JPS593225A - Multispectral scanner - Google Patents

Multispectral scanner

Info

Publication number
JPS593225A
JPS593225A JP11151782A JP11151782A JPS593225A JP S593225 A JPS593225 A JP S593225A JP 11151782 A JP11151782 A JP 11151782A JP 11151782 A JP11151782 A JP 11151782A JP S593225 A JPS593225 A JP S593225A
Authority
JP
Japan
Prior art keywords
light
optical system
mirror
calibration
mirrors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11151782A
Other languages
Japanese (ja)
Inventor
Yuichi Hagiwara
雄一 萩原
Tsunehiko Yoshimura
吉村 恒彦
Shinichi Kitamura
北村 愼一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP11151782A priority Critical patent/JPS593225A/en
Publication of JPS593225A publication Critical patent/JPS593225A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/02Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the intensity of light
    • G02B26/04Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the intensity of light by periodically varying the intensity of light, e.g. using choppers

Abstract

PURPOSE:To achieve a higher reliability of an equipment while making it compact and light with a simple construction by arranging a rotary type chopper mirror, having reflectors in the perimeter at varied angles in the same number as that of calibration light sources, at the position of focusing observation light in the main optical system to introduce all calibration lights. CONSTITUTION:An observation light L scanned with a scan mirror SM driven by a motor MT is focused with reflectors M1-M4 and a focusing mirror CM1 and CM2, reflected with a reflector M5 and divided into a visible light VK and an infrared light IR with a spectroscope BS. The visible light VR and the infrared light IR are divided into 5 and 3 wavelength zones with respective groups of a spectroscope and reflectors BSM1 and BSM2 and enter photo detectors D1-D5 and D6-D8 respectively. On the other hand, calibration lights from calibration light sources S11-S15 are introduced sequentially into the main optical system A through mirrors M11-M15 of a chopper mirror CHO driven by a motor MTO. This achieves a higher reliability of the equipment while making it compact and light with a simple construction.

Description

【発明の詳細な説明】 (1)発明の技術分野 不発明はマルチスペクトルスキャナ(以下IMSMSス
キヤナ略記)K関し、特に航空機に搭載して例えば火山
の観測などに用いる航空機用MSスキヤナの光学系に関
するものである。
Detailed Description of the Invention (1) Technical Field of the Invention The invention relates to a multispectral scanner (hereinafter abbreviated as IMSMS scanner), and particularly relates to an optical system of an aircraft MS scanner that is mounted on an aircraft and used for observing volcanoes, etc. It is something.

(2)技術の背鼠 近年、航空機にMSスキャナを搭載し、例えば火山を観
測してその赤外線映像(温度・臂ターン)を作成し、火
山活動の予測に供するシステムが提案されている。
(2) Technology's backbone In recent years, a system has been proposed in which an MS scanner is mounted on an aircraft to observe, for example, a volcano and create an infrared image (temperature, arm turn) of the image, which can then be used to predict volcanic activity.

一般に航空機搭載機器は軽量小型であり、且つ信頼性の
高いものであることが要求される。しかし、従来のMS
スキャナには後述するような問題があり、その対策が要
望されている。
Generally, aircraft-mounted equipment is required to be lightweight, small, and highly reliable. However, conventional MS
Scanners have problems as described below, and countermeasures are desired.

(3)従来技術と問題点 第1図は従来の火山観測用MSスキャナの第1例の光学
系を示す。図中、矢印りは観測すべき光景(火山)から
の光(赤外線、可視光)を示す。
(3) Prior art and problems FIG. 1 shows the optical system of a first example of a conventional MS scanner for volcano observation. In the figure, the arrows indicate light (infrared, visible light) from the scene (volcano) to be observed.

