JPH06100507B2 - Infrared imaging device - Google Patents

Infrared imaging device

Info

Publication number
JPH06100507B2
JPH06100507B2 JP61062638A JP6263886A JPH06100507B2 JP H06100507 B2 JPH06100507 B2 JP H06100507B2 JP 61062638 A JP61062638 A JP 61062638A JP 6263886 A JP6263886 A JP 6263886A JP H06100507 B2 JPH06100507 B2 JP H06100507B2
Authority
JP
Japan
Prior art keywords
field
infrared
optical system
imaging device
view
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61062638A
Other languages
Japanese (ja)
Other versions
JPS62218825A (en
Inventor
正昭 中村
勲 東福
洋之 石崎
幸広 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP61062638A priority Critical patent/JPH06100507B2/en
Publication of JPS62218825A publication Critical patent/JPS62218825A/en
Publication of JPH06100507B2 publication Critical patent/JPH06100507B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Radiation Pyrometers (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Description

【発明の詳細な説明】 [概要] 受光部と不感部とがマトリックス状に配置された二次元
赤外検知素子を用い、その赤外検知素子と集光光学系と
の間に視野切換用光学系(例えばプリズム)を設けて、
前記不感部に対応したフィールドからの入射赤外光を、
視野切換用光学系を操作して複数のフィールドを受光部
で読み取る。その場合、視野切換用光学系の切り換え操
作は、例えば、赤外検知素子の非蓄積時間に同期させて
おこなう。
DETAILED DESCRIPTION OF THE INVENTION [Outline] A two-dimensional infrared detecting element in which a light receiving portion and a dead portion are arranged in a matrix is used, and a visual field switching optical element is provided between the infrared detecting element and a condensing optical system. By providing a system (eg prism),
Incident infrared light from the field corresponding to the dead section,
The field-of-view switching optical system is operated to read a plurality of fields with the light receiving unit. In that case, the switching operation of the visual field switching optical system is performed, for example, in synchronization with the non-accumulation time of the infrared detection element.

そうすれば、温度分解能の高い赤外撮像装置が低価格で
得られる。
Then, an infrared imaging device with high temperature resolution can be obtained at low cost.

[産業上の利用分野] 本発明は赤外撮像装置の構成に係り、特に、新規な画像
形成方式による赤外撮像装置の構成に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a configuration of an infrared image pickup device, and more particularly to a configuration of an infrared image pickup device based on a novel image forming method.

赤外撮像装置は、物体の温度に対応して放射される赤外
線を検知し、それを画像化するもので、対象物体の温度
を測定可能にするものである。そのうち、特に、対象物
体の温度分布を二次元的に表示できる装置は、例えば、
医療用として血行障害の診断などに利用され、また、最
近では、産業用として複合材料の内部欠陥検査,建物や
装置の熱設計,コンクリート壁のひび割れの検査・診断
など広汎に利用されている。
The infrared imaging device detects infrared rays radiated corresponding to the temperature of the object and forms an image of the infrared rays, and makes it possible to measure the temperature of the target object. Among them, in particular, a device capable of two-dimensionally displaying the temperature distribution of the target object is, for example,
It has been widely used for medical purposes such as diagnosis of blood circulation disorders, and recently for industrial purposes such as internal defect inspection of composite materials, thermal design of buildings and equipment, inspection and diagnosis of cracks in concrete walls.

しかし、このような用途には、高温度分解能,高解像
度,リアルタイム表示が要求されて、多素子検知器を用
いることが必要になる。そのため、従来より、多素子検
知器として、リニア形の6検知素子を用いた撮像装置が
実用化されているが、未だ性能が十分でなく、多素子二
次元素子(例えばIRCCD)の実用化が要望されている。
However, such applications require high temperature resolution, high resolution, and real-time display, and it is necessary to use a multi-element detector. Therefore, an imaging device using a linear 6-sensing element has been put to practical use as a multi-element detector, but the performance is still insufficient, and a multi-element two-dimensional element (for example, IRCCD) cannot be put to practical use. Is requested.

