JPS63103818A - Continuous production of high-purity boron oxide - Google Patents

Continuous production of high-purity boron oxide

Info

Publication number
JPS63103818A
JPS63103818A JP24796586A JP24796586A JPS63103818A JP S63103818 A JPS63103818 A JP S63103818A JP 24796586 A JP24796586 A JP 24796586A JP 24796586 A JP24796586 A JP 24796586A JP S63103818 A JPS63103818 A JP S63103818A
Authority
JP
Japan
Prior art keywords
boric acid
crucible
hearth
boron oxide
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24796586A
Other languages
Japanese (ja)
Other versions
JPH053414B2 (en
Inventor
Ryoichi Mitake
三武 亮一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHOWA P K KK
Original Assignee
SHOWA P K KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHOWA P K KK filed Critical SHOWA P K KK
Priority to JP24796586A priority Critical patent/JPS63103818A/en
Publication of JPS63103818A publication Critical patent/JPS63103818A/en
Publication of JPH053414B2 publication Critical patent/JPH053414B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To readily increase temperature in a short time and continuously obtain the titled B2O3 with excellent thermal efficiency, by flowing down boric acid in a crucible while heating in an aslant installed heating furnace having heaters provided to give a specific temperature gradient. CONSTITUTION:Heaters 8 are provided to give 150-200 deg.C at a position (a) of the ceiling 1 in a heating furnace (A) made of stainless steel or ceramics, 250-450 deg.C at a position (b) and 600-700 deg.C at a position (c) near the back end and a crucible 2, having an opened top and containing powdery boric acid 3 is placed at a high position of a hearth 1'. The hearth 1' is suitably tilted to constitute an apparatus. The heaters 8 in the furnace (A) are then heated to dehydrate and melt the boric acid 3 in the crucible 2. On the other hand, the boric acid 3 is continuously fed to overflow and flow down the boric acid 3 converted into a solution state and successively heated to a high temperature, changed into B2O3 in a bubble form 4 and then a thick malt syrup form 5 at the position (c). Thereby the aimed high-purity B2O3 is continuously obtained from a B2O3 flowing down and taking outlet heating furnace as indicated by an arrow. On the other hand, steam generated by dehydration in this process is discharged from an air vent hole 7 provided at the ceiling 1 on the side of the crucible 2 to the outside of the furnace (A).

Description

【発明の詳細な説明】 本発明は、含量が98チ以上の高純度酸化ホウ素の連続
製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for continuously producing high purity boron oxide having a content of 98 tin or more.

ホウ酸酸化物には各種の酸化物があるが、本発明は一般
に三酸化ニホウ素(Bz Os )を指すもので、通常
酸化ホウ素はホウ酸を加熱脱水してつくられるもので無
水ホウ酸とも称されている。
There are various types of boric acid oxides, but the present invention generally refers to diboron trioxide (BzOs).Boron oxide is usually made by heating and dehydrating boric acid, and is also called boric anhydride. It is called.

ホウ酸を加熱脱水して酸化ホウ素を製造する場合におい
て、含!85%程度の酸化ホウ素を得る場合は、ホウ酸
を比較的低い温度、即ち230℃前後の温度で所要時間
加熱すれば得られるが、本発明の意図する含量98チ以
上の高純度の酸化ホウ素を得る場合にはきわめて高温で
加熱するため装置的VC種々の問題が生じる。
When producing boron oxide by heating and dehydrating boric acid, containing! In order to obtain about 85% boron oxide, it can be obtained by heating boric acid at a relatively low temperature, that is, around 230°C for the required time, but it is possible to obtain boron oxide of high purity with a content of 98% or more as intended by the present invention. When obtaining VC, various problems arise due to the heating at extremely high temperatures.

