JPS5915379A - Heat infrared image pickup camera - Google Patents

Heat infrared image pickup camera

Info

Publication number
JPS5915379A
JPS5915379A JP57124086A JP12408682A JPS5915379A JP S5915379 A JPS5915379 A JP S5915379A JP 57124086 A JP57124086 A JP 57124086A JP 12408682 A JP12408682 A JP 12408682A JP S5915379 A JPS5915379 A JP S5915379A
Authority
JP
Japan
Prior art keywords
infrared
row
light
dimensional
pyroelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57124086A
Other languages
Japanese (ja)
Inventor
Kunio Nakamura
中村 邦雄
Motoi Oba
大庭 基
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP57124086A priority Critical patent/JPS5915379A/en
Publication of JPS5915379A publication Critical patent/JPS5915379A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N3/00Scanning details of television systems; Combination thereof with generation of supply voltages
    • H04N3/02Scanning details of television systems; Combination thereof with generation of supply voltages by optical-mechanical means only
    • H04N3/08Scanning details of television systems; Combination thereof with generation of supply voltages by optical-mechanical means only having a moving reflector
    • H04N3/09Scanning details of television systems; Combination thereof with generation of supply voltages by optical-mechanical means only having a moving reflector for electromagnetic radiation in the invisible region, e.g. infrared

Abstract

PURPOSE:To obtain a compact and light-weight heat infrared image pickup device which works on the normal temperature with a long lifetime and an easy operation, by combining a row of pyroelectric infrared detecting elements with a one-dimensional scanning mirror. CONSTITUTION:The output of a linear array 41 in which pyroelectric infrared detecting elements are set in a row is supplied to an output system after undergoing a prescribed signal process such as an integrating process, etc. through a signal processing part 48. At the same time, a part of the output of the part 48 is applied to a light emitting diode row 46 to blink the row 46. This blinking light is reflected by the rear side of a scanning mirror 43 which revolves round a rotary shaft to perform the one-dimensional panning scan. Then the reflected light is displayed on a screen 47 in the form of a visible image. The panning scan is performed in a direction rectangular to the arranging direction of the array 41. That is, it is possible to observe the infrared radiation distribution in a viewfield 45 in the form of a visible optical image.

Description

【発明の詳細な説明】 熱赤外撮像カメラ、には真空管型と固体赤外検出素子を
用いた型があり、後者の方が寿命が長く丈夫である。後
者のなかには、■ 赤外検出素子がポイントセンザで二
次元方向に鏡を機械的走査する方式、■ 赤外検出素子
が1列に複数並んで、素子列と直角方向に鏡を1次元走
査する方式、■二次元配列された赤外検出素子のみで、
機械的走査鏡は用いない方式がある。一方固体赤外検出
素子には赤外線を光量子として検出する半導体型と、一
旦熱として吸収して素子の温度変化を何らかの方法で電
気信号に変換する熱型がある。前者は感度が高く、応答
が早いので、二次元走査鏡と組み合せて、いわゆるサー
モグラフィー装置として、開発されているが、この半導
体型素子は常温では10μm帯の赤外線は検出できず、
液体窒素などで冷却しなければならない。後者の熱型素
子は応答が遅いが、常温で動作するので、比較的簡単な
装置にま、とめることができ、使い易いという特長があ
る。熱型素子のなかでも、焦電素子は比較的感度が高く
、高速応答用にも使える。しかし、焦電素子は、温度変
化率に比例した電気信号をtJi −J−ので、赤外線
を検出するには入射赤外線に変調をかける必要がある。
[Detailed Description of the Invention] There are two types of thermal infrared imaging cameras: a vacuum tube type and a type using a solid-state infrared detection element, and the latter has a longer lifespan and is more durable. The latter include: ■ A method in which infrared detection elements mechanically scan the mirror in two-dimensional directions using a point sensor; ■ A method in which multiple infrared detection elements are lined up in a row and the mirror is scanned one-dimensionally in a direction perpendicular to the element row. ■With only two-dimensionally arranged infrared detection elements,
There is a method that does not use a mechanical scanning mirror. On the other hand, solid-state infrared detection elements include a semiconductor type that detects infrared rays as photons and a thermal type that absorbs the infrared rays as heat and converts the temperature change of the element into an electrical signal by some method. The former has high sensitivity and quick response, so it has been developed as a so-called thermography device by combining it with a two-dimensional scanning mirror, but this semiconductor type element cannot detect infrared rays in the 10 μm band at room temperature.
It must be cooled with liquid nitrogen, etc. The latter type of thermal element has a slow response, but since it operates at room temperature, it can be assembled into a relatively simple device and has the advantage of being easy to use. Among thermal elements, pyroelectric elements have relatively high sensitivity and can be used for high-speed response. However, since the pyroelectric element generates an electric signal tJi -J- that is proportional to the rate of temperature change, it is necessary to modulate the incident infrared rays in order to detect the infrared rays.

