JPH053415B2 - - Google Patents

Info

Publication number
JPH053415B2
JPH053415B2 JP24796686A JP24796686A JPH053415B2 JP H053415 B2 JPH053415 B2 JP H053415B2 JP 24796686 A JP24796686 A JP 24796686A JP 24796686 A JP24796686 A JP 24796686A JP H053415 B2 JPH053415 B2 JP H053415B2
Authority
JP
Japan
Prior art keywords
boric acid
hearth
boron oxide
crucible
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP24796686A
Other languages
Japanese (ja)
Other versions
JPS63103819A (en
Inventor
Ryoichi Mitake
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHOWA PII KEE KK
Original Assignee
SHOWA PII KEE KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHOWA PII KEE KK filed Critical SHOWA PII KEE KK
Priority to JP24796686A priority Critical patent/JPS63103819A/en
Publication of JPS63103819A publication Critical patent/JPS63103819A/en
Publication of JPH053415B2 publication Critical patent/JPH053415B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Crucibles And Fluidized-Bed Furnaces (AREA)
  • Saccharide Compounds (AREA)

Description

【発明の詳細な説明】 本発明は、含量が98%以上の高純度酸化ホウ素
の連続製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for continuously producing high purity boron oxide with a content of 98% or more.

ホウ酸酸化物には各種の酸化物があるが、本発
明は一般に三酸化二ホウ素(B2O3)を指すもの
で、通常酸化ホウ素はホウ酸を加熱脱水してつく
られるもので無水ホウ酸とを称されている。ホウ
酸を加熱脱水して酸化ホウ素を製造する場合にお
いて、含量85%程度の酸化ホウ素を得る場合は、
ホウ酸を比較的低い温度、即ち230℃前後の温度
で所要時間加熱すれば得られるが、本発明の意図
する含量98%以上の高純度の酸化ホウ素を得る場
合にはきわめて高温で加熱するため装置的に種々
の問題が生じる。
There are various types of boric acid oxides, but the present invention generally refers to diboron trioxide (B 2 O 3 ), and boron oxide is usually made by heating and dehydrating boric acid. It is called an acid. When producing boron oxide by heating and dehydrating boric acid, to obtain boron oxide with a content of about 85%,
Boric acid can be obtained by heating boric acid at a relatively low temperature, that is, around 230°C, for the required time, but in order to obtain high purity boron oxide with a content of 98% or more as intended by the present invention, it must be heated at an extremely high temperature. Various problems arise with the equipment.

ホウ酸は加熱脱水により酸化ホウ素に変化する
過程において、まず150〜200℃で溶液状となり、
その後加熱脱水がすすむにしたがつて次第に粘度
を増し、温度が250〜450℃、含量で90〜98%位に
なると粘着性の強い泡状となり、その後酸化ホウ
素の融点に近ずくにつれて再び溶融状態となつて
融点(577℃)を越えると水飴状の粘度の高い液
状に溶融して含量98%以上の高純度の酸化ホウ素
(無水ホウ酸)となる性質を有している。したが
つて、このような含量98%以上の高純度の酸化ホ
ウ素を得る場合には高温であるため容器(ルツ
ボ)の材質を選定する必要があり、従来一般には
白金ルツボが用いられているが、高価なために大
型のルツボを使用することができずに小型のルツ
ボを使用するため生産性が少く、しかも前述の如
く水飴状の高粘度のため取出しが困難であつた。
In the process of converting boric acid into boron oxide by heating and dehydration, it first becomes a solution at 150 to 200℃,
After that, the viscosity gradually increases as the heating dehydration progresses, and when the temperature reaches 250-450℃ and the content reaches about 90-98%, it becomes a sticky foam, and then it becomes molten again as it approaches the melting point of boron oxide. When the melting point (577°C) is exceeded, it melts into a highly viscous liquid similar to starch syrup and becomes highly pure boron oxide (boric anhydride) with a content of 98% or more. Therefore, in order to obtain such high purity boron oxide with a content of 98% or more, it is necessary to select the material of the container (crucible) due to the high temperature, and conventionally platinum crucibles have been generally used. However, because it is expensive, it is not possible to use a large crucible, and instead a small crucible is used, resulting in low productivity.Moreover, as mentioned above, it is difficult to take out the product because of its high viscosity like starch syrup.

