JPS6310465A - Maganese dioxide battery - Google Patents

Maganese dioxide battery

Info

Publication number
JPS6310465A
JPS6310465A JP61153134A JP15313486A JPS6310465A JP S6310465 A JPS6310465 A JP S6310465A JP 61153134 A JP61153134 A JP 61153134A JP 15313486 A JP15313486 A JP 15313486A JP S6310465 A JPS6310465 A JP S6310465A
Authority
JP
Japan
Prior art keywords
manganese dioxide
amorphous
manganese
active material
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61153134A
Other languages
Japanese (ja)
Other versions
JPH067484B2 (en
Inventor
Yoshiaki Nitta
芳明 新田
Shigeo Kobayashi
茂雄 小林
Shigeo Kondo
繁雄 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61153134A priority Critical patent/JPH067484B2/en
Publication of JPS6310465A publication Critical patent/JPS6310465A/en
Publication of JPH067484B2 publication Critical patent/JPH067484B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To obtain a manganese dioxide battery especially having good high rate discharge performance by using amorphous manganese dioxide as a positive active material. CONSTITUTION:Amorphous manganese dioxide is used as an active material of manganese dry battery and alkaline manganese battery. By using amorphous manganese dioxide as a positive active material, diffusion of protons in a solid phase of manganese dioxide is made quick because diffusion barrier cuased by grain boundary or different crystal boundary does not exist, and utilization in high rate discharge is increased in both battery systems. Specific conductivity of amorphous manganese dioxide is 10<-4>-10<-5> (S/cm) compared with 10<-3> (S/cm) order of electrolytic manganese dioxide.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、二酸化マンガンを正極活物質とするマンガン
乾電池、およびアルカリマンガン電池における二酸化マ
ンガンの材質に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a manganese dry battery using manganese dioxide as a positive electrode active material, and to the material of manganese dioxide in an alkaline manganese battery.

従来の技術 従来、この種のマンガン乾電池やアルカリマンガン電池
の正極活物質として電解二酸化マンガン。
Conventional technology Conventionally, electrolytic manganese dioxide has been used as the positive electrode active material for this type of manganese dry battery or alkaline manganese battery.

化学二酸化マンガン、そして天然二酸化マンガンが用い
られている。その中でも高性能電池用正極活物質として
は、電解二酸化マンガンが最も優れており、現在量も多
く使用されている。
Chemical manganese dioxide and natural manganese dioxide are used. Among them, electrolytic manganese dioxide is the most excellent positive electrode active material for high-performance batteries, and is currently used in large quantities.

ところで二酸化マンガンの還元反応は、次式で示される
ように電子とプロトンが結晶格子内へ拡散し進行する。
Incidentally, the reduction reaction of manganese dioxide proceeds as electrons and protons diffuse into the crystal lattice, as shown by the following equation.

MnO2+H20+e−+Mn0OH+OH−・−・・
−・−(1)従って放電特性特に高負荷特性を良好にす
るには、この電子とプロトンの拡散を遅れないようにす
ることにある。
MnO2+H20+e-+Mn0OH+OH-・-・・
-.- (1) Therefore, in order to improve discharge characteristics, especially high load characteristics, it is necessary to keep up with the diffusion of electrons and protons.

このため、従来では、種々の二酸化マンガンの中からこ
の拡散速度が比較的速いといわれているガンマ型あるい
はエンスタイト型の結晶構造をもつ斜方晶形の二酸化マ
ンガンを用いてきた。
For this reason, orthorhombic manganese dioxide having a gamma type or enstite type crystal structure, which is said to have a relatively fast diffusion rate among various manganese dioxides, has conventionally been used.

しかし、結晶性の二酸化マンガンを用いた場合、負荷が
大きくなると(1)式の反応が次第に遅れる。
However, when crystalline manganese dioxide is used, as the load increases, the reaction of formula (1) is gradually delayed.

つまり、プロトンの二酸化マンガン固相内への拡散が遅
れ、良好な高負荷特性、即ち利用率が得られなくなる。
In other words, the diffusion of protons into the solid phase of manganese dioxide is delayed, making it impossible to obtain good high-load characteristics, that is, utilization efficiency.