符号SMは主光学系の走査鏡を示し、矢印X方向(図で
反時計方向)に高速(例えば240Orpm)で回転し
、光景を図の左から右へ走査する。尚、MSスキャナを
搭載した航空機は図紙面と垂直方向に飛行しているもの
とし、これにより二次元領域の走査がなされる。光景か
らの光L(以下[観測光」と称する)は、走査鏡SMで
反射し、次いで反射鏡M1及びM2ならびにM3及びM
4で順次反射され、更に集光鏡CMI及びCM2 (カ
セグレン)によって所定位置に集光されるように構成さ
れている。また、この観測光集光位置と集光鏡CM2と
の間には分光器(グイクロイック・ビームスシリツタ)
BSが配置され、観測光しはこの分光器BSにより可視
光VRと赤外線IRとに分割され、それぞれ対応する光
検知器(図示せず)によって検知される。そして光検知
器の出力電気信号を処理することにより赤外線映像を得
ることができる。尚、第1図において符号M5は、単に
可視光VRの向きを変えるため反射鏡である。一方、実
際の火山の温度を知るためには、温度の基準を示す校正
光を必要とする。図示例の場合、走査鏡SMの左右位置
に可視校正用光源S1及び赤外校正用光源(ブラックデ
ディ)B2ならびに反射鏡M6及びM7が配置され、走
査鏡SMによってこれら両光源からの校正光Ll、L2
が上記主光学系に導入されるように構成されている。し
が(3) しながら、この従来構成では、走査鏡の視野角θが校正
光用反射鏡M6及びM7で制限され、大きくできないと
いう欠点がある。
Symbol SM indicates a scanning mirror of the main optical system, which rotates at a high speed (for example, 240 rpm) in the direction of arrow X (counterclockwise in the figure) and scans the scene from left to right in the figure. It is assumed that the aircraft equipped with the MS scanner is flying in a direction perpendicular to the plane of the drawing, thereby scanning a two-dimensional area. Light L from the scene (hereinafter referred to as "observation light") is reflected by the scanning mirror SM, and then reflected by the reflecting mirrors M1 and M2 and M3 and M.
The light beam is sequentially reflected by the light beam 4, and is further focused at a predetermined position by condenser mirrors CMI and CM2 (Cassegrain). In addition, a spectroscope (glychroic beam sysmeter) is installed between this observation light condensing position and condensing mirror CM2.
A BS is arranged, and the observation light is split into visible light VR and infrared IR by this spectrometer BS, and each is detected by a corresponding photodetector (not shown). Infrared images can then be obtained by processing the output electrical signals of the photodetector. In FIG. 1, reference numeral M5 is a reflecting mirror for simply changing the direction of visible light VR. On the other hand, in order to know the actual temperature of a volcano, we need a calibration light that shows the temperature standard. In the case of the illustrated example, a visible calibration light source S1, an infrared calibration light source (Black Dedy) B2, and reflecting mirrors M6 and M7 are arranged at the left and right positions of the scanning mirror SM, and the scanning mirror SM emits calibration light Ll from these two light sources. ,L2
is introduced into the main optical system. However, in this conventional configuration, the viewing angle θ of the scanning mirror is limited by the calibration light reflecting mirrors M6 and M7 and cannot be increased.

上記従来例の欠点を解決するため、第2図及び第3図に
示すような光学系構成が提案されている。
In order to solve the drawbacks of the conventional example, an optical system configuration as shown in FIGS. 2 and 3 has been proposed.

第2図で符号Aは主光学系を示し、上記第1従来例とほ
ぼ同様に、モータMTで駆動される走査鏡SMによって
光景を走査し、観測光L’(j反射鏡M1〜M4及び集
光鏡CMI 、CM2によって所定位置に集光させる。
In FIG. 2, reference numeral A indicates the main optical system, which scans the scene with a scanning mirror SM driven by a motor MT and transmits observation light L' (j reflecting mirrors M1 to M4 and The light is focused at a predetermined position by condensing mirrors CMI and CM2.