本発明は、低温加熱容器と高温の加熱炉を別個
に設け、低温加熱容器でホウ酸(粉末)を150〜
200℃程度に加熱して液状体とし、この液状ホウ
酸を加熱炉内のルツボに送液管を介して連続的に
供給するもので、加熱炉は炉材をステンレスかセ
ラミツクとし、炉床を傾斜して形成し、炉床の傾
斜の高い部位に液状のホウ酸受け容器を配し、こ
の容器内に連続的に液状ホウ酸を供給して加熱濃
縮させ、容器から溢出した濃縮液状のホウ酸を傾
斜した炉床に流し、炉内の温度を順次高温にし、
最終的には酸化ホウ素の融点以上の700℃程度に
することによつて連続的に高純度の酸化ホウ素を
得るものであり、炉床を流下させることによつて
熱効率がきわめて良く短時間の間に酸化ホウ素を
高温に導くことのできる高純度の酸化ホウ素の製
造方法を提供するものである。
In the present invention, a low-temperature heating container and a high-temperature heating furnace are provided separately, and boric acid (powder) is heated to
The liquid boric acid is heated to about 200℃ to form a liquid, and this liquid boric acid is continuously supplied to the crucible in the heating furnace via a liquid pipe.The heating furnace is made of stainless steel or ceramic, and the hearth is made of stainless steel or ceramic. A liquid boric acid receiving container is arranged at the high slope part of the hearth, and liquid boric acid is continuously supplied into this container and concentrated by heating, and the concentrated liquid boric acid overflowing from the container is collected. Acid is poured into a sloping hearth, and the temperature inside the furnace is gradually raised to high temperatures.
Ultimately, high-purity boron oxide is obtained continuously by heating the temperature to about 700℃, which is above the melting point of boron oxide, and by flowing down the hearth, it is extremely efficient and can be produced for a short period of time. The present invention provides a method for producing high-purity boron oxide, which can bring boron oxide to a high temperature.

添付図面により本発明の実施例を説明すると第
1図は本発明の一実施例を示し、第2図は別の実
施例を示すものである。
Embodiments of the present invention will be described with reference to the accompanying drawings. FIG. 1 shows one embodiment of the invention, and FIG. 2 shows another embodiment.

第1図においてA′は低温加熱容器であり、1
0は容器でありこの形状および大きさは任意であ
る。11は原料投入口であつて12は水蒸気の排
気口を示す。13はモーター14によつて回転す
る撹拌器であり、15は送液管であつて、この管
路の途中に送液開閉用のバルブ16を配してい
る。そして本発明にあつては、この低温加熱容器
A′とは別個に高温の加熱炉を設けるものである。
またBはバーナーやヒーター等の加熱器である。
そして、モーター14により回転する撹拌器13
は容器10内の中心部に位置しており所望に応じ
て設けるものである。この低温加熱容器A′は原
料投入口11から粉末状のホウ酸が投入され、加
熱器Bによつて150〜200℃に加熱されて液状化さ
れる。そしてこの液状化されたホウ酸は送液管1
5を経て加熱炉Aのルツボ2内に導入される。A
は加熱炉であり、天井部材1と炉床1′とよりな
り炉材としてはステンレスあるいはセラミツクが
使用される。炉床1′は適度に傾斜させて構成し
てあり、加熱炉Aは炉床の傾斜の高い部位に上面
開放型のルツボ2を配し、炉のルツボ側の天井1
に空気抜き孔7を設けると共に炉床傾斜の最低部
に酸化ホウ素流下取出口6を設け、炉の天井1内
面にはヒーター8を配してある。このヒーター8
の配置は好ましくは炉床の傾斜に従つて高い方向
から低い方向にかけて順次炉内が高温になる如く
配置するものとする。したがつて炉A内の温度は
ルツボ2附近の(イ)の位置においては一番低く150
〜200℃程度とし、ルツボ2の隣接する附近の(ロ)
の位置では250〜450℃程度とし、炉床の傾斜の一
番低い部分では酸化ホウ素の融点577℃よりも高
い700℃前後となるようにヒーター8を配置する。
図中の符号3はルツボ2に連続供給されるホウ酸
が加熱されて濃縮溶液状となつている状態を示
し、4はルツボ2から溢出して炉床でさらに加熱
されて泡状に変形している酸化ホウ素の状態を示
し、5は炉床をさらに流下して加熱されて水飴状
に溶融している酸化ホウ素の状態を示している。
In Figure 1, A' is a low temperature heating container, and 1
0 is a container whose shape and size are arbitrary. 11 is a raw material input port, and 12 is a steam exhaust port. 13 is an agitator rotated by a motor 14, and 15 is a liquid feeding pipe, and a valve 16 for opening and closing liquid feeding is disposed in the middle of this pipe. In the present invention, this low temperature heating container
A high-temperature heating furnace is provided separately from A'.
Further, B is a heater such as a burner or a heater.
A stirrer 13 rotated by a motor 14
is located at the center of the container 10 and may be provided as desired. Powdered boric acid is charged into this low-temperature heating container A' through a raw material input port 11, and is heated to 150 to 200°C by a heater B to be liquefied. Then, this liquefied boric acid is transferred to the liquid sending pipe 1.
5 and is introduced into the crucible 2 of the heating furnace A. A
The heating furnace is composed of a ceiling member 1 and a hearth 1', and stainless steel or ceramic is used as the furnace material. The hearth 1' is constructed with a moderate inclination, and the heating furnace A has an open-top crucible 2 on the high slope of the hearth, and the ceiling 1 on the crucible side of the furnace.
An air vent hole 7 is provided in the furnace, and a boron oxide flow outlet 6 is provided at the lowest part of the slope of the hearth, and a heater 8 is provided on the inner surface of the ceiling 1 of the furnace. This heater 8
The arrangement is preferably such that the temperature inside the furnace increases sequentially from the higher direction to the lower direction according to the inclination of the hearth. Therefore, the temperature inside furnace A is the lowest at position (a) near crucible 2, which is 150°C.
~200℃, and (b) in the vicinity of crucible 2.
The heater 8 is arranged so that the temperature is about 250 to 450°C at the position and the temperature at the lowest slope of the hearth is about 700°C, which is higher than the melting point of boron oxide, 577°C.
In the figure, numeral 3 indicates that the boric acid that is continuously supplied to the crucible 2 is heated and becomes a concentrated solution, and numeral 4 indicates that the boric acid that is continuously supplied to the crucible 2 is heated and becomes a concentrated solution. 5 shows the state of boron oxide flowing down the hearth and being heated and melted into a starch syrup-like state.

