Critical patent/JPS63105828A/en
Publication of JPS63105828A publication Critical patent/JPS63105828A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

PURPOSE:To improve machining precision at a corner part, by providing a control means which predicts a change in a machining amount at a corner part and corrects a change in a gas between the sides of electrodes occasioned by a change in a machining amount. CONSTITUTION:In finish machining, a discriminator 12 discriminates whether a present machining position is under circular movement of a corner part, and outputs a signal, by means of which a control device 13 is actuated, when under circular movement of the corner part. The control device 13 switches the gain of a new interpole servo for machining a preset corner part by means of a signal from the discriminator 12, and restores the gain to its original upon completion of machining of a corner. Since, for example, in the case of machining of an in corner, with the increase in a machining amount, a gap between the sides of electrodes is increased to cause overcut, the control device 13 switches the gain of an interpole servo to a low value to prevent the occurrence of phenomenon, in that a machining speed is excessively decreased at the in- corner part, and as a result, overcut is corrected by a machining integration effect.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、ワイヤカット放電加工機に係り、特にその
高精痩化に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a wire-cut electric discharge machine, and particularly to its high precision.

〔従来の技術〕[Conventional technology]

第2図は従来のワイヤカット放電加工機の構成を示す概
略図である。
FIG. 2 is a schematic diagram showing the configuration of a conventional wire-cut electrical discharge machine.

図において、(1)はワイヤ状電極、(2)は被加工物
、(3)は被加工物(2)を図中左右方向に移動させる
Xスライダー、(4)は被加工物(2)を口中前後方向
に移動さぜるYスライダー、(5)はXスライダー(3
)全駆動するサーボモータ、(6)はYスライダー(4
)を駆動スるサーボモータ、(7)はサーボモータ(5
)に電流を供給するサーボアンプ、(8)はサーボモー
タ(6)に電流を供給するサーボアンプ、(9)はワイ
ヤ状電極(1)と被加工物(2)の間にバフレス状電圧
を供給する加工電源、(1Gはワイヤ状電極(1)と被
加工物(2)間の平均加工電圧を検出する検出器、■は
検出器QGの信号〉よび所定の加エプログヲムに基づ−
てサーボアンプ(7)(8)を制御する制御装置である
In the figure, (1) is a wire-shaped electrode, (2) is the workpiece, (3) is the X slider that moves the workpiece (2) in the left and right direction in the figure, and (4) is the workpiece (2). The Y slider (5) moves the body back and forth in the mouth, and the X slider (3)
) fully driven servo motor, (6) is the Y slider (4
) is the servo motor that drives the servo motor (7).
), (8) is a servo amplifier that supplies current to the servo motor (6), and (9) is a servo amplifier that supplies a current to the servo motor (6). Based on the supplied machining power supply, (1G is a detector that detects the average machining voltage between the wire-shaped electrode (1) and the workpiece (2), and ■ is the signal from the detector QG) and a predetermined machining program.
This is a control device that controls the servo amplifiers (7) and (8).