尚、第2図と第3図とでは集光鏡CMI 、CM2の配
置が異なっており、第2図では光が集光鏡CM2から直
接側方へ反射されるのに対し、第3図では集光鏡CMI
とCM2の間に配置した反射鏡M5によって光が側方へ
反射されるような構成としである。このようにして集光
された観測光りは分光器BSによって可視光VRと赤外
線IRに分割される。そして可視光VRは符号BSMI
で総括的に示す1群の分光器(4個)と反射鏡(3個)
を用いて5つの異なる波長帯の光に分割され、それぞれ
対応する可視光(A ) 領域の光検知器(例えば5iPINダイオード)DI〜
D5で検知される。一方、赤外線IRは、符号BSM 
2で総括的に示すもう1群の分光器(2個)及び反射鏡
(1個)を用いて3つの異なる波長帯の赤外線に分割さ
れ、それぞれ対応する赤外線領域の光検知器(例えばH
gCdTe検知器)D6〜D8で検知される。次に、第
2図において符号B1は可視校正光導入用光学系を示し
、2つの可視校正用光源、つまりスカイライト集光系8
11及び標準光源812からの校正光Lll及びL12
を走査鏡SMI及びチョッパミラーCHIを用いて主光
学系に導入するようになっている。一方、符号B2は赤
外校正光導入用光学系を示し、3つの赤外校正光用光源
(ブラックがディ)813〜815からの校正光L13
〜L15を走査鏡SM2及びチョッパミラーCH2’e
用いて主光学系に導入するように構成しである。このよ
うな構成によれば、校正光導入用光学系が主光学系の走
査側ではなく分光側に配置されているので、視野角を大
きくとれる利点がある。しかしながら、校正光導入光学
(4) 系B1及びB2は、全体として2つのチョッ・eミラー
CHI、CH2及び2つの走査鏡SMI。
Note that the arrangement of the condensing mirrors CMI and CM2 is different between FIG. 2 and FIG. 3; in FIG. condenser mirror CMI
The configuration is such that light is reflected to the side by a reflecting mirror M5 disposed between and CM2. The observation light thus collected is divided into visible light VR and infrared IR by a spectroscope BS. And visible light VR has the code BSMI
A group of spectrometers (4 pieces) and reflectors (3 pieces) are summarized in
The light is divided into five different wavelength bands using a photodetector (e.g. 5iPIN diode) in the corresponding visible light (A) range.
Detected by D5. On the other hand, infrared IR has the symbol BSM
Using another group of spectrometers (2 pieces) and a reflector (1 piece), which are generally shown in 2, the infrared light is divided into three different wavelength bands, and the corresponding infrared light detectors (for example, H
gCdTe detector) Detected by D6 to D8. Next, in FIG. 2, reference numeral B1 indicates an optical system for introducing visible calibration light, and there are two visible calibration light sources, that is, a skylight condensing system 8.
11 and calibration lights Lll and L12 from the standard light source 812
is introduced into the main optical system using a scanning mirror SMI and a chopper mirror CHI. On the other hand, symbol B2 indicates an optical system for introducing infrared calibration light, and calibration light L13 from three infrared calibration light light sources (black is D) 813 to 815 is shown.
~ L15 as scanning mirror SM2 and chopper mirror CH2'e
It is configured so that it can be used and introduced into the main optical system. According to such a configuration, since the optical system for introducing the calibration light is arranged on the spectroscopic side of the main optical system rather than on the scanning side, there is an advantage that a wide viewing angle can be obtained. However, the calibration light introduction optical system (4) B1 and B2 as a whole consists of two mirrors CHI, CH2 and two scanning mirrors SMI.

8M2ならびにこれらを駆動するための4つのモータM
TI〜MT4を必要とし、構造が非常に複雑であり、且
つ大型で重量も重くなる(第3図では図示の都合上モー
タMTI〜MT4を小さく示しであるが、実際には相当
大型である)。しかも、これらのモータMTI〜MT4
は主走査鏡ST用のモータMTと同期させる必要があり
、電気制御回路も非常に複雑なものとなる。
8M2 and 4 motors M to drive them
It requires TI to MT4, has a very complicated structure, and is large and heavy (in Figure 3, the motors MTI to MT4 are shown small for convenience of illustration, but they are actually quite large). . Moreover, these motors MTI to MT4
needs to be synchronized with the motor MT for the main scanning mirror ST, and the electrical control circuit becomes very complex.