ホウ酸は加熱脱水により酸化ホウ素に変化する過程にお
いて、まず150〜200℃で溶液法となり、その後加
熱脱水がすすむにし次がって次第に粘度を増し、温度が
250〜450℃、含量で90〜98−位になると粘着
性の強い泡抜となり、その後、酸化ホウ素の融点に近ず
くにつれて再び溶融状態となって融点(577℃)を越
えると水飴犬の結像の高い液状に溶融して含[98−以
上の高純度の酸化ホウ素(無水ホウ酸)となる性質を有
している。したがって、このような含i9B%以上の高
純度の酸化ホウ素を得る場合には高温である之め容器(
ルツボ)の材質を選定する必要があり、従来一般YCd
白金ルツボが用いられているが、高価な念めに大型のル
ツボを使用することができずに小型のルツボを使用する
ため生産量が少く、しかも前述の如く水飴状の高粘度の
ため取出しが困難であった。
In the process of changing boron oxide through thermal dehydration, boric acid first becomes a solution method at 150 to 200°C, and then as the thermal dehydration progresses, the viscosity gradually increases, and the temperature is 250 to 450°C, and the content is 90 to 90°C. When it reaches the 98-position, it becomes a highly sticky bubble, and then, as it approaches the melting point of boron oxide, it becomes molten again, and when it exceeds the melting point (577°C), it melts into a liquid state with a high image formation of a starch syrup dog. [It has the property of becoming high purity boron oxide (boric anhydride) with a purity of 98 or higher. Therefore, when obtaining high-purity boron oxide with an i content of 9B% or more, a high-temperature container (
It is necessary to select the material of the crucible, and conventionally general YCd
Platinum crucibles are used, but due to the high cost, it is not possible to use large crucibles, and small crucibles are used, resulting in low production volumes.Furthermore, as mentioned above, the high viscosity of the crucibles makes it difficult to take out the crucibles. It was difficult.

本発明ハ、炉材をステンレスかセラミックとし、炉床を
傾斜して形成し、炉床の傾斜の高い部位罠溶液状のホウ
酸受は容器を配【−1この容器内r′c述続的にホウ酸
を供給して加熱溶融させ容器から溢出した液状のホウ酸
を傾斜し念炉床に流し、炉内の温度を順次高温にし、最
終的には酸化ホウ素の融点以上の700℃程度にするこ
とによって連続的に高純度の酸化ホウ素を得るものであ
り、炉床を流下させることによって熱効率がきわめて良
く短時間の間に酸化ホウ素を高温に導くことのできる高
純度の酸化ホウ素の製造方法を提供するものである。
In the present invention, the furnace material is made of stainless steel or ceramic, the hearth is formed in an inclined manner, and a container is arranged to trap the boric acid in the form of a solution in the highly sloped part of the hearth. Boric acid is then heated and melted, and the liquid boric acid that overflows from the container is tilted and poured into the memorial hearth, and the temperature inside the furnace is gradually increased to a temperature of about 700℃, which is higher than the melting point of boron oxide. This is a method to continuously obtain high-purity boron oxide by heating the hearth, and the production of high-purity boron oxide, which has extremely high thermal efficiency and can bring boron oxide to a high temperature in a short period of time by flowing down the hearth. The present invention provides a method.

添付図面により本発明の詳細な説明すると第1図は本発
明の一実施例を示し、第2図は別の実施例を示すもので
ある。
The present invention will be described in detail with reference to the accompanying drawings. FIG. 1 shows one embodiment of the invention, and FIG. 2 shows another embodiment.