このように、従来の熱赤外撮像カメラはいず71の方式
も一長一短であった。
As described above, the conventional thermal infrared imaging camera system of Izu 71 has both advantages and disadvantages.

本発明は、−列に並んだ焦電型赤外検出素子と−・次ノ
i:: ill査鏡を組合せて、上記の問題点を一挙に
解決し、長寿命、常温度動作の小型軽量の操作の容易な
熱赤外線撮像装置を提供するものである。
The present invention solves the above problems all at once by combining pyroelectric infrared detection elements arranged in a row with an illumination mirror, and creates a compact and lightweight product with a long life and normal temperature operation. The present invention provides a thermal infrared imaging device that is easy to operate.

前述の」:うに焦電素子は、赤外線入射量の変化率に比
例して電気信号を出力するので、−次元走査鏡とその走
査方向と直角方向に多数配列した焦電素子及び結像用光
学レンズを絹合せると焦電素子に入る赤外線は順次二次
元の視野を走査した部分からの赤外光量になる。
As mentioned above, the pyroelectric element outputs an electric signal in proportion to the rate of change in the amount of incident infrared rays, so it requires a -dimensional scanning mirror, a large number of pyroelectric elements arranged in a direction perpendicular to its scanning direction, and imaging optics. When the lenses are fitted together, the infrared light that enters the pyroelectric element becomes the amount of infrared light from the part that scans the two-dimensional field of view.

第1図はこの様子を示す。図において、1は複数の焦電
型赤外検出素子を一列に配列したりニアアレイ、2はゲ
ルマニウム等から成る赤外光結像用光学レンズ、3は回
転@4の捷わりに回転して一次元のパニング走査をする
反射鏡で、パニング走査方向はりニアアレイ1の配列方
向と直角方向である。5は撮像すべき視野を示す。い1
、反射鏡3が図の位置に静止した状態を考えると、反射
鏡3には視野5からの二次元の像が入射し、光学レンズ
2を通って焦電型赤外検出素子リニアアレイ1に入射す
る。ところかりニアアレイ1は一次元に配列されている
ので、二次元像すべてを受光することは出来ず、一次元
像、たとえば視野5の左端部分の一次元像6のみが受光
される。つきに、反射鏡3が回転軸4を中心に図の矢印
a方向に若干回転すると、リニアアレイ1に受光される
視野5の像は図において若干右側に移動した一次元像と
なる。したがって、反射鏡3を更に矢印a方向に回転さ
せつづけると、視野5全体の二次元像が走査されてリニ
アアレイ1に受光されることになる。
Figure 1 shows this situation. In the figure, 1 is a near array of multiple pyroelectric infrared detection elements arranged in a line, 2 is an optical lens for infrared light imaging made of germanium, etc., and 3 is rotated in place of rotation @ 4 to be one-dimensional. The panning scanning direction is perpendicular to the arrangement direction of the linear array 1. 5 indicates the field of view to be imaged. 1
, considering that the reflecting mirror 3 is stationary at the position shown in the figure, a two-dimensional image from the field of view 5 enters the reflecting mirror 3, passes through the optical lens 2, and enters the pyroelectric infrared detecting element linear array 1. incident. However, since the near array 1 is arranged one-dimensionally, it cannot receive all two-dimensional images, but only one-dimensional images, for example, one-dimensional image 6 at the left end portion of field of view 5. At the same time, when the reflecting mirror 3 is slightly rotated about the rotation axis 4 in the direction of the arrow a in the figure, the image of the field of view 5 received by the linear array 1 becomes a one-dimensional image that has moved slightly to the right in the figure. Therefore, if the reflecting mirror 3 continues to rotate further in the direction of the arrow a, a two-dimensional image of the entire field of view 5 will be scanned and received by the linear array 1.