(4)発明の目的 従って本発明は、上記従来技術に鑑み、校正光導入用光
学系を改良することによシ、構造が簡単で且つ小型軽量
でおり、しかも制御回路も単純な、航空機搭載用として
すぐれたマルチスペクトルスキャナを提供することを目
的とするものである。
(4) Purpose of the Invention Therefore, in view of the above-mentioned prior art, the present invention improves the optical system for introducing calibration light, thereby achieving a simple structure, small size and light weight, and a simple control circuit. The purpose of this invention is to provide a multispectral scanner that is excellent for use.

(5)発明の構成 本発明は、概略的には、上記の如き主光学系と校正光導
入用光学系とを具備して成るマルチスペクトルスキャナ
において、校正用光源と同数の互に角度の異なる反射鏡
を周囲に有する1つの回転型チョッ・9ミラー全前記主
光学系の観測光集光位置に配置し、該チョッ・母ミラー
によって全ての校正光が導入されるように構成したもの
である。
(5) Structure of the Invention The present invention generally provides a multispectral scanner comprising a main optical system as described above and an optical system for introducing calibration light, in which the same number of light sources as the calibration light sources are arranged at different angles. One rotating mirror with a reflecting mirror around it is arranged at the observation light focusing position of the main optical system, and all the calibration light is introduced by the main mirror. .

(6)発明の実施例 以下、不発明の一実施例につき図面の第4図から第7図
を参照して説明する。本実施例において、主光学系Aは
特に第3図に示す構成と実質上同様である。すなわち、
モータMTで駆動される走査鏡SMによって走査された
観測光りは反射鏡M1〜M4、集光鏡CMI 、CM2
によって集光され、更に反射鏡M5によって側方に反射
される。そして、集光された観測光しは分光器BSよっ
て可視光VRと赤外線IRによって分割される。可視光
VRは従来と同様に1群の分光器及び反射鏡BSMIに
よって5つの波長帯に分割され、光検知器D1〜D5に
よって検知される。捷だ、赤外線IRも従来と同様に1
群の分光器及び反射鏡BSM 2によって3つの波長帯
に分割され、赤外線検知器D6〜D8で検知される。
(6) Embodiment of the Invention Hereinafter, an embodiment of the invention will be described with reference to FIGS. 4 to 7 of the drawings. In this embodiment, the main optical system A has a substantially similar structure to that shown in FIG. 3 in particular. That is,
The observation light scanned by the scanning mirror SM driven by the motor MT is transmitted through the reflecting mirrors M1 to M4 and the condensing mirrors CMI and CM2.
The light is focused by the mirror M5 and reflected laterally by the reflecting mirror M5. The focused observation light is then split into visible light VR and infrared IR by a spectroscope BS. Visible light VR is divided into five wavelength bands by a group of spectrometers and a reflecting mirror BSMI, as in the past, and detected by photodetectors D1 to D5. Well, the infrared IR is also 1 as before.
It is divided into three wavelength bands by the group spectrometer and reflector BSM 2 and detected by infrared detectors D6 to D8.

本発明の特徴は、校正光導入用光学系Bにある。The feature of the present invention lies in the optical system B for introducing calibration light.

この光学系BFi、第4図に特に明示するように、主光
学系Aの観測光集光位置に1つの回転型チョッ・臂ミラ
ーCHOを配置し、これを中心にして前記の如き5つの
校正用光源811〜815を放射状に配置した構成とし
である。チョッパミラーCHOには第7図に示す如くそ
の周囲に校正用光源811〜815と同数の、つまり5
個のミラーMll〜M15を設けである。これらのミラ
ーは互に異なる角度で形成してあり、第6図に示すよう
にいずれかのミラー(第6図ではMll)が観測光りの
光軸LAと一致しているときはこのミラーによって観測
光りが遮断(チョッピング)され、且つこのミラーと対
応するいずれかの光源からの校正光(第6図では光源8
11からの校正光L11)が当該ミラーによって光軸L
Aに溢って図の右方向へ反射されるように構成しである
。従って、チョッパミラーCHOをモータMTOで矢印
Y方向へ回転させてやると、ミラーMll〜M15が光
軸LAに一致するごとに観測光りがチョッピングされ、
代わりに校正用光源811〜815からの校正光Lll
〜I、15が順に主光学系に導入されることになる。
In this optical system BFi, as particularly shown in FIG. The light sources 811 to 815 are arranged radially. As shown in FIG. 7, the chopper mirror CHO has the same number of calibration light sources 811 to 815, that is, 5, around it.
Mirrors Mll to M15 are provided. These mirrors are formed at different angles, and as shown in Figure 6, when one of the mirrors (Mll in Figure 6) coincides with the optical axis LA of the observation light, the observation is performed by this mirror. The light is chopped (chopped), and the calibration light from any light source corresponding to this mirror (light source 8 in FIG. 6) is
The calibration light L11) from 11 is aligned with the optical axis L by the mirror.
The structure is such that the light overflows A and is reflected to the right in the figure. Therefore, when the chopper mirror CHO is rotated in the direction of arrow Y by the motor MTO, the observation light is chopped every time the mirrors Mll to M15 coincide with the optical axis LA.
Instead, the calibration light Lll from the calibration light sources 811 to 815
.about.I, 15 are sequentially introduced into the main optical system.

