JPS63101839A - Heat infrared image pickup camera - Google Patents

Heat infrared image pickup camera

Info

Publication number
JPS63101839A
JPS63101839A JP61247750A JP24775086A JPS63101839A JP S63101839 A JPS63101839 A JP S63101839A JP 61247750 A JP61247750 A JP 61247750A JP 24775086 A JP24775086 A JP 24775086A JP S63101839 A JPS63101839 A JP S63101839A
Authority
JP
Japan
Prior art keywords
reflecting mirror
scanning
infrared
linear array
pyroelectric infrared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61247750A
Other languages
Japanese (ja)
Inventor
Kunio Nakamura
中村 邦雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61247750A priority Critical patent/JPS63101839A/en
Publication of JPS63101839A publication Critical patent/JPS63101839A/en
Pending legal-status Critical Current

Links

Landscapes

  • Transforming Light Signals Into Electric Signals (AREA)
  • Radiation Pyrometers (AREA)

Abstract

PURPOSE:To improve a sensitivity characteristic of a pyroelectric infrared detecting element by constituting the titled camera so that a reflecting mirror executes a panning scan in the direction vertical to a linear array, and also, scans stepwise a prescribed scanning angle. CONSTITUTION:The titled camera is provided with a linear array 1 in which plural pyroelectric infrared detecting elements are arranged in one line, an infrared optical system 2, and a reflecting mirror 3 for scanning an infrared image. Also, said camera is constituted so that the reflecting mirror 3 executes a panning scan in the direction vertical to the linear array 1, and scans stepwise a prescribed scanning angle. As a result, a driving state of the reflecting mirror 3 goes to stepwise, the time required for scanning from some instantaneous visual field to the next instantaneous visual field is shortened, and said mirror stops in its instantaneous visual field for a prescribed time. By setting a ratio of its stop time and the movement time to several times or more, a variation quantity of an infrared signal is increased and an output signal of the pyroelectric infrared detecting element can be maximized. Accordingly, the characteristic of the pyroelectric infrared detecting element can be drawn out enough.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、二次元温度分布を非接触で観測することがで
き、工場での熱管理、温度管理、防災等に利用すること
ができる熱赤外撮像カメラに関するものである。
[Detailed Description of the Invention] Industrial Application Field The present invention is a thermal infrared light beam that can observe two-dimensional temperature distribution without contact and can be used for heat management, temperature control, disaster prevention, etc. in factories. This relates to an imaging camera.

従来の技術 従来の熱赤外撮像カメラとして、特開昭59−1537
9号に記載されているように焦電形赤外検出素子リニア
アレイと、赤外光学系と、赤外像走査用反射鏡とを組合
せた構成が知られている。
Conventional technology As a conventional thermal infrared imaging camera, Japanese Patent Application Laid-Open No. 59-1537
As described in No. 9, a configuration in which a linear array of pyroelectric infrared detection elements, an infrared optical system, and an infrared image scanning reflector are combined is known.

以下、上記従来の熱赤外撮像カメラについて第4図を参
照しながら説明する。
The conventional thermal infrared imaging camera will be described below with reference to FIG. 4.

第4図に・おいて、21は複数の焦電形赤外検出素子を
一列に配列したリニアアレイ、22はゲルマニウム等か
ら成る赤外光結像用光学レンズ、23は回転軸24のま
わりに回転して一次元のパニング走査をする反射鏡で、
パニング走査方向はIJ ニア7レイ21の配列方向と
直角方向である。
In FIG. 4, 21 is a linear array in which a plurality of pyroelectric infrared detection elements are arranged in a row, 22 is an optical lens for infrared light imaging made of germanium, etc., and 23 is a linear array arranged around a rotation axis 24. A reflector that rotates and performs one-dimensional panning scan.
The panning scanning direction is perpendicular to the arrangement direction of the IJ near 7 rays 21.

25は撮像すべき視野を示す。25 indicates the field of view to be imaged.

次に上記従来例の動作について説明する。Next, the operation of the above conventional example will be explained.