第2図は、第1図の視野5の赤外放射分布とりニアアレ
イ1の出力信号の関係を示す。い寸、第1図のA−A線
上の赤外放射分布計が第2図(a)に示すような場合、
リニアアレイ1の対応する焦電素子からは、反射鏡3の
走査に従って第2図(1))に示すような赤外放射分布
の微分信号が出力信号としてとり出される。リニアアレ
イ1の他の部分からも同様に視野5の赤外放射分布の微
分信号が反射鏡3の走査に従ってとり出される。
FIG. 2 shows the relationship between the infrared radiation distribution in the field of view 5 in FIG. 1 and the output signal of the near array 1. If the infrared radiation distribution meter on line A-A in Figure 1 is as shown in Figure 2(a),
From the corresponding pyroelectric element of the linear array 1, a differential signal of the infrared radiation distribution as shown in FIG. 2 (1) is taken out as an output signal in accordance with the scanning of the reflecting mirror 3. Differential signals of the infrared radiation distribution in the field of view 5 are similarly extracted from other parts of the linear array 1 as the reflecting mirror 3 scans.

この信号d、各素子からその視野方向に対応したものに
なっているので、これらを信号処理部で、積分処1jl
iすれば、二次元の赤外放射温度分布の相り・1値を8
1側できることになる。第3図に、−素子相当の積分処
理後の出力信号の様子を示す。
Since this signal d corresponds to the visual field direction from each element, it is processed by the signal processing section and integrated by 1jl.
If i, the value of the two-dimensional infrared radiation temperature distribution becomes 8.
This means that the first side can do it. FIG. 3 shows the state of the output signal after the integral processing corresponding to the negative element.

このような機能は、焦電素子1ケと二次元走査鏡の組合
せでも原理的には達成可能であるが、焦電素子は熱型の
赤外検出素子なので、半導体素子はと高速応答特性は良
くなく、特性が著しく低いものとなる。ところが、−次
元走査では、例えば1秒間に1枚の画像を得る役割で割
算すると、空間外M能を走査方向に100本として、1
0m5ecの応答でよいこ七になり、この程度の応答特
性だと焦電素子の熱時定数と同しオーダなので、焦電素
子の感度を損うことなく、最適設a1をすることが1j
J能であり、焦電素子の特性を充分生かした高感度の熱
赤外撮像カメラを設言1できる。
In principle, such a function can be achieved with a combination of a single pyroelectric element and a two-dimensional scanning mirror, but since the pyroelectric element is a thermal infrared detection element, it does not have the same high-speed response characteristics as a semiconductor element. This is not good and the characteristics are extremely poor. However, in -dimensional scanning, if you divide by the role of obtaining one image per second, for example, if the extra-spatial M function is 100 in the scanning direction, then 1
A response of 0m5ec is a good value, and a response characteristic of this level is on the same order as the thermal time constant of the pyroelectric element, so it is possible to make the optimal setting a1 without impairing the sensitivity of the pyroelectric element.
It is possible to create a highly sensitive thermal infrared imaging camera that fully utilizes the characteristics of the pyroelectric element.

一方、二次元に焦電素子を配列して、機械的走査を行わ
ない方式は、焦電素子を用いるかぎり、赤外線の変調を
行わなければならないので、二次元素子を用いたことに
よるメリノ]・が生かされてこないことになる。したが
って、−次元アレイと一次元走査反射鏡の組合せが最適
である。
On the other hand, the method of arranging pyroelectric elements two-dimensionally and not performing mechanical scanning requires modulation of infrared rays as long as pyroelectric elements are used. will not be taken advantage of. Therefore, the combination of a -dimensional array and a one-dimensional scanning reflector is optimal.

以上のように、本発明による焦電素子の一次元アレイと
一次元走査鏡との組み合せは、焦電赤外検出素子の特性
に合った方式で、長寿命、常温動作、小型軽量、操作の
容易な、高感度の熱赤外撮像カメラを提供するととがで
きる。
As described above, the combination of the one-dimensional array of pyroelectric elements and the one-dimensional scanning mirror according to the present invention is a method that matches the characteristics of the pyroelectric infrared detection element, has a long life, operates at room temperature, is small and lightweight, and is easy to operate. It is possible to provide a simple and highly sensitive thermal infrared imaging camera.

なお、光学レンズ2としては一般にはゲルマニウム又は
シリコン半導体拐料が使われているが、両者共に可視光
は透過しないので、光学系の調整はかなり困難である。
Incidentally, germanium or silicon semiconductor materials are generally used as the optical lens 2, but since both do not transmit visible light, it is quite difficult to adjust the optical system.

光学系の調節を行なうには、光学レンズをZ n S 
e 、 KRS  E5 、 Ca F 21 B a
 F 2 。
To adjust the optical system, move the optical lens to Z n S
e, KRS E5, Ca F 21 B a
F2.

ザファイヤ(Aa2o3結晶)などの可視光も透過する
材質で製造すれば、可視光でアライメント調整が可能で
ある。但し、赤外波長に対する屈折率と可視光のそれと
は異なるので、結像特性を確外することはできない。従
って、レーザ光を利用してレンズの中心に可視光を通し
て、光軸合せを行うことに限定されるが、これにより調
整は、大変容易になる。
If it is manufactured from a material that also transmits visible light, such as Zaphire (Aa2o3 crystal), alignment adjustment can be performed using visible light. However, since the refractive index for infrared wavelengths is different from that for visible light, the imaging characteristics cannot be determined with certainty. Therefore, the optical axis alignment is limited to using a laser beam to pass visible light through the center of the lens, but this makes the adjustment very easy.

第4図は本発明の他の実施例で、光学レンズを複数枚用
−て、走査鏡をレンズ系の中間に配置した実施例である
。図において、41は焦電型赤外線検出素子のりニアア
レイ、42.44は光学し/ズ、43は一次元走査鏡、
46は視野である。
FIG. 4 shows another embodiment of the present invention, in which a plurality of optical lenses are used and a scanning mirror is placed in the middle of the lens system. In the figure, 41 is a linear array of pyroelectric infrared detection elements, 42, 44 is an optical sensor, 43 is a one-dimensional scanning mirror,
46 is a field of view.

ここ斗での構成は光学レンズ44の挿入以外は第1図の
構成と同一である。46は発光ダイオードの−・次元配
列、47はスクリーン、48は焦電素子41の出力信号
の信号処理部である。
The configuration here is the same as the configuration in FIG. 1 except for the insertion of the optical lens 44. 46 is a −-dimensional array of light emitting diodes, 47 is a screen, and 48 is a signal processing unit for the output signal of the pyroelectric element 41.

リニアアレイ41の出力は信号処理部4日で積分処理な
どの所定の信号処理をされ出力系(図示せず)に供給さ
れる。また信号処理部48の出力の一部は発光ダイオー
ド例46に加えられ発光ダイオード列46を点滅させる
。この点滅光は走査鏡43の裏面で反射されてスクリー
ン47上に可視像として表示される。すなわち視野46
の赤外放射分布を可視光像として観察することが出来る
The output of the linear array 41 is subjected to predetermined signal processing such as integration processing in the signal processing section 4 and is supplied to an output system (not shown). Further, a part of the output of the signal processing unit 48 is applied to the light emitting diode example 46 to cause the light emitting diode array 46 to blink. This blinking light is reflected by the back surface of the scanning mirror 43 and displayed as a visible image on the screen 47. i.e. field of view 46
The infrared radiation distribution of can be observed as a visible light image.

第6図は第4図の構成に基づいて構成した熱赤外撮像カ
メラの具体的実施例を示す。図中第4図第ルンズ44は
R11=73±1 mm 、 R12=120+1mm
FIG. 6 shows a specific example of a thermal infrared imaging camera constructed based on the configuration shown in FIG. In Figure 4, Runs 44 is R11 = 73 ± 1 mm, R12 = 120 + 1 mm.
.

第2レンズ42はR21=58±I M 、 R22=
171Hmm。
The second lens 42 has R21=58±IM, R22=
171Hmm.

なるメニスカス型のKH2−5製凸レンズとし、走査鏡
43を第2レンズ42から12備の位置、第2レンズ4
2から16咽の位置(無限大に焦点が合っている)に設
置し、第2レンズ42と焦電素子41間は35朋としだ
。この光学系は焦点距離50mmで、視野角16°×1
6°、空間分解能0.15°。
A meniscus-type convex lens made of KH2-5 is used, and the scanning mirror 43 is placed at a position 12 from the second lens 42.
It is installed at a position of 2 to 16 degrees (focused at infinity), and the distance between the second lens 42 and the pyroelectric element 41 is 35 degrees. This optical system has a focal length of 50 mm and a viewing angle of 16° x 1
6°, spatial resolution 0.15°.

温度分解能0.6°Cなる特性を有する熱赤外撮像カメ
ラを実現した。
We have realized a thermal infrared imaging camera with a temperature resolution of 0.6°C.

以上のように、本発明は複数の焦電型赤外線検出素子を
一列に並べたりニアアレイと、赤外レンズ光学系と、赤
外像走査用反射鏡とを備え、この反射鏡をリニアアレイ
の配列方向と直角方向にパニング走査させるようにしだ
熱赤外撮像カメラで常温で動作するので冷却装置が不要
であり、チョッパ等の赤外線変調手段も不要であり、操
作が容易な高性能熱赤外撮像カメラを得ることが出来る
As described above, the present invention includes a plurality of pyroelectric infrared detection elements arranged in a line or a near array, an infrared lens optical system, and an infrared image scanning reflecting mirror, and the reflecting mirrors are arranged in a linear array. This is a thermal infrared imaging camera that performs panning and scanning in a direction perpendicular to the direction of the camera, and operates at room temperature, so there is no need for a cooling device, no infrared modulation means such as a chopper, and it is a high-performance thermal infrared imaging camera that is easy to operate. You can get a camera.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による熱赤外撮像カメラの基本構造を示
す概念図、第2図イa) 、 (b)は第1図に示し/
こ熱赤外撮像カメラにおける被写体の赤外放射分布とそ
れに対応する焦電素子の出力信号を示す波形図、第3図
は第2図の出力信号を積分処理した後の出力信号波形図
、第4図は本発明による熱赤外撮像カメラの他の実施例
を示す概念図、第5図は本発明による熱赤外撮像カメラ
の具体的実施例を示す概念図である。 1.41・・・・・・焦電素子リニアアレイ、2,42
゜44・・・・・・光学レンズ、3,43・・・・・・
反射鏡、4゜46・・・・・・視野、46・・・・・・
発光ダイオード列、47・・・・・・信号処理部、48
・・・・・・スクリーン。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第2図 A−A’ 第3図 時開 第4図 6 46/ 第5(′ヌ1 4〆
Fig. 1 is a conceptual diagram showing the basic structure of a thermal infrared imaging camera according to the present invention, and Fig. 2 a) and (b) are shown in Fig. 1.
Figure 3 is a waveform diagram showing the infrared radiation distribution of the object in the thermal infrared imaging camera and the corresponding output signal of the pyroelectric element. FIG. 4 is a conceptual diagram showing another embodiment of the thermal infrared imaging camera according to the present invention, and FIG. 5 is a conceptual diagram showing a specific embodiment of the thermal infrared imaging camera according to the present invention. 1.41...Pyroelectric element linear array, 2,42
゜44...Optical lens, 3,43...
Reflector, 4°46...Field of view, 46...
Light emitting diode array, 47...Signal processing section, 48
······screen. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2 A-A' Figure 3 Time opening Figure 4 Figure 6 46/ 5th ('nu 1 4〆

Claims (3)

