JPH053414B2 - - Google Patents

Info

Publication number
JPH053414B2
JPH053414B2 JP24796586A JP24796586A JPH053414B2 JP H053414 B2 JPH053414 B2 JP H053414B2 JP 24796586 A JP24796586 A JP 24796586A JP 24796586 A JP24796586 A JP 24796586A JP H053414 B2 JPH053414 B2 JP H053414B2
Authority
JP
Japan
Prior art keywords
boron oxide
boric acid
crucible
hearth
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP24796586A
Other languages
Japanese (ja)
Other versions
JPS63103818A (en
Inventor
Ryoichi Mitake
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHOWA PII KEE KK
Original Assignee
SHOWA PII KEE KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHOWA PII KEE KK filed Critical SHOWA PII KEE KK
Priority to JP24796586A priority Critical patent/JPS63103818A/en
Publication of JPS63103818A publication Critical patent/JPS63103818A/en
Publication of JPH053414B2 publication Critical patent/JPH053414B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、含量が98%以上の高純度酸化ホウ素
の連続製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for continuously producing high purity boron oxide with a content of 98% or more.

ホウ酸酸化物には各種の酸化物があるが、本発
明は一般に三酸化二ホウ素(B2O3)を指すもの
で、通常酸化ホウ素はホウ酸を加熱脱水してつく
られるもので無水ホウ酸とを称されている。ホウ
酸を加熱脱水して酸化ホウ素を製造する場合にお
いて、含量85%程度の酸化ホウ素を得る場合は、
ホウ酸を比較的低い温度、即ち230℃前後の温度
で所要時間加熱すれば得られるが、本発明の意図
する含量98%以上の高純度の酸化ホウ素を得る場
合にはきわめて高温で加熱するため装置的に種々
の問題が生じる。
There are various types of boric acid oxides, but the present invention generally refers to diboron trioxide (B 2 O 3 ), and boron oxide is usually made by heating and dehydrating boric acid. It is called an acid. When producing boron oxide by heating and dehydrating boric acid, to obtain boron oxide with a content of about 85%,
Boric acid can be obtained by heating boric acid at a relatively low temperature, that is, around 230°C, for the required time, but in order to obtain high purity boron oxide with a content of 98% or more as intended by the present invention, it must be heated at an extremely high temperature. Various problems arise with the equipment.

ホウ酸は加熱脱水により酸化ホウ素に変化する
過程において、まず150〜200℃で溶液状となり、
その後加熱脱水がすすむにしたがつて次第に粘度
を増し、温度が250〜450℃、含量で90〜98%位に
なると粘着性の強い泡状となり、その後、酸化ホ
ウ素の融点に近ずくにつれて再び溶融状態となつ
て融点(577℃)を越えると水飴状の粘度の高い
液状に溶融して含量98%以上の高純度の酸化ホウ
素(無水ホウ酸)となる性質を有している。した
がつて、このような含量98%以上の高純度の酸化
ホウ素を得る場合には高温であるため容器(ルツ
ボ)の材質を選定する必要があり、従来一般には
白金ルツボが用いられているが、高価なために大
型のルツボを使用することができずに小型のルツ
ボを使用するため生産量が少く、しかも前述の如
く水飴状の高粘度のため取出しが困難であつた。
In the process of converting boric acid into boron oxide by heating and dehydration, it first becomes a solution at 150 to 200℃,
After that, the viscosity gradually increases as the heating dehydration progresses, and when the temperature reaches 250-450℃ and the content reaches about 90-98%, it becomes a sticky foam, and then melts again as it approaches the melting point of boron oxide. When the melting point (577°C) is exceeded, it melts into a highly viscous liquid like starch syrup and becomes highly pure boron oxide (boric anhydride) with a content of over 98%. Therefore, in order to obtain such high purity boron oxide with a content of 98% or more, it is necessary to select the material of the container (crucible) due to the high temperature, and conventionally platinum crucibles have been generally used. However, due to its high cost, it was not possible to use a large crucible, and instead a small crucible was used, resulting in a low production volume.Moreover, as mentioned above, the high viscosity of starch syrup made it difficult to take out the crucible.