[従来の技術] 従来の赤外撮像装置の構成の一例を第5図に示してお
り、30は観測視野,31はポリゴンスキャナ,32は反射鏡,3
3は集光光学系,34はリニヤ6検知素子(InSbからなる検
知素子)で、30Hは観測視野の水平走査方向,30Vは垂直
走査方向である。
[Prior Art] An example of the configuration of a conventional infrared imaging device is shown in FIG. 5, where 30 is an observation field of view, 31 is a polygon scanner, 32 is a reflecting mirror, and 3 is a mirror.
3 is a condensing optical system, 34 is a linear 6 detector (a detector made of InSb), 30H is the horizontal scanning direction of the observation field of view, and 30V is the vertical scanning direction.

図示のように、従来の赤外撮像装置では、例えば、縦方
向に一定間隔で配列した6素子の検知素子34を用いて、
各面が異なつた倒れ角を有する10面のポリゴンスキャナ
31を回転させながら、水平および垂直走査をインタレス
状におこない、水平解像度60本,垂直解像度120本の画
面を形成している。即ち、10フィールド(10F)で1フ
レームを形成する方式で、図中の観測視野30左端の数字
1〜6は検知6素子34に対応した数字で、1F,2F…は第
1,第2…のフィールドを示しており、各フィールドは横
に細長い領域である。なお、図中の矢印は光束を図示し
ている。
As shown in the figure, in the conventional infrared imaging device, for example, by using six detection elements 34 arranged at regular intervals in the vertical direction,
10-sided polygon scanner with different tilt angles
While rotating 31, the horizontal and vertical scanning are performed in an interlaced manner to form a screen with horizontal resolution of 60 lines and vertical resolution of 120 lines. That is, in a method of forming one frame with 10 fields (10F), numbers 1 to 6 at the left end of the observation field of view 30 in the figure are numbers corresponding to the detection 6 element 34, 1F, 2F ...
The first, second, ... Fields are shown, and each field is a laterally elongated region. The arrows in the figure indicate the luminous flux.

[発明が解決しようとする問題点] さて、赤外撮像装置の性能は温度分解能(Noise Equiva
lent Temperature Difference;NETD)で表わされ、その
温度分解能は検知素子数n,水平・垂直解像度Nx,Ny,比例
定数Kとすると、 なる関係がある。
[Problems to be Solved by the Invention] Now, the performance of the infrared imaging device depends on the temperature resolution (Noise Equiva).
lent Temperature Difference (NETD), and its temperature resolution is n detection elements, horizontal / vertical resolution Nx, Ny, and proportional constant K, There is a relationship.

従つて、NETDを小さくして、温度分解能を高めるには、
上式より、検知素子数nの多い検知器を用いれば良いこ
とが明らかである。
Therefore, to reduce NETD and improve temperature resolution,
From the above equation, it is clear that a detector having a large number of detection elements n may be used.

第5図に示した従来例では、 Nx×Ny=60×120,n=6 であり、NETD0.2℃であるが、目標とする性能はNx×N
y128×128にして、 NETD<0.1℃が望まれている。
In the conventional example shown in FIG. 5, Nx × Ny = 60 × 120, n = 6 and NETD 0.2 ° C, but the target performance is Nx × N
It is desired that NETD <0.1 ° C with y128 x 128.

そのためには、素子数nの多い2次元素子を用いる必要
があるが、2次元多素子を歩留良く、安価に作成するこ
とが困難で、余り画素数を多くできず、そのため、解像
度に問題が生じる。
For that purpose, it is necessary to use a two-dimensional element having a large number n of elements, but it is difficult to produce a two-dimensional multi-element with a high yield and at a low cost, and it is not possible to increase the number of pixels so much, which causes a problem in resolution. Occurs.

本発明はこのような欠点を解消して、高温度分解能が得
られる赤外撮像装置を提案するものである。
The present invention proposes an infrared imaging device that can solve such drawbacks and obtain high temperature resolution.