第1図においてAは加熱炉であり、天井部材(1)と炉
床(1)′とよりなり炉材としてはステンレスあるいは
セラミックが使用される。炉床(1)′は適度に傾斜さ
せて構成してあり、加熱炉ムは炉床の傾斜の高い部位に
上面開放型のルツボ(2)を配し、炉のルツボ側の天井
(1)に空気抜き孔(7)を設けると共に炉床傾斜の最
低部に酸化ホウ素流下取出口(6)を設け、炉の天井(
1)内面にはヒーター(8)を配しである。このヒータ
ー(8)の配置は好ましくは炉床の傾斜に従って高い方
向から低い方向にかけて順次炉内が高温になる如く配置
するものとする。したがって炉A内の温度はルツボ(2
)附近の(イ)の位置においては一番低く150〜20
0℃程度とし、ルツボ(2)の隣接する附近の(ロ)の
位置では250〜450℃程度とし、炉床の傾斜の一番
低い部分、では酸化ホウ素の融点577℃よりも高い7
00℃前後となるようにヒーター(8)を配置する。図
中の符号(31riミルツボ2)に連続供給されるホウ
酸が加熱されて溶液状となっている吠態を示し、(41
riルツボ(2)から溢出して炉床でさらに加熱されて
泡吠に変形している酸化ホウ素の吠態を示し、(5)は
炉床をさらに流下して加熱されて水飴法に溶融している
酸化ホウ素の吠態を示している。
In FIG. 1, A is a heating furnace, which consists of a ceiling member (1) and a hearth (1)', and stainless steel or ceramic is used as the furnace material. The hearth (1)' is constructed with a moderate slope, and the heating furnace has an open-top crucible (2) placed on the high slope of the hearth, and the ceiling (1) on the crucible side of the furnace. An air vent hole (7) is provided in the furnace ceiling, and a boron oxide flow outlet (6) is provided in the lowest part of the hearth slope.
1) A heater (8) is arranged on the inner surface. The heaters (8) are preferably arranged so that the temperature inside the furnace increases sequentially from the higher direction to the lower direction according to the inclination of the hearth. Therefore, the temperature inside the furnace A is the crucible (2
) Nearby position (a) is the lowest at 150-20
The temperature is about 0°C, and the temperature is about 250 to 450°C near the crucible (2) (b), and at the lowest slope of the hearth, the melting point is higher than the melting point of boron oxide, 577°C.
A heater (8) is arranged so that the temperature is around 00°C. The boric acid continuously supplied to the symbol (31ri mill crucible 2) in the figure is heated and becomes a solution state.
It shows boron oxide overflowing from the ri crucible (2) and being further heated in the hearth and transformed into foam, while (5) flows further down the hearth and is heated and melted into starch syrup. This shows the behavior of boron oxide.

第2図は別の実施例を示すものであって、第1図の実施
例と比較して、ルツボ(2)ニ代えて炉床(1)′の傾
斜面の最上部位置に凹部(2どを形成し、この凹部(2
)′を溶液状のホウ酸(3)の溜容器とするものである
。そしてこの他の部分は第1図の炉Aと同一の構成であ
るから同一符号を付しである。
FIG. 2 shows another embodiment, in which a recess (2) is provided at the top of the slope of the hearth (1)' instead of the crucible (2), compared to the embodiment shown in FIG. This recess (2
)' is a reservoir for boric acid (3) in solution form. Since the other parts have the same structure as the furnace A in FIG. 1, they are designated by the same reference numerals.

次に本発明の製造方法を詳記すると、炉A内のルツボ(
2)にホウ酸(粉末で含水倹約44.0%)を入れる。
Next, to describe the manufacturing method of the present invention in detail, the crucible (
2) Add boric acid (powder, water content: 44.0%).

炉A内の温度はルツボ(2)のある(イ)の位置でl′
1150 #200℃、ルツボ(2)から炉A中央にか
けての(ロ)の位置でハ250〜450℃とし、炉床の
終端附近では600〜700℃となる如くヒーター(8
)を設置しておく。前述のルツボ(2)内のホウ酸は加
熱されて脱水して溶融が開始するので、この際連続的に
ホウ酸を供給すると溶液状となったホウ酸(3)は図中
矢印のようにルツボ(2)から溢出してア床(1)′上
に流下し、炉内(=)の位置において、さらに加熱され
て泡吠の酸化ホウ素に変形しながら傾斜している炉床(
1)′上を徐々に流下して(ハ)の位置に達する。この
(・→の位!において酸化ホウ素はさらに融点(577
℃)以上に加熱されるため泡状から水飴状に変形して取
出口(6)から流下して回収される。
The temperature inside furnace A is l' at position (a) where crucible (2) is located.
1150
) is set up. The boric acid in the crucible (2) described above is heated, dehydrated, and begins to melt, so if boric acid is continuously supplied at this time, the boric acid (3), which has become a solution, will move as shown by the arrow in the figure. It overflows from the crucible (2) and flows down onto the hearth (1)', where it is further heated and transformed into foamy boron oxide at the position inside the furnace (=).
1) Gradually flows down from above and reaches position (c). At this point (・→!), boron oxide has a further melting point (577
℃), it deforms from a foam-like shape to a starch syrup-like shape, flows down from the outlet (6), and is collected.