発明が解決しようとする問題点 このような従来の材質であるガンマ型あるいはエンスタ
イト型二酸化マンガンは、基本的には斜方晶形であるが
、他の二酸化マンガンに比べると結晶性は悪く、やや無
定形化している。これは結晶C軸方向で結晶成長に乱れ
があり、それだけ結品性が低下していることによる。
Problems to be Solved by the Invention These conventional materials, gamma-type or enstite-type manganese dioxide, are basically orthorhombic, but compared to other manganese dioxides, their crystallinity is poor and they are somewhat amorphous. It is formalized. This is because the crystal growth is disordered in the crystal C-axis direction, and the crystallinity is reduced accordingly.

しかし、このように結晶性の悪い、いわば無定形化した
ガンマ二酸化マンガンを用いても充分な高負荷特性が得
られず、利用率が低くなる原因は、この二酸化マンガン
がもつ結晶性に問題がある。
However, even with the use of gamma manganese dioxide, which has poor crystallinity and has become amorphous, it is not possible to obtain sufficient high-load characteristics and the utilization rate is low. be.

即ち、二酸化マンガンがもつ結晶粒界あるいは異語晶子
間における拡散障壁がプロトンの固相的拡散を阻害させ
ていると考えらnる。
That is, it is considered that the diffusion barrier between the crystal grain boundaries or the crystallites of manganese dioxide inhibits the solid phase diffusion of protons.

本発明は、このような問題を解決するもので、優れた放
電利用率を有する正極活物質としての二酸化マンガンを
提供することを目的とするものである。
The present invention solves these problems and aims to provide manganese dioxide as a positive electrode active material having excellent discharge utilization.

問題点を解決するための手段 この問題点を解決するために本発明は、マンガン乾電池
およびアルカリ・マンガン電池の正極活物質として非晶
質二酸化マンガンを用いたものである。
Means for Solving the Problem In order to solve this problem, the present invention uses amorphous manganese dioxide as a positive electrode active material for manganese dry batteries and alkaline manganese batteries.

作  用 このような非晶質二酸化マンガンを正極活物質として用
いると、プロトンの二酸化マンガン固相内への拡散は結
晶粒界や異語晶子間による拡散障壁をもたないと考えら
れるため速やかに進行し、高負荷印加時の利用率はマン
ガン電池、アルカリマンガン電池のいずれにおいても向
上させることができた。
Effect When such amorphous manganese dioxide is used as a positive electrode active material, protons can be rapidly diffused into the solid phase of manganese dioxide because it is thought that there are no diffusion barriers such as grain boundaries or intercrystallites. As a result, the utilization rate under high load conditions was improved for both manganese and alkaline manganese batteries.

本発明は、このような事実に基づいて提案されたもので
あシ、以下その実施例について説明する。
The present invention has been proposed based on such facts, and examples thereof will be described below.

実施例1 まず、用いた非晶質の二酸化マンガンは、有効二酸化マ
ンガン量が94% 、MnOxのX値は1.96で結晶
形はX線回折図からほぼ無定形と判断される非常にブロ
ードなピークが観察された。また比導電率は無定形酸化
物特有のかなり低い値を示した。通常の電解二酸化マン
ガンの比導電率は1() −3(S/crn)のオーダ
であったのに対し、非晶質二酸化マンガンのそれは、1
0〜10 (S/cm)となった。これは4価のマンガ
ンイオンを中心として6個の酸素イオンが配置してでき
る八面体構造において、互いの八面体セグメントの配向
が乱れたこと、および4価のマンガンイオン同志間の島
構造がより無秩序な状態、即ち無定形化していることを
意味する。
Example 1 First, the amorphous manganese dioxide used had an effective amount of manganese dioxide of 94%, an X value of MnOx of 1.96, and a very broad crystal form judged to be almost amorphous from the X-ray diffraction diagram. A peak was observed. In addition, the specific conductivity showed a fairly low value, which is typical of amorphous oxides. The specific conductivity of ordinary electrolytic manganese dioxide was on the order of 1()-3(S/crn), whereas that of amorphous manganese dioxide was on the order of 1()-3(S/crn).
0 to 10 (S/cm). This is because the orientation of the octahedral segments is disordered in the octahedral structure formed by arranging six oxygen ions around a tetravalent manganese ion, and the island structure between the tetravalent manganese ions becomes more It means a disordered state, that is, an amorphous state.