次に動作につめて説明する。ワイヤ状電極(1)は所定
の速度で走行さね、加工電源(9)よりパルス状電圧が
ワイヤ状電極(1)と被加工物(2〕間に印加さするこ
とにより、ワイヤ状電極(1)上被加工物(2)間に放
電を発生せしめ、加工を行うものである。その際、予め
制御装置αυに与えられたプログラム軌跡にもとづ力て
サーボアンプ(7)(8)に移動指令信号が送信さ1、
その信号によりサーボモータ(5X8)がXスライダー
(3)シよびYスライダー(4)を駆動することにより
所望の形状の加工が可能である。一般に加工の状態は随
時変化するため、制御装置αDは検出器αqにより検出
さnた極間の平均電圧によってワイヤ状電極(1)と被
加工物(2)O加工市原が一定七なるよう最適な送り速
度でXスライダー(3)およびτスライダー(4)を駆
動するものである。通常、加工は荒加工のあと数回の端
面仕上げ加工を実施することにより良好な形状精度、面
粗さを得ることが可能となる。ところで、仕上げ加工後
の形状精度は、電極側面間隙によって決定し、高精度の
形状加工を行うためにはこの電極側面間隙を一定にする
ことが必要である。第8図は、仕上げ加工中のワイヤー
状電極(1)と被加工物(2)を拡大した図であるが、
従来の一般的な平均電圧一定制御におりでは、取ゆfi
Lが増加した場合に加工速度Uが低下し、その結果とし
てワイヤ側面部分(図中A部)にかける加工精分効果が
増して電極側面間隙GSが増大する。すなわち、加工電
気条件シよび平均サーボ電圧が同一であっても、敗り量
りが変化した場合電極側面間隙は一定にならず、加工後
形状精虜は劣化する。第4図は加工電気条件および平均
サーボ電圧が同一の場合にシーで、取り量りと電極側面
間隙0日の関係を示したものであり、図から取り量りの
変化によって電極側面間隙Gsが大きくt化してbるこ
とがわがる。実際の形状加工におりて取り量りの変化が
最大となるのはコーナ一部分であり、第5図はインコー
ナー仕上げ加工時のワイヤ状電揮(1)と被加工物(2
)を拡大した図である。図より直線加工時の取り量(L
O,L6)に対してコーナ一部での取り量(L2−I、
4)はかなり大きな値に変化することがわかる。第6図
はインコーナ一部での取り量りの!化を示した図であり
、図からコーナ一部にさじががる手前のある距離(図中
Bl)からなり量りは増加しはじめて一定の値となり、
コーナ一部終了点の手前のある距II(図中H3)から
取り量りは減少しはじめて再び直線加工部分での取り量
となる。
Next, the operation will be explained. The wire-shaped electrode (1) runs at a predetermined speed, and a pulsed voltage is applied between the wire-shaped electrode (1) and the workpiece (2) from the processing power source (9), so that the wire-shaped electrode ( 1) Machining is performed by generating an electric discharge between the upper workpiece (2). At this time, the servo amplifiers (7) (8) A movement command signal is sent to 1,
A servo motor (5×8) drives the X slider (3) and Y slider (4) based on the signal, thereby making it possible to process the desired shape. Generally, the machining condition changes from time to time, so the control device αD is optimized so that the distance between the wire-shaped electrode (1) and the workpiece (2) remains constant based on the average voltage between the electrodes detected by the detector αq. The X slider (3) and the τ slider (4) are driven at a feed rate of Normally, it is possible to obtain good shape accuracy and surface roughness by performing end face finishing several times after rough machining. By the way, the shape accuracy after finishing processing is determined by the electrode side gap, and in order to perform highly accurate shape processing, it is necessary to keep this electrode side gap constant. FIG. 8 is an enlarged view of the wire-shaped electrode (1) and workpiece (2) during finishing processing.
In conventional general average voltage constant control, the
When L increases, the machining speed U decreases, and as a result, the machining precision effect applied to the wire side portion (portion A in the figure) increases, and the electrode side gap GS increases. That is, even if the machining electrical conditions and the average servo voltage are the same, if the loss amount changes, the electrode side gap will not be constant, and the shape after machining will deteriorate. Figure 4 shows the relationship between the machining capacity and the electrode side gap 0 days when the machining electrical conditions and the average servo voltage are the same. I know that it will change and become b. In actual shape machining, the maximum change in machining weight occurs at a corner part, and Figure 5 shows the wire-like electric wire (1) and the workpiece (2) during in-corner finishing machining.
) is an enlarged diagram. From the figure, the removal amount during straight line machining (L
O, L6), the removal amount at a part of the corner (L2-I,
It can be seen that 4) changes to a considerably large value. Figure 6 shows the measurement at the inner corner! This is a diagram showing the change in shape, starting from a certain distance (Bl in the diagram) before the spoon reaches a part of the corner, and the weight begins to increase and becomes a constant value.
From a certain distance II (H3 in the figure) before the end point of part of the corner, the amount to be removed begins to decrease and returns to the amount to be removed at the straight line machining portion.