いま、反射鏡23が図の位置に静止した状態を考えると
、反射鏡23には視野25からの二次元の像が入射し、
光学レンズ22を通って焦電形赤外検出素子リニアアレ
イ21に入射する。ところがリニアアレイ21は一次元
に配列されているので、二次元像すべてを受光すること
はできず、一次元像、たとえば視野25の左端部分の一
次元像26のみが受光される。つぎに、反射鏡23が回
転軸24を中心に図の矢印a方向に若干回転すると、リ
ニアアレイ21に受光される視野25の像は図において
若干右側に移動した一次元像となもしたがって、反射鏡
23を更に矢印a方向に回転させつづけると、視野26
全体の二次元像が走査されてリニアアレイ21に受光さ
れることになる。
Now, considering the state where the reflecting mirror 23 is stationary at the position shown in the figure, a two-dimensional image from the field of view 25 is incident on the reflecting mirror 23,
The light passes through the optical lens 22 and enters the pyroelectric infrared detection element linear array 21 . However, since the linear array 21 is arranged in one dimension, it cannot receive the entire two-dimensional image, but only a one-dimensional image, for example, a one-dimensional image 26 at the left end of the field of view 25. Next, when the reflecting mirror 23 rotates slightly around the rotation axis 24 in the direction of the arrow a in the figure, the image in the field of view 25 received by the linear array 21 becomes a one-dimensional image that has moved slightly to the right in the figure. If the reflector 23 is further rotated in the direction of the arrow a, the field of view 26
The entire two-dimensional image is scanned and received by the linear array 21.

第5図は、第4図の視野25の赤外放射分布とリニアア
レイ21の出力信号の関係を示す。いま、第4図のA−
A線上の赤外放射分布量が第5図(a)に示すような場
合、リニアアレイ21の対応する焦電形赤外検出素子か
らは、反射鏡23の走査に従って第5図中)に示すよう
な赤外放射分布の微分信号が出力信号としてとり出され
る。リニアアレイ21の他の部分からも同様に視野25
の赤外放射分布の微分信号が反射鏡23の走査に従って
とり出される。
FIG. 5 shows the relationship between the infrared radiation distribution in the field of view 25 in FIG. 4 and the output signal of the linear array 21. Now, A- in Figure 4
When the infrared radiation distribution amount on line A is as shown in FIG. A differential signal of such an infrared radiation distribution is extracted as an output signal. Similarly, the field of view 25 from other parts of the linear array 21 is
A differential signal of the infrared radiation distribution is extracted as the reflecting mirror 23 scans.

この出力信号は各素子からその視野方向に対応したもの
になっているので、これらを信号処理部で、積分処理す
れば、二次元の赤外放射温度分布の相対値を計測できる
ことになる。第5図Cに、−素子相当の積分処理後の出
力信号の様子を示す。
Since this output signal corresponds to the viewing direction from each element, by integrating these signals in the signal processing section, it is possible to measure the relative value of the two-dimensional infrared radiation temperature distribution. FIG. 5C shows the state of the output signal after the integral processing corresponding to the negative element.

発明が解決しようとする問題点 上記従来の熱赤外撮像カメラにおいて、焦電形赤外検出
素子IJ ニアアレイ21が微分検出素子であるので、
走査用反射鏡23によるパニングの状況によって出力信
号が異なる。即ち、出力信号は入力信号の時間的変化(
微分値)が大きいほど大きくなる。
Problems to be Solved by the Invention In the conventional thermal infrared imaging camera described above, since the pyroelectric infrared detection element IJ near array 21 is a differential detection element,
The output signal differs depending on the panning situation by the scanning reflector 23. In other words, the output signal is based on the temporal change of the input signal (
The larger the differential value), the larger the value.

しかしながら、上記従来の熱赤外撮像カメラの構成では
、反射鏡23の駆動状態は単に一定の速度で走査するだ
けで、いわゆる赤外入力の変化量を最大にするような設
計になっておらず、焦電形赤外検出素子の特性を十分活
用しているとは言えない。そのため、期待される感度特
性を達成するに到っていないという問題がある。
However, in the configuration of the conventional thermal infrared imaging camera described above, the driving state of the reflecting mirror 23 is simply scanning at a constant speed, and is not designed to maximize the amount of change in the infrared input. However, it cannot be said that the characteristics of the pyroelectric infrared detection element are fully utilized. Therefore, there is a problem that the expected sensitivity characteristics have not been achieved yet.