第2図は別の実施例を示すものであつて、第1
図の実施例と比較して、ルツボ2に代えて炉床
1′の傾斜面の最上部位置に凹部2′を形成し、こ
の凹部2′を溶液状のホウ酸3の溜容器とするも
のである。そしてこの他の部分は第1図の炉Aと
同一の構成であるから同一符号を付してある。
FIG. 2 shows another embodiment, in which the first
Compared to the embodiment shown in the figure, a recess 2' is formed at the top of the inclined surface of the hearth 1' instead of the crucible 2, and this recess 2' is used as a reservoir for the boric acid 3 in solution form. It is. Since the other parts have the same structure as the furnace A in FIG. 1, they are designated by the same reference numerals.

次に本発明の製造方法を詳記すると、低温加熱
容器A′に粉末のホウ酸(含水量約44%)が投入
され、この容器A′内は加熱器Bによつて150〜
200℃に加熱され、粉末のホウ酸は液状化する。
この液状化したホウ酸は送液管を通してバルブに
よつて流量を調整したホウ酸は常にルツボ2に導
入される。加熱炉Aの炉内の温度はルツボ2のあ
る(イ)の位置では150〜200℃、ルツボ2から炉A中
央にかけての(ロ)の位置では250〜450℃とし、炉床
の終端附近では600〜700℃となる如くヒーター8
を位置しておく。前述のルツボ2内のホウ酸は加
熱されて濃縮する。この際連続的にホウ酸を供給
すると濃縮された液状ホウ酸3は図中矢印のよう
にルツボ2から溢出して炉床1′上に流下し、炉
内(ロ)の位置においてさらに加熱されて泡状の酸化
ホウ素に変形しながら傾斜している炉床1′上を
徐々に流下して(ハ)の位置の達する。この(ハ)の位置
において酸化ホウ素はさらに融点(577℃)以上
に加熱されるため泡状から水飴状に変形して取出
口6から流下して回収される。
Next, the manufacturing method of the present invention will be described in detail. Powdered boric acid (water content: about 44%) is put into a low-temperature heating container A', and the temperature inside this container A' is
When heated to 200°C, the powdered boric acid liquefies.
This liquefied boric acid is constantly introduced into the crucible 2 through a liquid feeding pipe, the flow rate of which is adjusted by a valve. The temperature inside the heating furnace A is 150 to 200°C at the position (a) where the crucible 2 is located, 250 to 450°C at the position (b) from the crucible 2 to the center of the furnace A, and the temperature is 250 to 450°C near the end of the hearth. Heater 8 so that the temperature is 600-700℃
position. The boric acid in the crucible 2 described above is heated and concentrated. At this time, when boric acid is continuously supplied, the concentrated liquid boric acid 3 overflows from the crucible 2 as shown by the arrow in the figure and flows down onto the hearth 1', where it is further heated at the position inside the furnace (b). The boron oxide gradually flows down on the sloping hearth 1' while transforming into a foamy boron oxide, reaching the position (c). At this position (c), the boron oxide is further heated above its melting point (577° C.), so that it changes from a foam shape to a starch syrup shape, flows down from the outlet 6, and is recovered.