本発明は、炉材をステンレスかセラミツクと
し、炉床を傾斜して形成し、炉床の傾斜の高い部
位に溶液状のホウ酸受け容器を配し、この容器内
に連続的にホウ酸を供給して加熱溶融させ容器か
ら溢出した液状のホウ酸を傾斜した炉床に流し、
炉内の温度を順次高温にし、最終的には酸化ホウ
素の融点以上の700℃程度にすることによつて連
続的に高純度の酸化ホウ素を得るものであり、炉
床を流下させることによつて熱効率がきわめて良
く短時間の間に酸化ホウ素を高温に導くことので
きる高純度の酸化ホウ素の製造方法を提供するも
のである。
In the present invention, the furnace material is made of stainless steel or ceramic, the hearth is formed at an angle, and a container for receiving boric acid in the form of a solution is arranged at a high slope part of the hearth, and boric acid is continuously fed into this container. The liquid boric acid that overflowed from the container was poured into a sloping hearth.
High purity boron oxide is obtained continuously by increasing the temperature in the furnace to a high temperature of around 700℃, which is higher than the melting point of boron oxide, and by flowing down the hearth. Therefore, the present invention provides a method for producing high-purity boron oxide, which has extremely high thermal efficiency and can bring boron oxide to a high temperature in a short period of time.

添付図面により本発明の実施例を説明すると第
1図は本発明の一実施例を示し、第2図は別の実
施例を示すものである。
Embodiments of the present invention will be described with reference to the accompanying drawings. FIG. 1 shows one embodiment of the invention, and FIG. 2 shows another embodiment.

第1図においてAは加熱炉であり、天井部材1
と炉床1′とよりなり炉材としてはステンレスあ
るいはセラミツクが使用される。炉床1′は適度
に傾斜させて構成してあり、加熱炉Aは炉床の傾
斜の高い部位に上面開抜型のルツボ2を配し、炉
のルツボ側の天井1に空気抜き孔7を設けると共
に炉床傾斜の最低部に酸化ホウ素流下取出口6を
設け、炉の天井1内面にはヒーター8を配してあ
る。このヒーター8の配置は好ましくは炉床の傾
斜に従つて高い方向から低い方向にかけて順次炉
内が高温になる如く配置するものとする。したが
つて炉A内の温度はルツボ2附近の(イ)の位置にお
いては一番低く150〜200℃程度とし、ルツボ2の
隣接する附近の(ロ)の位置では250〜450℃程度と
し、炉床の傾斜の一番近い部分では酸化ホウ素の
融点577℃よりも高い700℃前後となるようにヒー
ター8を配置する。図中の符号3はルツボ2に連
続供給されるホウ酸が加熱されて溶液状となつて
いる状態を示し、4はルツボ2から溢出して炉床
でさらに加熱されて泡状に変形している酸化ホウ
素の状態を示し、5は炉床をさらに流下して加熱
されて水飴状に溶融している酸化ホウ素の状態を
示している。
In FIG. 1, A is a heating furnace, and ceiling member 1
and a hearth 1', and stainless steel or ceramic is used as the furnace material. The hearth 1' is constructed with a moderate inclination, and the heating furnace A has an open-top crucible 2 on the high slope part of the hearth, and an air vent hole 7 is provided in the ceiling 1 on the crucible side of the furnace. At the same time, a boron oxide flow outlet 6 is provided at the lowest part of the slope of the hearth, and a heater 8 is arranged on the inner surface of the ceiling 1 of the furnace. The heaters 8 are preferably arranged so that the temperature inside the furnace increases sequentially from the high direction to the low direction according to the inclination of the hearth. Therefore, the temperature in the furnace A is the lowest at the position (a) near the crucible 2, at about 150 to 200°C, and at the position (b) near the crucible 2, it is about 250 to 450°C. The heater 8 is arranged so that the temperature at the part closest to the slope of the hearth is around 700°C, which is higher than the melting point of boron oxide, 577°C. Reference numeral 3 in the figure indicates that the boric acid that is continuously supplied to the crucible 2 is heated and turned into a solution, and 4 indicates that the boric acid that is continuously supplied to the crucible 2 is overflowing from the crucible 2, heated further in the hearth, and deformed into a foam. 5 shows the state of boron oxide that has flowed further down the hearth and has been heated and melted into a starch syrup-like state.

第2図は別の実施例を示すものであつて、第1
図の実施例と比較して、ルツボ2に代えて炉床
1′の傾斜面の最上部位置に凹部2′を形成し、こ
の凹部2′を溶液状のホウ酸3の溜容器とするも
のである。そしてこの他の部分は第1図の炉Aと
同一の構成であるから同一符号を付してある。
FIG. 2 shows another embodiment, in which the first
Compared to the embodiment shown in the figure, a recess 2' is formed at the top of the inclined surface of the hearth 1' instead of the crucible 2, and this recess 2' is used as a reservoir for the boric acid 3 in solution form. It is. Since the other parts have the same structure as the furnace A in FIG. 1, they are designated by the same reference numerals.