また、結晶水は、通常の二酸化マンガンが1.7〜1.
8%である0(7)し非晶質二酸化マンガンのそれは2
〜3%に達し、結晶性の乱れに応じ、水酸基が増大した
ことを反映している。
In addition, the crystal water contains ordinary manganese dioxide of 1.7 to 1.
8% is 0(7) and that of amorphous manganese dioxide is 2
It reached ~3%, reflecting an increase in the number of hydroxyl groups in response to disordered crystallinity.

このような特性をもつ非晶質二酸化マンガンを正極活物
質、亜鉛を負極活物質とし、電解液に塩化亜鉛を主とし
だ中性溶液を用いて第1図に示すマンガン乾電池のモデ
ルセルを組み放電特性、特に二酸化マンガンの利用率を
検討した。
A model cell of a manganese dry battery as shown in Figure 1 was assembled using amorphous manganese dioxide, which has these characteristics, as a positive electrode active material, zinc as a negative electrode active material, and a neutral solution mainly containing zinc chloride as an electrolyte. The discharge characteristics, especially the utilization rate of manganese dioxide, were investigated.

第1図において、1は本発明に二る非晶質二酸化マンガ
ンとアセチレンプラックを5:1の重量比で混合した正
極合剤である。なお、通常の電解二酸化マンガンとアセ
チレンプラックを同比率で混合した合剤と上記合剤の比
導率は両方とも100のオーダとなり、はぼ同様であっ
た。2は正極集電体で白金板を用いている。3はセパレ
ータである。4は負極活物質である亜鉛板、5は正負極
のリード線、6はセルを固定するためのネジである。
In FIG. 1, reference numeral 1 is a positive electrode mixture in which amorphous manganese dioxide and acetylene plaque according to the present invention are mixed at a weight ratio of 5:1. The specific conductivities of the ordinary mixture of electrolytic manganese dioxide and acetylene plaque in the same ratio and the above mixture were both on the order of 100, and were almost the same. 2 is a positive electrode current collector using a platinum plate. 3 is a separator. 4 is a zinc plate which is a negative electrode active material, 5 is a lead wire of the positive and negative electrodes, and 6 is a screw for fixing the cell.

7.8は樹脂製のセル容器である。放電実験を行う前に
は単位体積あたりの正極合剤重量が全ての試験において
必ず一定になるように考慮した。放電条件は、電流密度
が5mA/ffl、7mA/cffl、9mA/、7の
各定電流連続放電試験とし、環境温度は20℃とした。
7.8 is a resin cell container. Before conducting the discharge experiment, consideration was given to ensuring that the weight of the positive electrode mixture per unit volume remained constant in all tests. The discharge conditions were constant current continuous discharge tests with current densities of 5 mA/ffl, 7 mA/cffl, 9 mA/, and 7, and the environmental temperature was 20°C.

評価方法としては、従来の電解二酸化マンガンの正極利
用率に対する非晶質二酸化マンガンのそれの比率で検討
した。
The evaluation method was based on the ratio of the positive electrode utilization rate of amorphous manganese dioxide to that of conventional electrolytic manganese dioxide.

電流密度を5.ア、 9 mA/cnl  とした時の
利用率比較結果を第2図に示す。図から判るように、5
mA/iでは従来の二酸化マンガンとほぼ同様の利用率
を示すのに対して、9mA/cnでは従来品よりも約2
6係の改善がみられる。このことから、非晶質二酸化マ
ンガンを用いると、軽負荷印加時での利用率は従来品と
ほぼ同様で、もっばら二酸化マンガンの充填量に依存す
るが、重負荷印加時では利用率を大福に改善できる。こ
れは、プロトンの固相内への拡散が非晶質状態でより速
やかに行われることばよると考えられ、(1)Eの反応
速度が速くなるに伴ってその効果がより顕著に現れる。
The current density is 5. A. Figure 2 shows the comparison results of the utilization rate when it was set to 9 mA/cnl. As you can see from the figure, 5
At mA/i, the utilization rate is almost the same as that of conventional manganese dioxide, while at 9 mA/cn, it is about 2 times lower than the conventional product.
There is an improvement in Section 6. From this, when amorphous manganese dioxide is used, the utilization rate when applying a light load is almost the same as that of conventional products, and depends mostly on the amount of manganese dioxide filled, but when applying a heavy load, the utilization rate is much lower than that of conventional products. can be improved. This is thought to be due to the fact that protons diffuse more quickly into the solid phase in the amorphous state, and (1) this effect becomes more pronounced as the reaction rate of E becomes faster.