この工程中脱水された水蒸気は空気抜き孔7か
ら炉A外に放出される。また取出口6から回収さ
れた酸化ホウ素は含量98%以上、即ち含水量2%
以下で完全な無水ホウ酸に近く、高温で取出され
た酸化ホウ素は直ちに冷されて固化するから適当
に粉砕して所要のメツシユに調整される。
The water vapor dehydrated during this process is released to the outside of the furnace A through the air vent hole 7. In addition, the boron oxide recovered from the outlet 6 has a content of 98% or more, that is, a water content of 2%.
Below, boron oxide, which is close to complete boric anhydride and taken out at high temperature, is immediately cooled and solidified, and is then appropriately ground to form the required mesh.

また第2図の実施例にあつてもその製造方法は
全く同じであつて、炉床1′の凹部2′に液状ホウ
酸を連続的に供給して加熱すると濃縮した液状ホ
ウ酸3は凹部2′の溶解溜から溢出して炉床上を
流下して加熱されることにより泡状から水飴状に
脱水されながら変形して含量98%以上の高純度の
酸化ホウ素を得ることができる。
The manufacturing method of the embodiment shown in FIG. 2 is exactly the same, and when liquid boric acid is continuously supplied to the recess 2' of the hearth 1' and heated, the concentrated liquid boric acid 3 is transferred to the recess 2'. It overflows from the melting tank 2', flows down on the hearth, and is heated, dehydrated and deformed from a foamy shape to a starch syrup shape, making it possible to obtain highly pure boron oxide with a content of 98% or more.

以上本発明の製造方法を説明したが、本発明に
よるときは、酸化ホウ素が傾斜している炉床を
徐々に流下するためヒーターの加熱による熱効率
がきわめてよく、極く短時間で所望の温度に加熱
されるものであるからホウ酸の融点以上700℃程
度までも容易であり、しかも連続的に高純度の酸
化ホウ素を製造しうるという従来法にはみられな
い画期的効果を奏する。
The manufacturing method of the present invention has been described above, and in accordance with the present invention, the boron oxide gradually flows down the inclined hearth, so the thermal efficiency of heating by the heater is extremely high, and the desired temperature can be reached in an extremely short time. Since it is heated, it is easy to reach temperatures above the melting point of boric acid, about 700°C, and it has the revolutionary effect of being able to continuously produce high-purity boron oxide, which is not seen in conventional methods.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示す断面図であり、
第2図は別の実施例を示す断面図である。 1……炉の天井部、1′……炉床、2……ルツ
ボ、2′……溶液溜、3……液状ホウ酸、6……
取出口、7……空気抜き孔、8……ヒーター、1
0……低温加熱容器、11……原料入口、13…
…撹拌器。
FIG. 1 is a sectional view showing an embodiment of the present invention,
FIG. 2 is a sectional view showing another embodiment. 1... Furnace ceiling, 1'... Hearth, 2... Crucible, 2'... Solution reservoir, 3... Liquid boric acid, 6...
Outlet, 7... Air vent hole, 8... Heater, 1
0... Low temperature heating container, 11... Raw material inlet, 13...
...Agitator.

Claims (1)