よって先に説明したように、特にインコーナ一部におい
ては取り[Lの増加に伴う電極側面間隙Gsの拡大が発
生するため、加工後形状は著しく劣化する(第7図)。
Therefore, as explained above, especially in a part of the inner corner, the electrode side gap Gs increases as the distance L increases, and the shape after processing deteriorates significantly (FIG. 7).

また、アウトコーナーにおいては吹り量りの減少に伴う
1!電極面閲[Gsの減少が発生するため、加工後形状
は同様Cで劣化する。
Also, in the outside corner, the amount of blowing decreases, resulting in a 1! Since a decrease in electrode surface visibility [Gs occurs, the shape after processing similarly deteriorates at C.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来のワイヤカット放電加工擬は以上の様に構成さ1て
−るため、特にコーナ一部分等に発生する取り量の斐イ
ヒに伴ってワイヤ電極側面Ifl隙が!化し、その結果
加工後形状の精度が著しく劣化するなどの問題点があっ
た。
Since the conventional wire-cut electrical discharge machining machine is constructed as described above, the wire electrode side surface Ifl gap is generated due to the increase in the removal amount, which occurs especially at corner portions! , and as a result, there were problems such as a significant deterioration in the accuracy of the shape after processing.

この発明は上記の様な問題、りを解決するためになされ
たもので、コーナ一部にシける加工精度を著しく向上す
るワイヤカット放電加工機を得ろことを目的とするもの
である。
The present invention has been made to solve the above-mentioned problems, and it is an object of the present invention to provide a wire-cut electric discharge machine that significantly improves the machining accuracy of a part of a corner.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係わるワイヤカット放電加工機は、予めコー
ナ一部での吹り量変イヒを予測し、取り1変化に伴う電
極側面間隙の変化を補正する制御手段を具備したもので
ある。
The wire-cut electrical discharge machine according to the present invention is equipped with a control means that predicts in advance changes in the blowing amount at a part of the corner and corrects changes in the electrode side gap due to changes in the cutting depth.

〔作用〕[Effect]

この発明におけるコーナ一部取り量変化の予測手段は、
予め与えらIた情報および琲在の加工位置、状態を示す
情報から、叡り量変化に伴う電極側面間隙の変化を補正
する制御装置を動作させ、コーナ一部での加工精度を向
上させる。
The means for predicting the change in corner part removal amount in this invention is as follows:
Based on the information given in advance and the information indicating the machining position and state of the wire, a control device is operated to correct the change in the electrode side gap due to the change in the amount of cutting, thereby improving the machining accuracy at a part of the corner.

〔発明の実施例〕 − 以下、この発明の一実施例を図憂ζ基づいて説明する。[Embodiments of the invention] - Hereinafter, one embodiment of the present invention will be described based on the illustrations and illustrations ζ.

第1図において、(1)はワイヤ状電極、(2)は!#
i加工物、(3)は被加工物(2)を図中左右方向に移
動さぞるXスライダー、(4)は被加工物(2)を図中
前後方向に移動さぜるYスライダー、(5)はX7.ラ
イダー(3)を駆動するサーボモータ、(6)はYスラ
イダー(4)を駆動するサーボモータ、(7)はサーボ
モータ(5)に電流を供給するサーボアンプ、(8)は
サーボモータ(6)に電流を供給するサーブアンプ、(
9)はワイヤ状電極(1)と被加工物(2)の間にパル
ス状電圧を供給する加工電源、αOはワイヤ状を極(1
)と被加工物(2)闇の平均加工電圧を検出する検出器
、0は検出器α1の信号および所定の加ニブログラムに
基づ−てサーボアンプ(7)(8)を制御する制御装置
、@は加工位置がコーナ一部円弧移動中かそうでなhか
を判別する判別器、口は判別器(2)の備号により極間
サーボのゲインを切り換えろ制御装置である。
In Fig. 1, (1) is a wire-shaped electrode, and (2) is! #
i workpiece, (3) is an X slider that moves the workpiece (2) in the horizontal direction in the figure, (4) is a Y slider that moves the workpiece (2) in the front and back direction in the figure, ( 5) is X7. A servo motor that drives the rider (3), (6) a servo motor that drives the Y slider (4), (7) a servo amplifier that supplies current to the servo motor (5), and (8) a servo motor that drives the servo motor (6). ), a serve amplifier that supplies current to (
9) is a processing power source that supplies a pulsed voltage between the wire-shaped electrode (1) and the workpiece (2), and αO is the power source that supplies the wire-shaped electrode (1) to the workpiece (1)
) and the workpiece (2) a detector for detecting the dark average machining voltage; 0 is a control device for controlling the servo amplifiers (7) and (8) based on the signal of the detector α1 and a predetermined Niprogram; @ is a discriminator that determines whether the machining position is moving in a partial arc around a corner or not.