実施例2 次に実施例1で示したモデルセルを用いてアルカリ電解
液中で同様の試験を行った。
Example 2 Next, a similar test was conducted in an alkaline electrolyte using the model cell shown in Example 1.

ここで用いた正極合剤は、非晶質二酸化マンガンと人造
黒鉛を9:1の重量比で混合した合剤である。なお、通
常の電解二酸化マンガンと人造黒鉛を同比率で混合した
合剤と前記合剤の比導電率は両者とも1o0のオーダで
あった。
The positive electrode mixture used here was a mixture of amorphous manganese dioxide and artificial graphite at a weight ratio of 9:1. Note that the specific conductivities of the mixture and the mixture of ordinary electrolytic manganese dioxide and artificial graphite in the same ratio were both on the order of 100.

電流密度をs 、 7 、9 mA/cJとした時の利
用率比較結果を第3図に示す。図から判るように、実施
例1の如く軽負荷印加時よりも9 mA/、fflのよ
うな重負荷印加時の方に改善がみられ、利用率は従来品
よりも約26%向上した。
FIG. 3 shows the comparison results of the utilization rates when the current densities were set to s, 7, and 9 mA/cJ. As can be seen from the figure, an improvement was seen when a heavy load such as 9 mA/ffl was applied than when a light load was applied as in Example 1, and the utilization rate was improved by about 26% compared to the conventional product.

以上のことかられかるように、マンガン乾電池、アルカ
リマンガン電池の正極活物質として非晶質二酸化マンガ
ンを用いると、正極利用率は改善される。特に重負荷印
加時には利用率が従来品よりも約25係も改善された。
As can be seen from the above, when amorphous manganese dioxide is used as the positive electrode active material of manganese dry batteries and alkaline manganese batteries, the positive electrode utilization rate is improved. Especially when applying heavy loads, the utilization rate was improved by about 25 factors compared to the conventional product.

発明の効果 以上のように、本発明によれば、アルカリ電解液、中性
電解液いずれにおいても正極利用率は改善され、特に重
負荷特性に優れた二酸化マンガン電池を提供し得るもの
である。
Effects of the Invention As described above, according to the present invention, the positive electrode utilization rate is improved in both alkaline electrolyte and neutral electrolyte, and it is possible to provide a manganese dioxide battery particularly excellent in heavy load characteristics.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の実施例におけるモデルセルの断面略
図、第2図は中性電解液中における従来品と本発明の非
晶質二酸化マンガンの正極利用率を比較した図、第3図
はアルカリ電解液中における従来品と本発明の非晶質二
酸化マンガンの正極利用率を比較した図である。 1・・・・・・正極合剤、3・・・・・・セパレータ、
4・・・・・・負極。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第 2 図         (中・と電解永)R茸晶
貫二酸イ巳マン刀′ンのオ]届率夕    j    
7    デ    /ltうL客演(a、Z声′)
Fig. 1 is a schematic cross-sectional view of a model cell in an example of the present invention, Fig. 2 is a comparison of the positive electrode utilization rate of the conventional product and the amorphous manganese dioxide of the present invention in a neutral electrolyte, and Fig. 3 FIG. 2 is a diagram comparing the positive electrode utilization rates of the conventional product and the amorphous manganese dioxide of the present invention in an alkaline electrolyte. 1... Positive electrode mixture, 3... Separator,
4...Negative electrode. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2 (Middle and Electron Era) R Mushroom Crystal Kanji Acid Imi Manto'n'o] Notification Rate Yu j
7 De/ltU L guest performance (a, Z voice')