尚、第7図に示すチョッパミラーCHOO穴Hは、ミラ
ーMll〜M15による偏荷重を補償して動的安定性を
得るためのものである。
Incidentally, the chopper mirror CHOO hole H shown in FIG. 7 is for compensating for the uneven load caused by the mirrors Mll to M15 to obtain dynamic stability.

以上のような本発明の構成によれば、1つのチョッパミ
ラーCHOと1つのモータMTOで全ての校正光を導入
でき、従って第2図及び第3図に示した従来例に比べて
構造がはるかに簡単であり、飛躍的な小形1ml¥量化
が図れる。しかもモータが1つであるから走査用モータ
MTとの同期をとるだめの制御回路も簡単になシ、それ
だけ信頼性を向上させ得る。
According to the configuration of the present invention as described above, all the calibration light can be introduced with one chopper mirror CHO and one motor MTO, and the structure is therefore much simpler than the conventional example shown in FIGS. 2 and 3. It is easy to use, and can be dramatically reduced in size to 1 ml. Moreover, since there is only one motor, the control circuit needed to synchronize with the scanning motor MT is simple, and reliability can be improved accordingly.

尚、図示してないが、チョッパミラーCHOを走査鏡S
Mの駆動軸に直結して走査用モータMTで駆動するよう
にすれば、チョッ・ぐミラー駆動用モータMT(1は不
要となり、更に一層の構造の簡素化、小形軽量化が可能
と々す、しかも同期回路は全く不要と々る。チョッパミ
ラーの主走査モータMTOによる直結駆動の具体的構成
例としては、第5図において主光学系Aの反射鏡M5と
チョッノ1ラ−C)(Oとの間にいくつかの反射鏡を介
在させて観測光しの光軸LAを下方へ曲折させ、チョッ
・やミラーCHOを下方へ配置するように構成すれば良
い。但し、これに伴って分光器BS以後の光学系の配置
も移動させることは云うまでもない。
Although not shown, the chopper mirror CHO is connected to the scanning mirror S.
If it is directly connected to the drive shaft of M and driven by the scanning motor MT, the mirror drive motor MT (1) becomes unnecessary, and the structure can be further simplified and made smaller and lighter. , and no synchronization circuit is required at all.As a specific configuration example of direct drive of the chopper mirror by the main scanning motor MTO, in FIG. The optical axis LA of the observation light beam may be bent downward by interposing some reflecting mirrors between the CHO and the mirror CHO, and the mirror CHO may be placed downward. Needless to say, the arrangement of the optical system after the device BS is also moved.