次にこの発明の実施例の動作につbて説明する。Next, the operation of the embodiment of this invention will be explained.

従来例同様ワイヤ状’i[極(1)は所定の速廖で走行
さむ、加工電源(9)よりパルス状電圧がワイヤ状電極
(1)と被加工物(2)間に印加さIることにより、ワ
イヤ状電極(1)と被加工物(2)間に放電を発生せ【
7めて加工を哲うものであり、予め制御装ffQ1)に
与えらまたプログラム軌跡に基づいてサーボアンプ(7
)(8)に移動指令信号が送口さ1、その信号iこより
サーボモータ(5)(6)がXスライダー(3)および
Yスライダー(4)を駆動して所望の形状の加工を行う
。制御装置(ロ)は検出器QGにより検出さまた極間の
平均電圧によってワイヤ状電極(1)と被加工物(2)
の加工間隙が一定となるよう、寿適な送り速膚でXスラ
イダー(3)およびYスライダー(4)を駆動し、荒加
工のあと数回の端面仕上げ加工を実施することCζ上り
良好な形状MF!、面粗さを得るものである。先にも述
べたように、仕上げ加工後の形状精度は電極側面間隙に
よって決定し、高精度の形状加工を行うためにはこのt
極側面聞原を一定にすることが重要である。
As in the conventional example, the wire-shaped electrode (1) runs at a predetermined speed, and a pulse voltage is applied from the processing power source (9) between the wire-shaped electrode (1) and the workpiece (2). As a result, an electric discharge is generated between the wire-shaped electrode (1) and the workpiece (2).
The servo amplifier (7
) (8), a movement command signal is sent to the feed port 1, and from that signal i the servo motors (5) and (6) drive the X slider (3) and Y slider (4) to process the desired shape. The control device (b) detects the wire-shaped electrode (1) and the workpiece (2) by detecting the average voltage between the electrodes using the detector QG.
Drive the X slider (3) and Y slider (4) at an appropriate feed rate so that the machining gap is constant, and perform end face finishing several times after rough machining. MF! , to obtain surface roughness. As mentioned earlier, the shape accuracy after finishing machining is determined by the electrode side gap, and in order to perform high-precision shape machining, this t
It is important to keep the polar plane field constant.

仕上げ加工にお^で判別器(2)は現在の加工位置がコ
ーナ一部円弧移動中かそうでないかを判別しコーナ一部
円弧移動中の際には制御装置α4を動作させる信号を送
信する。制御装置α4は判別器口から受は取った信号に
より、予め設定さまたコーナ一部分の加工のための新た
な!ffiサーボのゲインを選定し、極間サーボのゲイ
ンを切り換え、コーナー加工終了とともにもとのゲイン
に復帰させる。
During finishing machining, the discriminator (2) determines whether the current machining position is moving in a partial arc around a corner or not, and when the corner is moving in a partial arc, it sends a signal to operate the control device α4. . The control device α4 uses the signal received from the discriminator port to preset or set a new value for machining a part of the corner. Select the gain of the ffi servo, switch the gain of the inter-mole servo, and return to the original gain upon completion of corner machining.

例えば、インコーナー加工の場合、先に説明した様に取
り量りの増加に伴って電極側面間隙が拡大しオーバーカ
ットとなるから、制御装置σ4は極間サーボのゲインを
小さな値に切り換えることによりインコーナ一部で加工
速宇が低下しすぎる現象を防止し、結果として加工積分
効果によるオーバーカットが補正さする。
For example, in the case of inside-corner machining, as explained earlier, the electrode side gap expands as the machining capacity increases, resulting in overcut. This prevents the machining speed from decreasing too much in some areas, and as a result, compensates for overcuts due to the machining integral effect.