【特許請求の範囲】[Claims] (1)複数の焦電型赤外線検出素子を1列に並べたりニ
アアレイと、赤外光学系と、赤外像走査用反射鏡とを備
え、前記走査リニアアレイと直角方向にパニング走査す
ることを特徴とする熱赤外撮像カメラ。
(1) A plurality of pyroelectric infrared detection elements arranged in a line or a near array, an infrared optical system, and an infrared image scanning reflector are provided, and panning scanning is performed in a direction perpendicular to the scanning linear array. Features: A thermal infrared imaging camera.
(2)赤外光学系の中間に反射鏡を設置した特許請求の
範囲第1項記載の熱赤外撮像カメラ。
(2) The thermal infrared imaging camera according to claim 1, wherein a reflecting mirror is installed in the middle of the infrared optical system.
(3)赤外光学系を赤外光および可視光に透明な光学拐
料で形成した特許請求の範囲第1項記載の熱赤外撮像カ
メラ。
(3) The thermal infrared imaging camera according to claim 1, wherein the infrared optical system is formed of an optical material transparent to infrared light and visible light.
JP57124086A 1982-07-15 1982-07-15 Heat infrared image pickup camera Pending JPS5915379A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57124086A JPS5915379A (en) 1982-07-15 1982-07-15 Heat infrared image pickup camera

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57124086A JPS5915379A (en) 1982-07-15 1982-07-15 Heat infrared image pickup camera

Publications (1)

Publication Number Publication Date
JPS5915379A true JPS5915379A (en) 1984-01-26

Family

ID=14876576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57124086A Pending JPS5915379A (en) 1982-07-15 1982-07-15 Heat infrared image pickup camera

Country Status (1)

Country Link
JP (1) JPS5915379A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0373807A2 (en) * 1988-12-13 1990-06-20 Pilkington Thorn Optronics Limited Thermal imaging device
US4998826A (en) * 1988-11-30 1991-03-12 Telatemp Corporation Agricultural infrared thermometer
JPH0418427U (en) * 1990-06-04 1992-02-17
JPH04352319A (en) * 1991-05-29 1992-12-07 Nissin Electric Co Ltd Molecular-beam cell
JP2015222260A (en) * 2013-05-17 2015-12-10 パナソニック インテレクチュアル プロパティ コーポレーション オブアメリカPanasonic Intellectual Property Corporation of America Thermal image sensor and air conditioner

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4998826A (en) * 1988-11-30 1991-03-12 Telatemp Corporation Agricultural infrared thermometer
EP0373807A2 (en) * 1988-12-13 1990-06-20 Pilkington Thorn Optronics Limited Thermal imaging device
JPH0418427U (en) * 1990-06-04 1992-02-17
JPH04352319A (en) * 1991-05-29 1992-12-07 Nissin Electric Co Ltd Molecular-beam cell
JP2015222260A (en) * 2013-05-17 2015-12-10 パナソニック インテレクチュアル プロパティ コーポレーション オブアメリカPanasonic Intellectual Property Corporation of America Thermal image sensor and air conditioner

Similar Documents

Publication Publication Date Title
US3287559A (en) Infrared thermogram camera and scanning means therefor
JPH04340993A (en) Display structure
US4341447A (en) Infrared camera ranging system
US5225893A (en) Two-color focal plane array sensor arrangement
JPS5915379A (en) Heat infrared image pickup camera
KR0180721B1 (en) Reflective chopper for infrared imaging systems
JP2015232506A (en) Array mirror system and infrared ray detection device
JPH0476062B2 (en)
GB2096427A (en) Infrared imaging and tracking means
US3722282A (en) Apparatus for remotely displaying temperature differences of an object
KR960015008B1 (en) Prevention apparatus of disasters having fire detection means
JPH0894438A (en) Infrared sensor
JP3011211B1 (en) Infrared imaging method and infrared imaging device
JPH09218101A (en) Reference system for thermal image pickup device
JPS63298127A (en) Image sensing camera using thermal infrared rays
EP0052395A1 (en) Imaging apparatus
JPH09126899A (en) Thermal image detector
JPH0618334Y2 (en) Imaging device
JP3316312B2 (en) Scanning radiometer
JPS63101839A (en) Heat infrared image pickup camera
JPH11344779A (en) Infrared camera
JP2001201400A (en) Dual wavelength image pickup device
JP2766708B2 (en) Thermography equipment
KR100263925B1 (en) Image acquiring system using optical system
JPS62269028A (en) Infrared image sensing apparatus