(7)発明の効果 以上のように、本発明によれば、校正光導入用光学系の
改良によυ、構造が簡単且つ小形軽量であり、しかも制
御が簡単で信頼性の高い、航空機搭載用として非常にす
ぐれたマルチスペクトルスキャナを実現し得る。
(7) Effects of the Invention As described above, according to the present invention, by improving the optical system for introducing the calibration light, the structure is simple, small and lightweight, and moreover, it is easy to control, highly reliable, and can be mounted on an aircraft. It is possible to realize a multispectral scanner that is very suitable for use.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のMSスキャナの第1列の光学系構成図、
第2図は従来のMSスキャナの第2例の光学系構成図、
第3図は第2図の従来例の光学系の略示斜視図、第4図
は本発明によるMSスキャナの一実施例の光学系構成図
、第5図は同実施例の光学系の略示斜視図、第6図は同
実施例の校正光導入用光学系の作用説明図、第7図は校
正光導入用チョッノ+ミラーの正面図である。 A・・・主光学系、L・・・観測光、SM・・・走査鏡
、MT・・・走査用モータ、M1〜M5・・・反射鏡、
CMI、CM2・・・集光鏡、BS・・・分光器、vR
・・・可視光、工R・・・赤外線、BSM 1 、88
M2・・・分光器及び反射鏡群、D1〜D8・・・光検
知器、B・・・校正光導入用光学系、CHO・・・チョ
ッ・ヤミラー、M11〜M15・・・反射鏡、MTO・
・・モータ、S11〜815・・・校正用光源、Lll
〜L15・・・校正光。 特許出願人 富士通株式会社 特許出願代理人 弁理士  官 木   朗 弁理士 西舘和之 弁理士  内 1)幸 男 弁理士  山 口 昭 之 (11) 手続補正書(自発) 昭和57年7月JC口 特許庁長官若 杉 和 夫 殿 1、事件の表示 昭和57年 特許願  第111517号2、発明の名
称 マルチスペクトルスキャナ 3、補正をする者 事件との関係  特許出願人 名称(522)冨士通株式段社 4、代理人 (外 3 名) 5 補正の対象 図1fi(第1図乃至第7図) 6 補正の内容 正式図rlilを遺児致し叫す。 (′#、だ[7内容に変更はあり′8′ゼん)Z 添付
機知の目録
Figure 1 is a diagram of the optical system configuration of the first row of a conventional MS scanner.
Figure 2 is an optical system configuration diagram of a second example of a conventional MS scanner.
FIG. 3 is a schematic perspective view of the optical system of the conventional example shown in FIG. 2, FIG. 4 is a configuration diagram of the optical system of an embodiment of the MS scanner according to the present invention, and FIG. FIG. 6 is a diagram illustrating the operation of the optical system for introducing calibration light in the same embodiment, and FIG. 7 is a front view of the mirror for introducing calibration light. A... Main optical system, L... Observation light, SM... Scanning mirror, MT... Scanning motor, M1 to M5... Reflecting mirror,
CMI, CM2...Condensing mirror, BS...Spectrometer, vR
...Visible light, Engineering R...Infrared light, BSM 1, 88
M2... Spectrometer and reflecting mirror group, D1-D8... Photodetector, B... Optical system for introducing calibration light, CHO... Choya mirror, M11-M15... Reflecting mirror, MTO・
...Motor, S11-815...Calibration light source, Lll
~L15... Calibration light. Patent Applicant: Fujitsu Limited, Patent Application Agent, Patent Attorney: Akira Ki, Patent Attorney, Kazuyuki Nishidate, Patent Attorney: 1) Yukio, Patent Attorney, Akiyuki Yamaguchi (11) Procedural Amendment (Volunteer) July 1981 JC Patent Director General Wakasugi Kazuo 1, Indication of the case 1982 Patent Application No. 111517 2, Name of the invention Multi-spectral scanner 3, Relationship with the person making the amendment Name of the patent applicant (522) Fujitsu Co., Ltd. Dansha 4. Agent (3 other people) 5. Figure 1fi to be amended (Figures 1 to 7) 6. I am crying out for the official diagram of the contents of the amendment. ('#, da [7 contents have changed '8' zen) Z Attached witty catalog

Claims (1)