これら一連の動作は作業者がI!接極間サーボの 4ゲ
インを切り換えることなしに、加工中のすべてのコーナ
一部分について自動的に行わする。
These series of operations are performed by the operator using I! This is done automatically for all corner sections during machining without having to switch between the 4 gains of the servo between the armatures.

なお、上記実施例では制御装f卸、判別器υ、演算器(
至)、制giJ装置α4を独立して設けた例を示したが
、同等の機能が果せるならばこ1らをひとつの制御装置
で行わせるようにしても良い。また、上記実施例ではイ
ンコーナ一部でのみ補正を行う一例を挙げたが、目的と
するコーナーがインコーナーかアウトコーナーかを判別
する第二の判別器を設けろことにより、インコーナー、
アウトコーナーの両方に対して補正を行うことが可能で
ある。
In the above embodiment, the control device f, the discriminator υ, and the arithmetic unit (
Although the example in which the giJ control device α4 is provided independently has been shown, if the same functions can be achieved, these two functions may be performed by a single control device. Further, in the above embodiment, an example was given in which the correction is performed only at a part of the inner corner, but by providing a second discriminator that discriminates whether the target corner is an inside corner or an outside corner, it is possible to
It is possible to perform corrections on both out corners.

〔発明の効果〕〔Effect of the invention〕

以上の様にこの発明によりば、予めコーナ一部での取り
ik′gイヒを予測し、取り量変化に伴う電極側面間隙
の変化を補正する制御手段を設けたので、コーナ一部分
等において発生する取り量の?化に伴って電極側面間際
が変化することによる加工精度の劣化を防止することが
できるため、コーナ一部における加工精度が著しく向上
する効果がある。
As described above, according to the present invention, since a control means is provided to predict in advance the removal of ik'g in a part of a corner and to correct a change in the electrode side gap due to a change in removal amount, the problem that occurs in a part of a corner, etc. The amount taken? Since it is possible to prevent deterioration in machining accuracy due to changes in the area near the electrode side surface due to the change in shape, the machining accuracy in a part of the corner can be significantly improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例によるワイヤカット放電加
工iを示す構成図、第2図は従来のワイヤカット放電加
工機を示す構成図、第8図は仕上げ加工中のワイヤ状電
極と被加工物の拡大図、第4図は取り量と電極側面間隙
の関係を示す図、第5図はインコーナー仕上げ加工時の
ワイヤ状電極と被加工物の拡大図、第6図はインコーナ
一部での取り量変化を示した図、$7図はインコーナ一
部でのオーバーカプトを示した図である。 図にお^で、(1)はワイヤ状′に極、(2)は被加工
物、(3)はXスライダー、(4)はYスライダー、(
5)(6)はす−ボモータ、(7) (8)はサーボア
ンプ、(9)は加工電源、QGは検出器、圓は制御装置
、(2)は判別器、側は演算器、α4は制御装置である
Fig. 1 is a block diagram showing wire-cut electrical discharge machining i according to an embodiment of the present invention, Fig. 2 is a block diagram showing a conventional wire-cut electrical discharge machining machine, and Fig. 8 shows the wire-shaped electrode and the covered material during finishing machining. Figure 4 is an enlarged view of the workpiece. Figure 4 is a diagram showing the relationship between removal amount and electrode side gap. Figure 5 is an enlarged view of the wire electrode and workpiece during inside corner finishing. Figure 6 is a part of the inner corner. Figure 7 shows the change in removal amount at the inner corner. In the figure, (1) is the wire-like pole, (2) is the workpiece, (3) is the X slider, (4) is the Y slider, (
5) (6) Lotus-bo motor, (7) (8) is servo amplifier, (9) is processing power supply, QG is detector, circle is control device, (2) is discriminator, side is computing unit, α4 is the control device.