この工程中脱水された水蒸気は空気抜き孔(7)から炉
A IAK放出される。また取出口(6)から回収され
た酸化ホウ素は含量98−以上、即ち含水量2チ以下で
完全な無水ホウ酸に近く、高温で取出された酸化ホウ素
は直ちに冷されて固化するから適当に粉砕して所要のメ
ツシュに調整される。
The water vapor dehydrated during this process is discharged from the furnace AIAK through the air vent (7). In addition, the boron oxide recovered from the outlet (6) has a content of 98% or more, that is, a water content of 2% or less, and is close to complete boric anhydride. It is crushed and adjusted to the required mesh.

ま次第2図の実施例にあってもその製造方法は全く同じ
であうで、炉床(1)′の凹部(2ビに粉末ホウ酸を連
続的に供給して加熱すると液状化したホウ酸(3)ri
凹部(2ビの溶解溜から浴出して炉床上を流下して加熱
されることにより泡状から水飴法に脱水されながら変形
して含量98チ以上の高純度の酸化ホウ素を得ることが
できる。
The manufacturing method is exactly the same for the embodiment shown in Figure 2. Powdered boric acid is continuously supplied to the recessed part (2) of the hearth (1)' and heated to produce liquefied boric acid ( 3) ri
The bath is discharged from the melting tank of the recess (2-bi), flows down on the hearth, and is heated, dehydrating and deforming from a foamy state to a starch syrup method, making it possible to obtain highly pure boron oxide with a content of 98% or more.

以上本発明の製造方法を説明したが、本発明によるとき
は、酸化ホウ素が傾斜している炉床を徐々に流下するた
めヒーターの加熱による熱効率がきわめてよく、極く短
時間で所望の温度に加熱されるものであるからホウ酸の
融点以上700℃程度までも容易であり、しかも連続的
に高純度の酸化ホウ素を製造しうるという従来法にはみ
られない画期的効果を奏する。
The manufacturing method of the present invention has been described above, and in accordance with the present invention, the boron oxide gradually flows down the inclined hearth, so the thermal efficiency of heating by the heater is extremely high, and the desired temperature can be reached in an extremely short time. Since it is heated, it is easy to reach temperatures above the melting point of boric acid, about 700° C., and it has the revolutionary effect of being able to continuously produce high-purity boron oxide, which is not seen in conventional methods.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示す断面図であり、第2図は
別の実施例を示す断面図である。
FIG. 1 is a sectional view showing an embodiment of the present invention, and FIG. 2 is a sectional view showing another embodiment.

Claims (2)