次に本発明の製造方法を詳記すると、炉A内の
ルツボ2にホウ酸(粉末で含水量約44.0%)を入
れる。炉A内の温度はルツボ2のある(イ)の位置で
は、150〜200℃、ルツボ2から炉A中央にかけて
の(ロ)の位置では250〜450℃とし、炉床の終端附近
では600〜700℃となる如くヒーター8を位置して
おく。前述のルツボ2内のホウ酸は加熱されて脱
水して溶融が開始するので、この際連続的にホウ
酸を供給すると溶液状となつたホウ酸3は図中矢
印のようにルツボ2から溢出して炉床1′上に流
下し、炉内(ロ)の位置において、さらに加熱されて
泡状の酸化ホウ素に変形しながら傾斜している炉
床1′上を徐々に流下して(ハ)の位置の達する。こ
の(ハ)の位置において酸化ホウ素はさらに融点
(577℃)以上に加熱されるため泡状から水飴状に
変形して取出口6から流下して回収される。
Next, to describe the manufacturing method of the present invention in detail, boric acid (powder with a water content of about 44.0%) is placed in the crucible 2 in the furnace A. The temperature inside Furnace A is 150 to 200℃ at position (A) where crucible 2 is located, 250 to 450℃ at position (B) from crucible 2 to the center of furnace A, and 600 to 450℃ near the end of the hearth. Heater 8 is positioned so that the temperature is 700°C. The boric acid in the crucible 2 mentioned above is heated and dehydrated and starts to melt, so if boric acid is continuously supplied at this time, the boric acid 3 that has become a solution will overflow from the crucible 2 as shown by the arrow in the figure. Boron oxide flows down onto the hearth 1', and at the position inside the furnace (B), it is further heated and transforms into foamy boron oxide, gradually flowing down over the sloping hearth 1' (H). ) reach the position. At this position (c), the boron oxide is further heated above its melting point (577° C.), so that it changes from a foam shape to a starch syrup shape, flows down from the outlet 6, and is collected.

この工程中脱水された水蒸気は空気抜き孔7か
ら炉A外に放出される。また取出口6から回収さ
れた酸化ホウ素は含量98%以上、即ち含水量2%
以下で完全に無水ホウ酸に近く、高温で取出され
た酸化ホウ素は直ちに冷されて固化するから適当
に粉砕して所要のメツシユに調整される。
The water vapor dehydrated during this process is released to the outside of the furnace A through the air vent hole 7. In addition, the boron oxide recovered from the outlet 6 has a content of 98% or more, that is, a water content of 2%.
Below, the boron oxide, which is almost completely converted into anhydrous boric acid and taken out at high temperature, is immediately cooled and solidified, and is then appropriately ground to form the required mesh.

また第2図の実施例にあつてもその製造方法は
全く同じであつて、炉床1′の凹部2′に粉末ホウ
酸を連続的に供給して加熱算すると液状化したホ
ウ酸3は凹部2′の溶解溜から溢出して炉床上を
流下して加熱されることにより泡状から水飴状に
脱水されながら変形して含量98%以上の高純度の
酸化ホウ素を得ることができる。
The manufacturing method for the embodiment shown in FIG. 2 is exactly the same, and when powdered boric acid is continuously supplied to the recess 2' of the hearth 1' and calculated by heating, the liquefied boric acid 3 is It overflows from the melting reservoir in the recess 2' and flows down on the hearth, where it is heated and dehydrated and deformed from a foamy shape to a starch syrup shape, making it possible to obtain highly pure boron oxide with a content of 98% or more.

以上本発明の製造方法を説明したが、本発明に
よるときは、酸化ホウ素が傾斜している炉床を
徐々に流下するためヒーターの加熱による熱効率
がきわめてよく、極く短時間で所望の温度に加熱
されるものであるからホウ酸の融点以上700℃程
度までも容易であり、しかも連続的に高純度の酸
化ホウ素を製造しうるという従来法にはみられな
い画期的効果を奏する。
The manufacturing method of the present invention has been described above, and in accordance with the present invention, the boron oxide gradually flows down the inclined hearth, so the thermal efficiency of heating by the heater is extremely high, and the desired temperature can be reached in an extremely short time. Since it is heated, it is easy to reach temperatures above the melting point of boric acid, about 700°C, and it has the revolutionary effect of being able to continuously produce high-purity boron oxide, which is not seen in conventional methods.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示す断面図であり、
第2図は別の実施例を示す断面図である。 1……炉の天井部、1′……炉床、2……ルツ
ボ、2′……溶液溜、3……ホウ酸、6……取出
口、7……空気抜き孔、8……ヒーター。
FIG. 1 is a sectional view showing an embodiment of the present invention,
FIG. 2 is a sectional view showing another embodiment. 1... Furnace ceiling, 1'... Hearth, 2... Crucible, 2'... Solution reservoir, 3... Boric acid, 6... Outlet, 7... Air vent hole, 8... Heater.

Claims (1)

【特許請求の範囲】 1 炉の床を適度に傾斜させて構成し、該傾斜炉
床の高い部位に上面開放状のルツボを配置し、炉
上面に加熱用のヒーターを配してなり、炉のルツ
ボ側の天井に空気抜き孔を設けると共に、炉床傾
斜位置の最低部に酸化ホウ素流下取出口を設け、
ルツボ内にホウ酸を連続的に供給して充満させな
がらヒーターにより加熱して液状化し、ルツボ傾
斜側より溢流した液状ホウ酸を炉床に自然に流下
させて順次高温に加熱し、炉床最終端附近でホウ
酸の融点以上に加熱することにより高純度酸化ホ
ウ素を取出口から得ることを特徴とした酸化ホウ
素の連続製造方法。 2 傾斜させた炉床の上部位置に凹部を形成し、
該凹部をホウ酸溶解溜とした特許請求の範囲1に
記載の高純度酸化ホウ素の連続製造方法。
[Claims] 1. The furnace is constructed by having the floor of the furnace moderately inclined, a crucible with an open top surface disposed in a high part of the inclined hearth, and a heater for heating arranged on the upper surface of the furnace. An air vent hole is provided in the ceiling on the crucible side, and a boron oxide flow outlet is provided at the lowest part of the inclined hearth position.
Boric acid is continuously supplied and filled into the crucible, heated by a heater to liquefy it, and the liquid boric acid that overflows from the sloped side of the crucible is allowed to flow down naturally to the hearth and is heated to a high temperature one after another. A method for continuous production of boron oxide, characterized in that high-purity boron oxide is obtained from an outlet by heating to a temperature above the melting point of boric acid near the final end. 2. Forming a recess in the upper part of the inclined hearth,
The method for continuously producing high-purity boron oxide according to claim 1, wherein the recess is a boric acid dissolution reservoir.
JP24796586A 1986-10-17 1986-10-17 Continuous production of high-purity boron oxide Granted JPS63103818A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24796586A JPS63103818A (en) 1986-10-17 1986-10-17 Continuous production of high-purity boron oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24796586A JPS63103818A (en) 1986-10-17 1986-10-17 Continuous production of high-purity boron oxide

Publications (2)

Publication Number Publication Date
JPS63103818A JPS63103818A (en) 1988-05-09
JPH053414B2 true JPH053414B2 (en) 1993-01-14

Family

ID=17171187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24796586A Granted JPS63103818A (en) 1986-10-17 1986-10-17 Continuous production of high-purity boron oxide

Country Status (1)

Country Link
JP (1) JPS63103818A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0662088U (en) * 1993-02-01 1994-09-02 株式会社ノーリツ Storage box mounting structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0662088U (en) * 1993-02-01 1994-09-02 株式会社ノーリツ Storage box mounting structure

Also Published As

Publication number Publication date
JPS63103818A (en) 1988-05-09

Similar Documents

Publication Publication Date Title
CA1048790A (en) Continuous reflux refining of metals
JPS5819639B2 (en) Silicon rod manufacturing method
NO169877B (en) DEVICE FOR MELTING AND CONTINUOUS CASTING OF METALS, A PROCEDURE FOR OPERATING THEM AND USING THE DEVICE
TW200938664A (en) Method for producing a monocrystalline or polycrystalline semiconductor material
US3085872A (en) Method for producing the refractory metals hafnium, titanium, vanadium, silicon, zirconium, thorium, columbium, and chromium
US4133517A (en) Continuous reflux refining of metals
US3278282A (en) Glass spinning crucible
JPH053414B2 (en)
US4138238A (en) Method and apparatus for producing molten glass
Schwab et al. Purification of substances by slow fractional freezing
JPS6025504A (en) Crystal purifying apparatus
JPH053415B2 (en)
JPH0137458B2 (en)
JP2916645B2 (en) Metal purification method
US2984626A (en) Production of metal halide ingots
JPH022935B2 (en)
US1687188A (en) Refining of lead bullion containing other metals
SE440321B (en) SET AND DEVICE FOR PREPARING A HOLIDAY METAL GOOD
JP2536601B2 (en) Continuous melting pouring furnace
JP2001089292A (en) Method of producing high quality crystal material by collision solidification of freely falling liquid drop
US3051557A (en) Manufacture of pure silicon
JPS60190532A (en) Rotary cooling body for apparatus for producing high- purity aluminum
JPS58224133A (en) Manufacture of high purity aluminum for vacuum deposition
JPH0236654B2 (en)
JPS60191184A (en) Discharger for molten metal in crucible