Claims (2)

【特許請求の範囲】[Claims] (1)対向するワイヤ状電極と被加工物間に電圧を印加
することにより放電を発生させるとともにワイヤ状電極
と被加工物を相対移動せしめることにより加工を行うワ
イヤカット放電加工機において、加工位置がコーナー部
円弧移動中かそうでないかを判別する第一の判別器と、
該判別器からの信号により極間サーボのゲインを切り換
える制御装置を設けたことを特徴とするワイヤカット放
電加工機。
(1) In a wire-cut electric discharge machine that generates electrical discharge by applying a voltage between opposing wire-shaped electrodes and the workpiece, and also moves the wire-shaped electrode and the workpiece relative to each other to perform processing, the machining position a first discriminator that determines whether the corner portion is moving in an arc or not;
A wire-cut electrical discharge machine characterized by being provided with a control device that switches the gain of a machining servo based on a signal from the discriminator.
(2)目的とするコーナーがインコーナーかアウトコー
ナーかを判別する第二の判別器を有し、前記記載の第一
の判別器からの信号と第二の判別器からの信号により極
間サーボのゲインを切り換える制御装置を設けたことを
特徴とする特許請求の範囲第1項記載のワイヤカット放
電加工機。
(2) It has a second discriminator that discriminates whether the target corner is an inside corner or an out corner, and the pole-to-pole servo is controlled by the signal from the first discriminator and the signal from the second discriminator described above. The wire-cut electric discharge machine according to claim 1, further comprising a control device for switching the gain of the wire-cut electric discharge machine.
JP25291986A 1986-10-24 1986-10-24 Wire cut electric dicharge machine Pending JPS63105828A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25291986A JPS63105828A (en) 1986-10-24 1986-10-24 Wire cut electric dicharge machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25291986A JPS63105828A (en) 1986-10-24 1986-10-24 Wire cut electric dicharge machine

Publications (1)

Publication Number Publication Date
JPS63105828A true JPS63105828A (en) 1988-05-11

Family

ID=17243992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25291986A Pending JPS63105828A (en) 1986-10-24 1986-10-24 Wire cut electric dicharge machine

Country Status (1)

Country Link
JP (1) JPS63105828A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5418344A (en) * 1992-10-20 1995-05-23 Mitsubishi Denki Kabushiki Kaisha Method and apparatus for wire-cutting electrical discharge machining of a corner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5418344A (en) * 1992-10-20 1995-05-23 Mitsubishi Denki Kabushiki Kaisha Method and apparatus for wire-cutting electrical discharge machining of a corner

Similar Documents

Publication Publication Date Title
KR910008244B1 (en) Wire cut electrical discharge machine
US4321451A (en) Servo system and method for controlling the gap spacing between a tool and workpiece electrodes in an EDM machine
JP4255634B2 (en) Wire electric discharge machining apparatus and wire electric discharge machining method
KR920006654B1 (en) Wire electrode type electric discharge machining apparatus
JP2005066738A (en) Machining control method for wire-cut electric discharge machine
EP0124625B1 (en) Electric discharge machining control circuit
JPS63105828A (en) Wire cut electric dicharge machine
JPH0229453B2 (en)
JP2624099B2 (en) Wire electric discharge machine
JPS63105829A (en) Wire cut electric discharge machine
JP2914101B2 (en) Wire electric discharge machining method and apparatus
JP2541205B2 (en) Wire cut electric discharge machine
JPH01501051A (en) Wire cut electric discharge machine
JPS63105824A (en) Wire-cut electric discharge machine
JPS63105837A (en) Wire cut electric discharge machine
JPS63105825A (en) Wire-cut electric discharge machine
JPS63105826A (en) Wire cut electric discharge machine
JPH0825024B2 (en) Automatic welding equipment
JPH0732968B2 (en) Wire cut electric discharge machine
JPH1076429A (en) Wire electrical discharge machining device and machining method thereof
JPS63207520A (en) Wire cut electric discharge machine
JPH10328938A (en) Wire electric discharge machining method and device
JPH09150282A (en) Laser beam machining method
JPS63207522A (en) Wire cut electric discharge machine
JPH0626765B2 (en) Die-sinking EDM method