【特許請求の範囲】[Claims] 1、観測すべき光景を走査鏡で走査してその観測光を所
定位置に集光させた後、複数の異なる波長帯の光に分割
して光検知器に入射させる主光学系と、該主光学系に複
数の校正光を導入する校正光導入用光学系とを具備して
成るマルチスペクトルスキャナにおいて、校正用光源と
同数の互に角度の異なる反射鏡を周囲に有する1つの回
転型チ、ッ・母ミラーが前記主光学系の観測光集光位置
に配置され、該チ、ツノやミラーによって全ての校正光
が主光学系に導入されるように構成されたことを特徴と
するマルチスペクトルスキャナ。
1. A main optical system that scans the scene to be observed with a scanning mirror and focuses the observation light on a predetermined position, and then divides the light into a plurality of different wavelength bands and makes them enter a photodetector; In a multispectral scanner comprising a calibration light introducing optical system that introduces a plurality of calibration lights into the optical system, one rotating type scanner having around the same number of reflecting mirrors with different angles as the number of calibration light sources, - A multispectral device characterized in that a mother mirror is arranged at the observation light condensing position of the main optical system, and is configured such that all the calibration light is introduced into the main optical system by the horns and mirrors. scanner.
JP11151782A 1982-06-30 1982-06-30 Multispectral scanner Pending JPS593225A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11151782A JPS593225A (en) 1982-06-30 1982-06-30 Multispectral scanner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11151782A JPS593225A (en) 1982-06-30 1982-06-30 Multispectral scanner

Publications (1)

Publication Number Publication Date
JPS593225A true JPS593225A (en) 1984-01-09

Family

ID=14563318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11151782A Pending JPS593225A (en) 1982-06-30 1982-06-30 Multispectral scanner

Country Status (1)

Country Link
JP (1) JPS593225A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61150852A (en) * 1984-12-21 1986-07-09 Sumitomo Electric Ind Ltd Car theft preventive system
JPS63174010A (en) * 1987-01-14 1988-07-18 Agency Of Ind Science & Technol Laser beam chopper
DE4119489A1 (en) * 1991-06-13 1991-11-07 Bernhard Prof Dr Ing Hill Multi-spectral image recorder with image scanner - has narrow band spectral filters, with middle wavelengths distributed over entire visible range
JPH09116915A (en) * 1995-10-20 1997-05-02 Nikon Corp Spectral system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5145356U (en) * 1974-09-30 1976-04-03

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5145356U (en) * 1974-09-30 1976-04-03

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61150852A (en) * 1984-12-21 1986-07-09 Sumitomo Electric Ind Ltd Car theft preventive system
JPH0554464B2 (en) * 1984-12-21 1993-08-12 Sumitomo Electric Industries
JPS63174010A (en) * 1987-01-14 1988-07-18 Agency Of Ind Science & Technol Laser beam chopper
DE4119489A1 (en) * 1991-06-13 1991-11-07 Bernhard Prof Dr Ing Hill Multi-spectral image recorder with image scanner - has narrow band spectral filters, with middle wavelengths distributed over entire visible range
JPH09116915A (en) * 1995-10-20 1997-05-02 Nikon Corp Spectral system

Similar Documents

Publication Publication Date Title
US3781559A (en) Variable field of view scanning system
US4538181A (en) Optical scanner
AU755031B2 (en) Scanning apparatus
US3941923A (en) Thermal imaging system with redundant object space scanning
EP1774772B1 (en) Scanning portal imager
US3211046A (en) Split image, high scanning rate optical system with constant aperture
US5149969A (en) Infrared surveillance device
US4413878A (en) Imaging systems
IL35367A (en) Optical scanning apparatus
AU652695B2 (en) An imager
US5180912A (en) Display system with means for variably deflecting an array of optical emitters
US4042933A (en) Antenna line scan system for helicopter wire detection
US4461534A (en) Optical scanning system with two sequential reflection stations
US4453087A (en) Scanning mechanism for FLIR systems
US4650997A (en) Infrared target image system employing rotating polygonal mirror
US3715497A (en) Optical scanner and real time image conversion system
JPS593225A (en) Multispectral scanner
EP0123038B1 (en) Optical scanner
US4837451A (en) Ring array imaging system
US3956586A (en) Method of optical scanning
US7045774B2 (en) Wide field of view, four-telescope, radial scanning search and acquisition sensor
US4912321A (en) Radiation scanning system with pupil control
US7067798B2 (en) Multiple drum apparatus for high speed scanning of microwave, mm-wave and infrared radiation
US4487473A (en) One dimensional scanning system
US3588517A (en) Optical scanning system having a detector disposed at the center of curvature of a spherical focal surface