[問題点を解決するための手段] その問題は、各画素からの入射赤外光を読み取る受光部
と、入射赤外光に対して感度をもたない不感部とがマト
リックス状に配置された二次元赤外検知素子を備え、赤
外検知素子と集光光学系との間に視野切換用光学系(例
えば、プリズム)を設けて、前記不感部に対応したフィ
ールドからの入射赤外光を視野切換用光学系を操作(例
えば、赤外検知素子の非蓄積時間に対応して切り換え操
作する)して、前記受光部で複数のフィールドを読み取
り、フィールドの出力を1画素として表示しながら、複
数フィールドで1フレームの画像を形成するようにした
赤外撮像装置によつて解決される。
[Means for Solving Problems] The problem is that a light receiving portion that reads incident infrared light from each pixel and a dead portion that is not sensitive to the incident infrared light are arranged in a matrix. A two-dimensional infrared detection element is provided, and a field-of-view switching optical system (for example, a prism) is provided between the infrared detection element and the condensing optical system to detect incident infrared light from the field corresponding to the insensitive section. By operating the field-of-view switching optical system (for example, switching operation corresponding to the non-accumulation time of the infrared detection element) to read a plurality of fields by the light receiving unit and displaying the field output as one pixel, This is solved by an infrared imaging device that forms one frame image in a plurality of fields.

[作用] 即ち、本発明は、受光部と不感部とがマトリックス状に
配置された二次元赤外検知素子を設け、その赤外検知素
子と集光光学系との間に視野切換用光学系(例えばプリ
ズム)を配置して、不感部に対応したフィールドからの
入射赤外光を、視野切換用光学系を操作して受光部で読
み取る。その際、視野切換用光学系の切り換えには、例
えば、赤外検知素子の非蓄積時間に同期させておこな
う。
[Operation] That is, according to the present invention, a two-dimensional infrared detecting element in which a light receiving portion and a dead portion are arranged in a matrix is provided, and a visual field switching optical system is provided between the infrared detecting element and the condensing optical system. (For example, a prism) is arranged, and the incident infrared light from the field corresponding to the insensitive section is read by the light receiving section by operating the visual field switching optical system. At this time, the switching of the visual field switching optical system is performed, for example, in synchronization with the non-accumulation time of the infrared detection element.

そうすれば、高温度分解能・高解像度を有する赤外撮像
装置が低価格で作成できる。
Then, an infrared imaging device having high temperature resolution and high resolution can be manufactured at low cost.

[実施例] 以下、図面を参照して一実施例によつて詳細に説明す
る。
[Embodiment] Hereinafter, an embodiment will be described in detail with reference to the drawings.

第1図は本発明にかかる赤外撮像装置の2次元検知素子
11を示しており、本例は3×3画素の場合であるが、12
は受光部,13は不感部で、14は画素である。即ち、1つ
の受光部と3つの不感部で画素を形成しており、図中の
番号1〜9は受光部の番号である。この検知素子11の大
きさは、例えば、受光部が数十ないし100μm角程度
で、その周囲に同寸法の不感部が3つ存在する形状であ
る。
FIG. 1 is a two-dimensional detection element of an infrared imaging device according to the present invention.
11 is shown, and this example is a case of 3 × 3 pixels.
Is a light receiving part, 13 is a dead part, and 14 is a pixel. That is, one light receiving portion and three dead portions form a pixel, and the numbers 1 to 9 in the figure are the light receiving portion numbers. The size of the detection element 11 is, for example, a shape in which the light receiving portion is about several tens to 100 μm square, and three dead portions having the same size exist around the light receiving portion.

次に、第2図(a),(b)は本発明にかかる構成の原
理を説明する図で、同図(a)は撮像画像を示してお
り、図中の矢印は、その番号の受光部で不感部に対応す
る視野からの入射光を受光できるように、視野の切換を
おこなう方向を示したものである。このように、視野を
切り換えて順次に撮像し、画像表示するのであるが、本
実施例では3×3画素の検知素子が、あたかも6×6画
素の検知素子と等価となつて、6×6の画像が表示でき
るもので、第2図(b)はその表示画像を示している。
なお、このとき、受光部の寸法が1画素14′に対応する
ように光学的な設定をおこなう。
Next, FIGS. 2 (a) and 2 (b) are diagrams for explaining the principle of the configuration according to the present invention. FIG. 2 (a) shows a picked-up image, and the arrow in the figure indicates the light reception of that number. It shows the direction in which the field of view is switched so that the part can receive the incident light from the field of view corresponding to the insensitive part. In this way, the field of view is switched and images are sequentially picked up to display an image. In the present embodiment, a 3 × 3 pixel sensing element is equivalent to a 6 × 6 pixel sensing element, ie, 6 × 6. 2B can be displayed, and FIG. 2B shows the displayed image.
At this time, the optical setting is made so that the size of the light receiving portion corresponds to one pixel 14 '.