Claims (1)

【特許請求の範囲】[Claims] 正極活物質である二酸化マンガンが、非晶質状態である
ことを特徴とする二酸化マンガン電池。
A manganese dioxide battery characterized in that manganese dioxide, which is a positive electrode active material, is in an amorphous state.
JP61153134A 1986-06-30 1986-06-30 Manganese dioxide battery Expired - Lifetime JPH067484B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61153134A JPH067484B2 (en) 1986-06-30 1986-06-30 Manganese dioxide battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61153134A JPH067484B2 (en) 1986-06-30 1986-06-30 Manganese dioxide battery

Publications (2)

Publication Number Publication Date
JPS6310465A true JPS6310465A (en) 1988-01-18
JPH067484B2 JPH067484B2 (en) 1994-01-26

Family

ID=15555741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61153134A Expired - Lifetime JPH067484B2 (en) 1986-06-30 1986-06-30 Manganese dioxide battery

Country Status (1)

Country Link
JP (1) JPH067484B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5969341A (en) * 1996-10-11 1999-10-19 Kabushiki Kaisha Toyota Chuo Kenkyusho Optical integrated voltage sensor for optically measuring the magnitude of a voltage
JP2006139973A (en) * 2004-11-11 2006-06-01 Hitachi Maxell Ltd Alkaline cell
WO2019090422A1 (en) * 2017-11-09 2019-05-16 The University Of British Columbia Electrolytic manganese dioxide and a method of preparing thereof
CN113921804A (en) * 2021-10-11 2022-01-11 燕山大学 Electrochemical preparation method of monatomic manganese catalyst

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5969341A (en) * 1996-10-11 1999-10-19 Kabushiki Kaisha Toyota Chuo Kenkyusho Optical integrated voltage sensor for optically measuring the magnitude of a voltage
JP2006139973A (en) * 2004-11-11 2006-06-01 Hitachi Maxell Ltd Alkaline cell
WO2019090422A1 (en) * 2017-11-09 2019-05-16 The University Of British Columbia Electrolytic manganese dioxide and a method of preparing thereof
CN113921804A (en) * 2021-10-11 2022-01-11 燕山大学 Electrochemical preparation method of monatomic manganese catalyst
CN113921804B (en) * 2021-10-11 2022-12-27 燕山大学 Electrochemical preparation method of monatomic manganese catalyst

Also Published As

Publication number Publication date
JPH067484B2 (en) 1994-01-26

Similar Documents

Publication Publication Date Title
US6187475B1 (en) Aqueous zinc sulfate (II) rechargeable cell containing manganese (II) salt and carbon powder
US5077149A (en) Nickel/hydrogen storage battery and method of manufacturing the same
Pavlov Suppression of premature capacity loss by methods based on the gel—crystal concept of the PbO2 electrode
US3918988A (en) Electric current-producing cells
JPS6310465A (en) Maganese dioxide battery
JPH10188963A (en) Sealed lead-acid battery
JP3623320B2 (en) Nickel electrode active material and nickel electrode using the nickel electrode active material
JPH01176663A (en) Dry battery
JP3412170B2 (en) Hydrogen storage electrode
JPH10326612A (en) Negative electrode for lithium ion secondary battery and its manufacture
JP2518090B2 (en) Lead acid battery
JPS60246559A (en) Flat organic electrolyte cell
JPH10199562A (en) Sealed lead-acid battery
JPS63158749A (en) Zinc electrode for alkaline storage battery
JPS61101955A (en) Alkali zinc storage cell
JPH0474833B2 (en)
JPS5822868B2 (en) nickel zinc alkaline storage battery
JPS63158750A (en) Zink electrode for alkaline storage battery
JP2002075339A (en) Lead-acid battery
JPS62219466A (en) Secondary cell
JPS6091565A (en) Nonaqueous electrolyte battery
JPS6342818B2 (en)
JPS6319764A (en) Lead-acid battery
JPS58157068A (en) Button-type air cell
JPH04190556A (en) Lithium secondary battery