【特許請求の範囲】[Claims] (1)炉の床を適度に傾斜させて構成し、該傾斜炉床の
高い部位に上面開放状のルツボを配置し、炉上面に加熱
用のヒーターを配してなり、炉のルツボ側の天井に空気
抜き孔を設けると共に、炉床傾斜位置の最低部に酸化ホ
ウ素流下取出口を設け、ルツボ内にホウ酸を連続的に供
給して充満させながらヒーターにより加熱して液状化し
、ルツボ傾斜側より溢流した液状ホウ酸を炉床に自然に
流下させて順次高温に加熱し、炉床最終端附近でホウ酸
の融点以上に加熱することにより高純度酸化ホウ素を取
出口から得ることを特徴とした酸化ホウ素の連続製造方
(1) The furnace floor is moderately inclined, a crucible with an open top is placed on the high part of the inclined hearth, and a heating heater is placed on the top of the furnace. In addition to providing an air vent hole in the ceiling, a boron oxide flow outlet is provided at the lowest part of the inclined hearth position, and boric acid is continuously supplied into the crucible, filling it up and heating it with a heater to liquefy it. The overflowing liquid boric acid is allowed to naturally flow down to the hearth and heated to a high temperature one after another, and high purity boron oxide is obtained from the outlet by heating it to above the melting point of boric acid near the final end of the hearth. Continuous production method for boron oxide
(2)傾斜させた炉床の上部位置に凹部を形成し、該凹
部をホウ酸溶解溜とした特許請求の範囲(1)に記載の
高純度酸化ホウ素の連続製造方法
(2) A method for continuously producing high-purity boron oxide according to claim (1), in which a recess is formed in the upper part of the inclined hearth, and the recess is used as a boric acid dissolution reservoir.
JP24796586A 1986-10-17 1986-10-17 Continuous production of high-purity boron oxide Granted JPS63103818A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24796586A JPS63103818A (en) 1986-10-17 1986-10-17 Continuous production of high-purity boron oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24796586A JPS63103818A (en) 1986-10-17 1986-10-17 Continuous production of high-purity boron oxide

Publications (2)

Publication Number Publication Date
JPS63103818A true JPS63103818A (en) 1988-05-09
JPH053414B2 JPH053414B2 (en) 1993-01-14

Family

ID=17171187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24796586A Granted JPS63103818A (en) 1986-10-17 1986-10-17 Continuous production of high-purity boron oxide

Country Status (1)

Country Link
JP (1) JPS63103818A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0662088U (en) * 1993-02-01 1994-09-02 株式会社ノーリツ Storage box mounting structure

Also Published As

Publication number Publication date
JPH053414B2 (en) 1993-01-14

Similar Documents

Publication Publication Date Title
US4381934A (en) Glass batch liquefaction
CN101423220B (en) Method for purifying and ingot casting multi-temperature zones silicon material and apparatus thereof
CN100464149C (en) Thermal field structure of polysilicon ingot furnace
US3717450A (en) Furnace for manufacture of striationfree quartz tubing
US3429684A (en) Glass melting furnace with vacuum feed means
US4265859A (en) Apparatus for producing semiconductor grade silicon and replenishing the melt of a crystal growth system
JPS6044380B2 (en) Continuous reflux purification method and device for metals
TW200938664A (en) Method for producing a monocrystalline or polycrystalline semiconductor material
CN201201903Y (en) Vacuum furnace with multiple temperature zones for purifying silicon and casting ingot
CN104561591B (en) Rafifinal directional solidification short route equipment for purifying and method of purification
US3278282A (en) Glass spinning crucible
CN202063818U (en) High-performance glass-melting device
CN208949130U (en) A kind of quartz glass plate continuous induction melting furnace of homogeneous heating
US7849912B2 (en) Process for electroslag remelting of metals and ingot mould therefor
NO781528L (en) PROCEDURE AND DEVICE AT HEAT TEMPERATURE REACTOR
CN204848629U (en) Multi -temperature -zone heating continuous smelting stove
US4138238A (en) Method and apparatus for producing molten glass
JPS63103818A (en) Continuous production of high-purity boron oxide
CN201133765Y (en) Polycrystalline silicon segregation ingot furnace
Schwab et al. Purification of substances by slow fractional freezing
KR101408594B1 (en) Apparatus for producing multicrystalline silicon ingots
JPH053415B2 (en)
KR20140116389A (en) Method for drawing vitrifiable materials
CN207109142U (en) Crystal growing furnace
CN107138722A (en) Turning barrel and system in a kind of lead casting heating and thermal insulation