次に、第3図は本発明にかかる撮像装置の構成を示して
いる。図中、20は観測視野,20Sは検知素子の1画素に対
する視野,21,22,23,24は視野切換に対応して検知素子が
見込む第1,第2,第3,第4フィールドの視野,25は集光光
学系,26,27はそれぞれX方向,Y方向の視野切換用プリズ
ム,28,29はプリズム26,27を角度±θだけ各々X方向,Y
方向に振るためのガルバノメータ(又は、テスップモー
タ),11は二次元検知素子である。
Next, FIG. 3 shows the configuration of the image pickup apparatus according to the present invention. In the figure, 20 is the observation field of view, 20S is the field of view for one pixel of the sensing element, 21, 22, 23, and 24 are the fields of view of the first, second, third, and fourth fields that the sensing element expects in response to field switching. Reference numerals 25 and 25 are condensing optical systems, 26 and 27 are prisms for switching visual fields in the X and Y directions respectively, and 28 and 29 are prisms 26 and 27 in the X and Y directions respectively at an angle of ± θ.
A galvanometer (or a Tesp motor) 11 for swinging in the direction is a two-dimensional detection element.

このX方向,Y方向の視野切換用プリズム26,27の振れ角
±θの組合せによつて、検知素子に入射する視野を第1
フィールドの視野から第4フィールドの視野まで切り換
えることができる。即ち、このようなプリズムはゲルマ
ニウムやサファイヤなどで作成され、その厚み,屈折
率,振れ角θを函数として、検知素子の感光部を一定幅
だけX方向あるいはY方向に振ることができ、それによ
つて視野を切り換えることができる。
By the combination of the deflection angles ± θ of the visual field switching prisms 26 and 27 in the X and Y directions, the visual field incident on the detection element is first
It is possible to switch from the field of view to the field of view of the fourth field. That is, such a prism is made of germanium or sapphire, and the photosensitive portion of the sensing element can be swung in a certain width in the X direction or the Y direction by using the thickness, the refractive index, and the deflection angle θ as a function. Therefore, the field of view can be switched.

今、X方向,Y方向のそれぞの振れ角をθx,θyとして、
反時計廻りを正とすると、第1フィールドの視野はθx
=−θ,θy=+θの時に対応し、第2フィールドの視
野はθx=+θ,θy=+θ、第3フィールドの視野は
θx=+θ,θy=−θ、第4フィールドの視野はθx
=−θ,θy=−θの時にそれぞれ対応する。第4図の
動作状態図における(a)および(b)は、そのX方
向,Y方向の視野に対した振れ角を示しており、(c)は
切換後の静止時に読み取る視野のフィールド番号を示し
ている。
Now, let the deflection angles in the X and Y directions be θx and θy, respectively.
If the counterclockwise direction is positive, the field of view of the first field is θx
= −θ, θy = + θ, the field of view of the second field is θx = + θ, θy = + θ, the field of view of the third field is θx = + θ, θy = −θ, and the field of view of the fourth field is θx.
This corresponds to the case of = −θ and θy = −θ. (A) and (b) in the operation state diagram of FIG. 4 show the deflection angles with respect to the visual field in the X and Y directions, and (c) shows the field number of the visual field to be read at rest after switching. Shows.

さて、このようなプリズム26,27の角度切換は、検知素
子11の動作周期に同期させておこない、素子の受光部12
が読取(受光)して蓄積動作している間は、一定の角度
関係を保つて静止状態にあり、その蓄積動作が終了して
から次のフィールドの蓄積動作が始まるまでの間、即
ち、CCDなどのレジスタで読み出し動作を行なつている
間に、プリズムの切換をおこなう。第4図の動作状態図
における(d)は、検知素子の蓄積読み出し状態を図示
してたものである。
Now, such angle switching of the prisms 26 and 27 is performed in synchronization with the operation cycle of the detection element 11, and the light receiving section 12 of the element is
While it is reading (light-receiving) and performing the storage operation, it is in a static state with a constant angular relationship, and from the end of the storage operation to the start of the storage operation of the next field, that is, the CCD The prisms are switched while the reading operation is performed by the register such as. (D) in the operation state diagram of FIG. 4 illustrates the accumulation reading state of the sensing element.