【特許請求の範囲】 1 低温加熱容器A′と加熱炉Aを別個に設け、
該低温加熱容器と加熱炉内のルツボを送液管で結
び、該低温加熱容器A′でホウ酸を液状に加熱し、
該液状ホウ酸を送液管を通して加熱炉内のルツボ
に導入し、一方加熱炉Aの炉床を適度に傾斜さ
せ、該傾斜炉床の高い部位に上面開放状のルツボ
を配置し、炉上面に加熱用のヒーターを配し、傾
斜炉床の最低部に酸化ホウ素流下取出口を設け、
ルツボ内に低温加熱容器A′より液状ホウ酸を連
続的に供給して充満させながらヒーターにより加
熱して濃縮化してルツボの傾斜側より溢流した濃
縮液状ホウ酸を炉床面に自然流下させて順次ヒー
ターにより高温に加熱し、炉床最終端附近で酸化
ホウ素の融点以上に加熱することによつて高純度
の酸化ホウ素を取出口から得ることを特徴とした
酸化ホウ素の連続製造方法。 2 傾斜させた炉床の上部位置に凹部を形成し、
該凹部をホウ酸溶解溜とし、該ホウ酸溶解溜に低
温加熱容器から連続的に液状ホウ酸を供給する特
許請求の範囲1に記載の高純度酸化ホウ素の連続
製造方法。
[Claims] 1. A low-temperature heating container A' and a heating furnace A are provided separately,
The low-temperature heating container and the crucible in the heating furnace are connected with a liquid pipe, and boric acid is heated to a liquid state in the low-temperature heating container A′,
The liquid boric acid is introduced into a crucible in a heating furnace through a liquid pipe, and the hearth of heating furnace A is appropriately inclined, and a crucible with an open top is placed in a high part of the inclined hearth. A heater is installed in the slanted hearth, and a boron oxide flow outlet is installed at the lowest part of the slanted hearth.
Liquid boric acid is continuously supplied from the low-temperature heating container A' into the crucible, and while the crucible is filled, it is heated by a heater and concentrated, and the concentrated liquid boric acid that overflows from the inclined side of the crucible is allowed to naturally flow down to the hearth surface. A method for continuous production of boron oxide, characterized in that high-purity boron oxide is obtained from an outlet by successively heating the boron oxide to a high temperature with a heater and heating it to a temperature higher than the melting point of boron oxide near the final end of the hearth. 2. Forming a recess in the upper part of the inclined hearth,
The method for continuously producing high-purity boron oxide according to claim 1, wherein the recess is used as a boric acid dissolution reservoir, and liquid boric acid is continuously supplied to the boric acid dissolution reservoir from a low-temperature heating container.
JP24796686A 1986-10-17 1986-10-17 Continuous production of high-purity boron oxide Granted JPS63103819A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24796686A JPS63103819A (en) 1986-10-17 1986-10-17 Continuous production of high-purity boron oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24796686A JPS63103819A (en) 1986-10-17 1986-10-17 Continuous production of high-purity boron oxide

Publications (2)

Publication Number Publication Date
JPS63103819A JPS63103819A (en) 1988-05-09
JPH053415B2 true JPH053415B2 (en) 1993-01-14

Family

ID=17171203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24796686A Granted JPS63103819A (en) 1986-10-17 1986-10-17 Continuous production of high-purity boron oxide

Country Status (1)

Country Link
JP (1) JPS63103819A (en)

Also Published As

Publication number Publication date
JPS63103819A (en) 1988-05-09

Similar Documents

Publication Publication Date Title
US4180119A (en) Mold for directionally solidified single crystal castings and method for preparing same
CN100464149C (en) Thermal field structure of polysilicon ingot furnace
US4265859A (en) Apparatus for producing semiconductor grade silicon and replenishing the melt of a crystal growth system
JPS6044380B2 (en) Continuous reflux purification method and device for metals
US3429684A (en) Glass melting furnace with vacuum feed means
CN100404730C (en) Crystal growth device and method
CN208949130U (en) A kind of quartz glass plate continuous induction melting furnace of homogeneous heating
NO781528L (en) PROCEDURE AND DEVICE AT HEAT TEMPERATURE REACTOR
US4138238A (en) Method and apparatus for producing molten glass
CN109023508A (en) Single crystal growing furnace new type of continuous feeding device
JPH053415B2 (en)
CN208949443U (en) Single crystal growing furnace new type of continuous feeding device
JPS63103818A (en) Continuous production of high-purity boron oxide
CN1132955C (en) Method and device for continuously producing macro magnetostriction material in large scale
CN1061704C (en) Technique for preparing monocrystal of metal material
US1687188A (en) Refining of lead bullion containing other metals
CN213012542U (en) Be used for production of low hydroxyl quartz glass tube stick to use high-efficient electric melting furnace
CN206188928U (en) Thermal field structure of large capacity polycrystalline silicon ingot furnace
CN105887189A (en) Design and application of novel energy-saving sapphire crystal growth thermal field
CN1017730B (en) Method and equipment for preparing semiconductor refrigeration oriented crystal
CN209322487U (en) Zinc oxide prepares furnace
CN205856652U (en) The design of a kind of novel energy-conserving sapphire crystallization thermal field and application
CN209292216U (en) A kind of devitrified glass melting furnace
JPS54128988A (en) Preparation of single crystal
CN2457172Y (en) Raw aluminium purifying device by orient crystallization