そこで、本発明は、上記従来の問題点を解決するもので
あり、焦電形赤外検出素子の感度特性を向上することが
できるようにした熱赤外撮像カメラを提供しようとする
ものである。
Therefore, the present invention aims to solve the above-mentioned conventional problems, and provides a thermal infrared imaging camera that can improve the sensitivity characteristics of a pyroelectric infrared detection element. .

問題点を解決するための手段 そして上記問題点を解決するための本発明の技術的な手
段は、複数の焦電形赤外検出素子を1列に並べたリニア
アレイと、赤外光学系と、赤外像走査用の反射鏡とを備
え、上記反射鏡が上記リニアアレイと直角方向にパニン
グ走査し、且つ一定走査角を階段状に走査するように構
成されたものである。
Means for solving the problems and technical means of the present invention for solving the above problems include a linear array in which a plurality of pyroelectric infrared detection elements are arranged in a row, an infrared optical system, , and a reflecting mirror for infrared image scanning, and the reflecting mirror is configured to perform panning scanning in a direction perpendicular to the linear array and to scan at a constant scanning angle in a stepwise manner.

作用 本発明は上記構成により、反射鏡の駆動状況を階段状に
し、ある瞬時視野から次の瞬時視野へ走査するに要する
時間を短くシ、その瞬時視野で一定の時間停止し、その
停止時間と前期移動時間の比を数倍以上とすることによ
り、赤外信号の変化量を最大にし、焦電形赤外検出素子
の出力信号を最大にすることができる。従って焦電形赤
外検出素子の特性を十分引き出すことができる。
Effect of the Invention With the above configuration, the present invention makes the driving situation of the reflecting mirror step-like, shortens the time required to scan from one instantaneous field of view to the next instantaneous field of view, stops in the instantaneous field of view for a certain period of time, and changes the stopping time. By setting the ratio of the first period travel time to several times or more, the amount of change in the infrared signal can be maximized, and the output signal of the pyroelectric infrared detection element can be maximized. Therefore, the characteristics of the pyroelectric infrared detection element can be fully brought out.

実施例 以下、本発明の実施例について図面を参照しながら説明
する。第1図及び第2図は本発明の一実施例における熱
赤外撮像カメラを示し、第1図は全体の概略説明図、第
2図は反射鏡の駆動部の説明図である。
EXAMPLES Hereinafter, examples of the present invention will be described with reference to the drawings. 1 and 2 show a thermal infrared imaging camera according to an embodiment of the present invention, FIG. 1 is an overall schematic explanatory diagram, and FIG. 2 is an explanatory diagram of a driving section of a reflecting mirror.

第1図において、1は焦電形赤外検出素子のリニアアレ
イで、図面の紙面に対し、垂直方向に並列されている。
In FIG. 1, numeral 1 denotes a linear array of pyroelectric infrared detection elements, which are arranged in parallel in a direction perpendicular to the plane of the drawing.

2は赤外光学系、3は赤外像−次元走査用の反射鏡で、
両面が鏡面に形成され、走査方向がリニアアレイ1の並
列方向とは直角方向となっている。4は焦電形赤外検出
素子の出力信号の信号処理部、5は可視光源で、フォト
ダイオ−ドかリニアアレイ状に並べられ、反射鏡3の鏡
面、即ち可視光反射面を組合わせることによシ信号処理
部4からの赤外像信号を受けて観測した熱赤外像を可視
像に変換することができる。
2 is an infrared optical system, 3 is a reflecting mirror for infrared image-dimensional scanning,
Both surfaces are mirror-finished, and the scanning direction is perpendicular to the parallel direction of the linear array 1. 4 is a signal processing unit for the output signal of the pyroelectric infrared detection element, 5 is a visible light source, which is arranged in a photodiode or linear array, and is combined with the mirror surface of the reflecting mirror 3, that is, the visible light reflecting surface. A thermal infrared image observed by receiving an infrared image signal from the thermal signal processing unit 4 can be converted into a visible image.