第4図(e)はフィールドの読取に必要な時間、同図
(f)は1フレームの表示画像に必要な時間を示してお
り、かくして、表示画像は視野切換して読み取つた第1
フィールドから第4フィールドまでの画像で、1フレー
ムを形成するようにする。
FIG. 4 (e) shows the time required for reading the field, and FIG. 4 (f) shows the time required for one frame of the display image. Thus, the display image is read by switching the field of view.
An image from the field to the fourth field forms one frame.

このように構成した撮像装置によれば、二次元検知素子
の画素数を4倍にしたと同じ効果が得られ、不感部が実
質的に受光部と同等になつた検知素子で読取つたことに
なる。且つ、第1図のように形成した二次元検知素子は
受光部が少なくて、不感部が多いから、歩留良く形成す
ることができて、安価となる。そして、4倍の画素数で
観測するために、高解像度となり検知ミスは減少して、
高温度分解能をもつた撮像装置になる。
According to the imaging device configured as described above, the same effect as when the number of pixels of the two-dimensional detection element is quadrupled can be obtained, and the insensitive section is read by the detection element substantially equivalent to the light receiving section. Become. Moreover, since the two-dimensional detection element formed as shown in FIG. 1 has a small number of light receiving portions and a large number of insensitive portions, it can be formed with high yield and is inexpensive. And since it is observed with 4 times the number of pixels, the resolution becomes high and the number of detection errors decreases.
The imaging device has a high temperature resolution.

なお、本発明による撮像装置は視野切換を集束光でおこ
なうから、小さな視野切換用光学系(プリズム)を用い
ることができて、撮像装置が小型になる利点もある。
Since the image pickup apparatus according to the present invention switches the field of view with the focused light, there is an advantage that a small field-of-view switching optical system (prism) can be used and the image pickup apparatus can be downsized.