上記反射鏡3の角度走査機構について説明すると、第2
図に示すように反射鏡3の回転中心軸6の端部に駆動棒
7が固定され、反射鏡3はこの駆動棒7と同じ動作をす
るようになっている。上記駆動棒7はその両側部に設け
られた一対の第1と第2の駆動カム8と9により角度駆
動される。各駆動カム8,9はそれぞれ外周のほぼ半周
部分に風車状の歯10が形成され、歯10を有しない外
周部が磁化部分11となっている。そして両カム8.9
は互いにほぼ180°位相をずらせた位置が駆動棒7の
両側部に対応するようになっている。
To explain the angle scanning mechanism of the reflecting mirror 3, the second
As shown in the figure, a driving rod 7 is fixed to the end of the rotational center shaft 6 of the reflecting mirror 3, and the reflecting mirror 3 operates in the same manner as the driving rod 7. The drive rod 7 is angularly driven by a pair of first and second drive cams 8 and 9 provided on both sides thereof. Each of the driving cams 8 and 9 has pinwheel-shaped teeth 10 formed on approximately half of its outer periphery, and the outer periphery without teeth 10 serves as a magnetized portion 11. And both cams 8.9
The positions of the drive rods 7 and 7 correspond to both sides of the drive rod 7, and the positions are shifted from each other by approximately 180 degrees in phase.

そして両カム8,9は同期して互いに逆方向に回転し、
第1のカム8がその瓜10により角度を規定している状
態(第2図に実線で示す状態)では、第2のカム9はそ
の磁化部分11の反撥力により駆動棒7に接触しておら
ず、むしろ磁力により両者の間隔を広げるように作用し
ている。この作用力が駆動棒7を第1のカム8へ押し付
ける働きをする。この状態よシ両カム8,9が回転し、
第1のカム8の径が大きくなる部分では、第2のカム9
と働きが入れ代わり、磁化部分11の反撥力で駆動棒7
は第2のカム9の瓜10の部分に押し付けられ、第2の
カム9の瓜10の形状にならって、階段状に角度駆動さ
れることになる。このような機構により、反射鏡3は常
に階段状、駆動を往復で実行できることになる。もしカ
ムが1個の場合、第2図のカム9の鎖線で示した仮想形
状が駆動棒7に接触することになり、カムの円周部が接
するのではなく、瓜の角部が接するため階段状の角度駆
動とならない。これら一対のカム8,9を用いた特徴は
、第3図(b)に示すような駆動を反射鏡3に与えるこ
とにある。尚、第2図に示したカム8゜9とステップ数
が異るが、各々説明の簡略化のためにステップ数を少く
しである。
Both cams 8 and 9 rotate in opposite directions in synchronization.
In the state where the first cam 8 defines an angle by its melon 10 (the state shown by the solid line in FIG. 2), the second cam 9 contacts the drive rod 7 due to the repulsive force of its magnetized portion 11. Rather, the magnetic force acts to widen the distance between the two. This acting force serves to press the drive rod 7 against the first cam 8. In this state, both cams 8 and 9 rotate,
In the portion where the diameter of the first cam 8 becomes large, the second cam 9
The repulsive force of the magnetized portion 11 causes the drive rod 7 to
is pressed against the gourd 10 of the second cam 9, and is angularly driven in a stepwise manner following the shape of the gourd 10 of the second cam 9. With such a mechanism, the reflecting mirror 3 can always be driven in a stepwise manner in a reciprocating manner. If there is only one cam, the virtual shape of the cam 9 shown by the chain line in FIG. There is no step-like angular drive. The feature of using the pair of cams 8 and 9 is that they provide the reflecting mirror 3 with a drive as shown in FIG. 3(b). Although the number of steps is different from that of the cam 8.9 shown in FIG. 2, the number of steps is reduced in order to simplify the explanation.

次に上記実施例の動作について説明する。Next, the operation of the above embodiment will be explained.

本実施例においては、特に反射鏡3の階段状往復駆動を
行なう点において上記従来例と相違するので、この点を
中心に説明する。
This embodiment differs from the conventional example described above particularly in that the reflecting mirror 3 is reciprocated in a stepped manner, so this point will be mainly explained.

上記のようにカム8,9の回転により反射鏡3を階段状
往復駆動するので、ある瞬時視野から次の瞬時視野へ走
査するに要する時間を短くシ、その瞬時視野で一定の時
間停止し、その停止時間と前期移動時間の比を数倍以上
とすることによシ、赤外信号の変化量を最大にしてリニ
アアレイ1の焦電形赤外検出素子の出力信号を最大にす
る。これを詳述すればリニアアレイ1の焦電形赤外検出
素子の熱時定数tTよシ十分短い時間で、1瞬時視野分
の走査がなされ、そのあとτT相当、あるいはそれ以上
長い時間停止することになり、熱時娘数τ1の焦電形赤
外検出素子の出力信号を最大にすることになる。
As described above, since the reflecting mirror 3 is reciprocated in a stepwise manner by the rotation of the cams 8 and 9, the time required to scan from one instantaneous field of view to the next is shortened, and the mirror 3 is stopped for a certain period of time in that instantaneous field of view. By setting the ratio of the stop time to the first movement time to be several times or more, the amount of change in the infrared signal is maximized, and the output signal of the pyroelectric infrared detection element of the linear array 1 is maximized. To explain this in detail, one instantaneous field of view is scanned in a time sufficiently shorter than the thermal time constant tT of the pyroelectric infrared detection element of the linear array 1, and then it is stopped for a time equivalent to τT or longer. Therefore, the output signal of the pyroelectric infrared detection element with the number of daughters τ1 in the heat state is maximized.

即ち、赤外入力の微分値dI/dt(J:赤外強度、t
:時間)はτTで限定される上限を十分超える程度に短
い時間で与えられており、かつ焦電形赤外検出素子の応
答時間τ1相当、あるいはそれ以上長い時間保持して、
検出素子出力が十分高くなるのを待つわけである。よっ
てこの走査駆動によれば、焦電形赤外検出素子の特性を
十分引き出すよう作用していることになる。
That is, the differential value dI/dt of the infrared input (J: infrared intensity, t
: time) is given as a short enough time to sufficiently exceed the upper limit limited by τT, and is held for a time equivalent to the response time τ1 of the pyroelectric infrared detection element or longer,
The process waits until the detection element output becomes sufficiently high. Therefore, this scanning drive works to fully bring out the characteristics of the pyroelectric infrared detection element.

そして第3図(a)で示すような赤外放射分布を観測し
た場合、同図(b)の階段状視野走査で、効率よく赤外
放射の変化量を測定し、同図(e)に示すような赤外検
出素子の出力信号を得ることができる。
When the infrared radiation distribution shown in Figure 3 (a) is observed, the amount of change in the infrared radiation can be efficiently measured by scanning the stepped field of view as shown in Figure 3 (b), and the amount of change in the infrared radiation can be efficiently measured as shown in Figure 3 (e). The output signal of the infrared detection element as shown can be obtained.

これを信号処理部4で積分処理すれば、第5図(C)に
示すような熱赤外像信号が再現でき、この信号処理部4
の出力の一部は可視光源5のフォトダイオード列に加え
られ、フォトダイオード列を点滅させる。この点滅光は
反射鏡3の裏面で反射されてスクリーン(図示省略)上
に可視像として表示される。すなわち視野の赤外放射分
布を可視光像として観察することができる。従って従来
の熱赤外撮像カメラよりS/Nの高い測定ができる。
If this is integrally processed by the signal processing section 4, a thermal infrared image signal as shown in FIG. 5(C) can be reproduced, and this signal processing section 4
A part of the output is applied to the photodiode array of the visible light source 5, causing the photodiode array to blink. This flashing light is reflected by the back surface of the reflecting mirror 3 and displayed as a visible image on a screen (not shown). That is, the infrared radiation distribution in the field of view can be observed as a visible light image. Therefore, it is possible to perform measurements with a higher S/N ratio than conventional thermal infrared imaging cameras.

次に本発明の試作例について説明する。Next, a prototype example of the present invention will be explained.

焦電形赤外検出素子IJ ニアアレイ1は直線状に12
8素子をピッチ0.1nで全長12.811に並列した
。反射鏡3の走査方向の焦電形赤外検出素子寸法は0.
1鰭とした。赤外光学系2の焦点距離は50朋で、中心
に反射防止膜を10μm施し、8〜12μm帯の透過窓
ともなした。反射鏡3の走査角は視野角で011°(ミ
ラー角で0.055°)とし、128ステツプとした。
Pyroelectric infrared detection element IJ near array 1 has 12 linear
Eight elements were arranged in parallel with a pitch of 0.1n and a total length of 12.811. The dimensions of the pyroelectric infrared detection element in the scanning direction of the reflecting mirror 3 are 0.
One fin. The infrared optical system 2 had a focal length of 50 mm, had an anti-reflection coating of 10 μm in the center, and also served as a transmission window for the 8-12 μm band. The scanning angle of the reflecting mirror 3 was 011° in viewing angle (0.055° in mirror angle) and 128 steps.

従って、走査方向の視野角は14.7°であシ、リニア
アレイ1方向の視野角も同じである。可視光源5はフォ
トダイオードをリニアアレイ状に128素子並べた。カ
ム8,9のステップ数は128とした。
Therefore, the viewing angle in the scanning direction is 14.7°, and the viewing angle in the linear array direction is also the same. The visible light source 5 has 128 photodiodes arranged in a linear array. The number of steps of the cams 8 and 9 was 128.

そしてカム8,9を3Qrpmの回転速度で、1秒間に
半回転した。この半周で、128ステツプ駆動されるの
で、1ステップ約13m5であシ、IJ ニアアレイ1
の焦電形赤外検出素子の熱時定数(τT)3msを十分
上まわる時間保持することができた。1ステツプの移動
に要する時間は、約0.1mSで、τTの1/30で、
十分短い時間になり、従来の一定角速度の反射鏡を用い
た場合と比較して焦電形赤外検出素子の出力信号のS/
Nを約1.5倍改善することができた。
Then, the cams 8 and 9 were rotated half a revolution per second at a rotational speed of 3 Qrpm. In this half-circle, 128 steps are driven, so one step is approximately 13m5.IJ near array 1
The thermal time constant (τT) of the pyroelectric infrared detection element of 3 ms could be maintained for a sufficient period of time. The time required to move one step is approximately 0.1 mS, which is 1/30 of τT,
The time is sufficiently short, and compared to the case of using a conventional reflector with a constant angular velocity, the S/
It was possible to improve N by about 1.5 times.

発明の効果 以上述べたように本発明によれば、反射鏡が階段状角度
走査するので、焦電形赤外検出素子の出力信号を最大に
し、その感度特性を向上させることができ、従来の一定
角速度の反射鏡を用いた場合と比較して、焦電形赤外検
出素子の出力信号のS/Nを改善することができる。
Effects of the Invention As described above, according to the present invention, since the reflecting mirror scans stepwise angles, it is possible to maximize the output signal of the pyroelectric infrared detection element and improve its sensitivity characteristics. The S/N ratio of the output signal of the pyroelectric infrared detection element can be improved compared to the case where a reflector with a constant angular velocity is used.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本発明の一実施例における熱赤外撮
像カメラを示し、第1図は全体の概略説明図、第2図は
反射鏡の駆動部説明図、第3図(a)、(b)、(C)
は本発明の熱赤外撮像カメラの視野走査状況と赤外放射
分布と赤外検出素子出力信号との関係を示す図、第4図
は従来の熱赤外撮像カメラを示す概略説明図、第5図(
a)、(b)、(C)はそれぞれ従来の熱赤外撮像カメ
ラの出力信号と信号処理前の微分信号の赤外放射分布量
との関係を示す図である。 1・・・焦電形赤外検出素子リニアアレイ、2・・・赤
外光学系、3・・・走査反射鏡、4・・・信号処理部、
5・・・可視光源、6・・・走査反射鏡回転軸、7・・
・走査反射鏡駆動棒、8,9・・・カム、11・・・磁
化部分。 代理人の氏名 弁理士 中尾 敏 男 ほか1名第1図 第2図 第 3 回 第・1図 右コ  5  ム21 A −A’ w!r  間 時間
1 and 2 show a thermal infrared imaging camera according to an embodiment of the present invention, FIG. 1 is an overall schematic explanatory diagram, FIG. ), (b), (C)
4 is a diagram showing the relationship between the field of view scanning situation, infrared radiation distribution, and infrared detection element output signal of the thermal infrared imaging camera of the present invention; FIG. 4 is a schematic explanatory diagram showing the conventional thermal infrared imaging camera; Figure 5 (
Figures a), (b), and (C) are diagrams each showing the relationship between the output signal of a conventional thermal infrared imaging camera and the infrared radiation distribution amount of the differential signal before signal processing. DESCRIPTION OF SYMBOLS 1... Pyroelectric infrared detection element linear array, 2... Infrared optical system, 3... Scanning reflector, 4... Signal processing section,
5... Visible light source, 6... Scanning reflector rotation axis, 7...
- Scanning reflector drive rod, 8, 9... cam, 11... magnetized part. Name of agent: Patent attorney Toshio Nakao and one other person Figure 1 Figure 2 Figure 3 Right column of Figure 1 5 Column 21 A-A' w! r time

Claims (4)

【特許請求の範囲】[Claims] (1)複数の焦電形赤外検出素子を1列に並べたリニア
アレイと、赤外光学系と、赤外像走査用の反射鏡とを備
え、上記反射鏡が上記リニアアレイと直角方向にパニン
グ走査し、且つ一定走査角を階段状に走査するように構
成されていることを特徴とする熱赤外撮像カメラ。
(1) A linear array in which a plurality of pyroelectric infrared detection elements are arranged in a row, an infrared optical system, and a reflecting mirror for scanning an infrared image, the reflecting mirror being arranged in a direction perpendicular to the linear array. 1. A thermal infrared imaging camera, characterized in that it is configured to perform panning scanning and to scan at a constant scanning angle in a stepwise manner.
(2)反射鏡を階段状に走査する一定走査角がパニング
方向の瞬時視野角と等しい特許請求の範囲第3項記載の
熱赤外撮像カメラ。
(2) The thermal infrared imaging camera according to claim 3, wherein the constant scanning angle at which the reflecting mirror is scanned stepwise is equal to the instantaneous viewing angle in the panning direction.
(3)反射鏡が両面とも鏡面に形成され、一方が赤外像
を走査する反射面で、他方が可視光線を走査し、可視像
化するための可視光反射面である特許請求の範囲第1項
記載の熱赤外撮像カメラ。
(3) A claim in which both surfaces of the reflecting mirror are formed into mirror surfaces, one of which is a reflecting surface for scanning an infrared image, and the other is a visible light reflecting surface for scanning visible light and creating a visible image. The thermal infrared imaging camera according to item 1.
(4)反射鏡の階段状走査における一定走査角を移動す
るに要する時間が焦電形赤外検出素子の熱時定数より充
分短く、停止時間が熱時定数相当、あるいはそれ以上長
い特許請求の範囲第1項記載の熱赤外撮像カメラ。
(4) A patent claim in which the time required to move a fixed scanning angle in stepped scanning of the reflecting mirror is sufficiently shorter than the thermal time constant of the pyroelectric infrared detection element, and the stopping time is equivalent to or longer than the thermal time constant. A thermal infrared imaging camera according to scope 1.
JP61247750A 1986-10-17 1986-10-17 Heat infrared image pickup camera Pending JPS63101839A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61247750A JPS63101839A (en) 1986-10-17 1986-10-17 Heat infrared image pickup camera

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61247750A JPS63101839A (en) 1986-10-17 1986-10-17 Heat infrared image pickup camera

Publications (1)

Publication Number Publication Date
JPS63101839A true JPS63101839A (en) 1988-05-06

Family

ID=17168107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61247750A Pending JPS63101839A (en) 1986-10-17 1986-10-17 Heat infrared image pickup camera

Country Status (1)

Country Link
JP (1) JPS63101839A (en)

Similar Documents

Publication Publication Date Title
JP3549898B2 (en) Wide angle image forming system and method
US5291327A (en) Imaging system using focal plane array
US5180912A (en) Display system with means for variably deflecting an array of optical emitters
EP0071531B1 (en) Scanning mechanism for flir systems
US3949225A (en) Infrared imaging apparatus
US3765743A (en) Optical energy detection system including image plane scanning system
JPH04175623A (en) Thermal image detecting device
JPS63101839A (en) Heat infrared image pickup camera
JPH0476062B2 (en)
JPS5915379A (en) Heat infrared image pickup camera
CA2090115C (en) Thermal image detection apparatus
JPH09218101A (en) Reference system for thermal image pickup device
GB2047424A (en) Infra red imager having rotatable prism
CN1298113A (en) Infrared multispectral scanning thermal imager
JPS593225A (en) Multispectral scanner
JPH0652196B2 (en) Infrared thermal imager
JPH09126899A (en) Thermal image detector
GB1587098A (en) Image forming apparatus
JPS62144034A (en) Infrared camera
JPH0530435A (en) Image pickup device
RU2158948C1 (en) Optical scanner
JPH06100507B2 (en) Infrared imaging device
JPH07287072A (en) Heat-source detection apparatus
JPH07117452B2 (en) Pyroelectric infrared detector
JPS61142862A (en) Image pickup device