[発明の効果] 以上の実施例の説明から明らかなように、本発明によれ
ば高温度分解能・高解像度の赤外撮像装置が安価に得ら
れて、極めて優れた撮像装置の横成と云うことができ
る。
[Effects of the Invention] As is clear from the above description of the embodiments, according to the present invention, it is possible to obtain an infrared image pickup device with high temperature resolution and high resolution at a low cost, and it is said that the image pickup device is a laterally superior device. be able to.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明にかかる赤外撮像装置の検知素子を示す
図、 第2図(a)および(b)は本発明にかかる赤外撮像装
置の原理を説明する図、 第3図は本発明にかかる赤外撮像装置の構成を示す図、 第4図はその動作状態を示す図、 第5図は従来の赤外撮像装置の構成を示す図である。 図において、 11は2次元検知素子、12は受光部、 13は不感部、14,14′は画素、 20は観測視野、 20Sは検知素子の1画素に対する視野、 21,22,23,24はそれぞれ第1,第2,第3,第4のフィールド
の視野、 25は集光光学系、 26,27はX方向,Y方向の視野切換用プリズム、 28,29はX方向,Y方向に振るガルバノメータ を示している。
FIG. 1 is a diagram showing a sensing element of an infrared imaging device according to the present invention, FIGS. 2 (a) and 2 (b) are diagrams explaining the principle of the infrared imaging device according to the present invention, and FIG. FIG. 4 is a diagram showing a configuration of an infrared imaging device according to the invention, FIG. 4 is a diagram showing an operating state thereof, and FIG. 5 is a diagram showing a configuration of a conventional infrared imaging device. In the figure, 11 is a two-dimensional detection element, 12 is a light receiving section, 13 is a dead section, 14 and 14 'are pixels, 20 is an observation field of view, 20S is a field of view of one pixel of the detection element, 21,22,23,24 are Fields of view of the first, second, third and fourth fields respectively, 25 is a condensing optical system, 26 and 27 are field switching prisms in the X and Y directions, and 28 and 29 are shaking in the X and Y directions. It shows a galvanometer.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】各画素からの入射赤外光を読み取る受光部
と、入射赤外光に対して感度をもたない不感部とがマト
リックス状に配置された二次元赤外検知素子を備え、該
赤外検知素子と集光光学系との間に視野切換用光学系を
設けて、前記赤外検知素子の不感部に対応したフィール
ドからの入射赤外光を、該視野切換用光学系を操作し
て、前記赤外検知素子の受光部で複数のフィールドを読
み取り、1フィールドの各画素出力を1画素として表示
しながら、複数フィールドで1フレームの画像を形成す
るようにしたことを特徴とする赤外撮像装置。
1. A two-dimensional infrared detection element comprising a light receiving section for reading incident infrared light from each pixel and a dead section having no sensitivity to the incident infrared light arranged in a matrix. A field-of-view switching optical system is provided between the infrared detection element and the condensing optical system, and incident infrared light from a field corresponding to a dead part of the infrared detection element is switched to the field-of-view switching optical system. A plurality of fields are read by the light receiving portion of the infrared detecting element by operation, and one frame image is formed in the plurality of fields while displaying each pixel output of one field as one pixel. Infrared imaging device.
【請求項2】前記視野切換用光学系が、集光光学系の光
軸に対してX方向およびY方向に、一定振れ角θで動作
するプリズムからなり、前記赤外検知素子の非蓄積時間
に同期させて、該プリズムを各フィールドに切り換える
ようにしたことを特徴とする特許請求の範囲第1項記載
の赤外撮像装置。
2. The field-of-view switching optical system comprises a prism operating at a constant deflection angle θ in the X and Y directions with respect to the optical axis of the condensing optical system, and the non-accumulation time of the infrared detecting element. The infrared imaging apparatus according to claim 1, wherein the prism is switched to each field in synchronism with the above.
JP61062638A 1986-03-20 1986-03-20 Infrared imaging device Expired - Fee Related JPH06100507B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61062638A JPH06100507B2 (en) 1986-03-20 1986-03-20 Infrared imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61062638A JPH06100507B2 (en) 1986-03-20 1986-03-20 Infrared imaging device

Publications (2)

Publication Number Publication Date
JPS62218825A JPS62218825A (en) 1987-09-26
JPH06100507B2 true JPH06100507B2 (en) 1994-12-12

Family

ID=13206065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61062638A Expired - Fee Related JPH06100507B2 (en) 1986-03-20 1986-03-20 Infrared imaging device

Country Status (1)

Country Link
JP (1) JPH06100507B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106525245B (en) * 2016-11-03 2018-10-30 浙江大学 A kind of detection of quick sequential blind element and bearing calibration based on three Grads threshold

Also Published As

Publication number Publication date
JPS62218825A (en) 1987-09-26

Similar Documents

Publication Publication Date Title
JP3634845B2 (en) Temperature display device and temperature monitoring system
AU647173B2 (en) A display arrangement
AU638865B2 (en) Imaging system
AU643064B2 (en) An imager
KR0135402B1 (en) Thermal-image detecting apparatus
JP2760146B2 (en) Thermal image detector
JPH06100507B2 (en) Infrared imaging device
JP3309532B2 (en) Thermal image / visible image detector
CN108124127A (en) Panoramic scanning monitoring system
JP4683516B2 (en) Crack displacement measurement method for structures using a digital camera
JPH0476062B2 (en)
JPH0436632B2 (en)
JPS59126378A (en) Image pickup device
KR930001699A (en) Video camera system with deterioration detection means
JPH0479567B2 (en)
JPS6318226A (en) Infrared image sensing device
JPS62250344A (en) Infrared image pickup apparatus
JPH0413619Y2 (en)
CA2090115C (en) Thermal image detection apparatus
JPH09218101A (en) Reference system for thermal image pickup device
JPS63284978A (en) Solid-state image pickup device
JPS61120589A (en) Supervisory device
JPH0618334Y2 (en) Imaging device
JPH0854349A (en) Camera and picture quality inspecting device using it
JPH08265522A (en) Image input device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees