JPS62218825A - Infrared image pickup device - Google Patents

Infrared image pickup device

Info

Publication number
JPS62218825A
JPS62218825A JP61062638A JP6263886A JPS62218825A JP S62218825 A JPS62218825 A JP S62218825A JP 61062638 A JP61062638 A JP 61062638A JP 6263886 A JP6263886 A JP 6263886A JP S62218825 A JPS62218825 A JP S62218825A
Authority
JP
Japan
Prior art keywords
field
detection element
optical system
view
infrared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61062638A
Other languages
Japanese (ja)
Other versions
JPH06100507B2 (en
Inventor
Masaaki Nakamura
正昭 中村
Isao Tofuku
東福 勲
Hiroyuki Ishizaki
石崎 洋之
Yukihiro Yoshida
幸広 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP61062638A priority Critical patent/JPH06100507B2/en
Publication of JPS62218825A publication Critical patent/JPS62218825A/en
Publication of JPH06100507B2 publication Critical patent/JPH06100507B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Radiation Pyrometers (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

PURPOSE:To provide an infrared image pickup device with a high temperature resolving power and a high resolution, by providing a view switching optical system between a 2-D infrared detection element having light receiving sections and dead section arranged in a matrix and a focusing optical system. CONSTITUTION:Prisms 26 and 27 are deflected by + or -theta separately in directions X and Y with galvanometers 28 and 29. Depending on the combination of said angle + or -theta of the deflection, the view of incidence into a detection element is switched from the view of first field to that of fourth field. The angle switching of the prisms 26 and 27 is performed synchronizing with the operation cycle of a detection element 11. Following the reading out by the light receiving section 12 of the element, the element is at rest maintaining a fixed angle rela tionship prisms is made between the end of the storage action and the start of the storage action in the subsequent field. This provides an effect the same as that obtained by increasing the number of pixels of a 2-D detection element four times that is, equivalent to the reading by a detection element which would have the dead sections act as light receiving section in substance thereby assur ing a high resolution.

Description

【発明の詳細な説明】 [概要] 受光部と不惑部とがマトリックス状に配置された二次元
赤外検知素子を用い、その赤外検知素子と集光光学系と
の間に視野切換用光学系(例えばプリズム)を設けて、
前記不惑部に対応したフィールドからの入射赤外光を、
視野切換用光学系を操作して複数のフィールドを受光部
で読み取る。
[Detailed Description of the Invention] [Summary] A two-dimensional infrared detection element in which a light-receiving part and a blinding part are arranged in a matrix is used, and a field-of-view switching optical system is installed between the infrared detection element and a condensing optical system. By setting up a system (for example, a prism),
Incident infrared light from a field corresponding to the unfavorable part,
The field of view switching optical system is operated to read multiple fields with the light receiving unit.

その場合、視野切換用光学系の切り換え操作は、例えば
、赤外検知素子の非蓄積時間に同期させておこなう。
In that case, the switching operation of the visual field switching optical system is performed, for example, in synchronization with the non-storage time of the infrared detection element.

そうすれば、温度分解能の高い赤外撮像装置が低価格で
得られる。
In this way, an infrared imaging device with high temperature resolution can be obtained at a low cost.

[産業上の利用分野] 本発明は赤外撮像装置の構成に係り、特に、新規な画像
形成方式による赤外撮像装置の構成に関する。
[Industrial Field of Application] The present invention relates to the configuration of an infrared imaging device, and particularly relates to the configuration of an infrared imaging device using a novel image forming method.

赤外撮像装置は、物体の温度に対応して放射される赤外
線を検知し、それを画像化するもので、対象物体の温度
を測定可能にするものである。そのうち、特に、対象物
体の温度分布を二次元的に表示できる装置は、例えば、
医療用として血行障害の診断などに利用され、また、最
近では、産業用として複合材料の内部欠陥検査、建物や
装置の熱設計、コンクリート壁のひび割れの検査・診断
など広汎に利用されている。
An infrared imaging device detects infrared rays emitted in response to the temperature of an object and converts it into an image, making it possible to measure the temperature of the target object. Among them, devices that can two-dimensionally display the temperature distribution of a target object are, for example,
It is used for medical purposes such as diagnosing blood circulation disorders, and recently, it has also been widely used for industrial purposes such as inspecting internal defects in composite materials, thermal design of buildings and equipment, and inspecting and diagnosing cracks in concrete walls.

しかし、このような用途には、高温度分解能。However, such applications require high temperature resolution.

高解像度、リアルタイム表示が要求されて、多素子検知
器を用いることが必要になる。そのため、従来より、多
素子検知器として、リニア形の6検知素子を用いた撮像
装置が実用化されているが、未だ性能が十分でなく、多
素子二次元素子(例えばIRCOD)の実用化が要望さ
れている。
High resolution, real-time display is required, making it necessary to use multi-element detectors. For this reason, imaging devices using six linear detection elements have been put into practical use as multi-element detectors, but the performance is still insufficient, and the practical use of multi-element secondary elements (for example, IRCOD) is difficult. It is requested.

[従来の技術] 従来の赤外撮像装置の構成の一例を第5図に示しており
、30は観測視野、31はポリゴンスキャナ。
[Prior Art] An example of the configuration of a conventional infrared imaging device is shown in FIG. 5, where 30 is an observation field of view and 31 is a polygon scanner.

32は反射鏡、33は集光光学系、34はリニヤ6検知
素子(InSbからなる検知素子)で、30J(は観測
視野の水平走査方向、30■は垂直走査方向である。
32 is a reflecting mirror, 33 is a condensing optical system, 34 is a linear 6 detection element (a detection element made of InSb), 30J (is the horizontal scanning direction of the observation field, and 30■ is the vertical scanning direction).

図示のように、従来の赤外撮像装置では、例えば、縦方
向に一定間隔で配列した6素子の検知素子34を用いて
、各面が異なった倒れ角を有する10面のポリゴンスキ
ャナ31を回転させながら、水平および垂直走査をイン
タレス状におこない、水平解像度60本、垂直解像度1
20本の画面を形成している。即チ、10フイールド(
IOF)で1フレームを形成する方式で、図中の観測視
野30左端の数字1〜6は検知6素子34に対応した数
字で、IF。
As shown in the figure, in a conventional infrared imaging device, for example, a ten-sided polygon scanner 31, each of which has a different angle of inclination, is rotated using six detection elements 34 arranged at regular intervals in the vertical direction. horizontal and vertical scanning is performed in an interlaced manner, with a horizontal resolution of 60 lines and a vertical resolution of 1 line.
It forms 20 screens. Immediately, 10 fields (
The numbers 1 to 6 at the left end of the observation field of view 30 in the figure correspond to the six detection elements 34, and the IF.

2F−−−は第1.第2−のフィールドを示しており、
各フィールドは横に細長い領域である。なお、図中の矢
印は光束を図示している。
2F --- is the 1st. It shows the second field,
Each field is a horizontally elongated area. Note that the arrows in the figure indicate the luminous flux.

[発明が解決しようとする問題点コ さて、赤外撮像装置の性能は温度分解能(NoiseH
quivalent  Teraperature  
Difference   ;  N E T D)で
表わされ、その温度分解能は検知素子数n。
[Problems to be solved by the invention] Now, the performance of an infrared imaging device is determined by the temperature resolution (NoiseH
Quivalent Teraperature
Difference; NET D), and its temperature resolution is determined by the number of sensing elements n.

水平・垂直解像度NX * NV v比例定数にとする
と、 N E T D = K7戸(”C) なる関係がある。
When horizontal/vertical resolution is NX * NV v proportionality constant, there is a relationship as follows: N E T D = K7 houses ("C)".

従って、NETDを小さくして、温度分解能を高めるた
めには、上式より、検知素子数nの多い検知器を用いれ
ば良いことが明らかである。
Therefore, in order to reduce NETD and improve temperature resolution, it is clear from the above equation that a detector with a large number of detection elements n should be used.

第5図に示した従来例では、 Nx X Ny −60×120 +  n−6であり
、NETD≧0.2℃である力(、目標とする性能はN
x xNy k 128X12Bにして、NETD<0
.1℃が望まれている。
In the conventional example shown in Fig. 5, the force is Nx
x xNy k 128X12B, NETD<0
.. 1°C is desired.

そのためには、素子数nの多い2次元素子を用いる必要
があるが、2次元多素子を歩留良く、安価に作成するこ
とが困難で、余り画素数を多くできず、そのため、解像
度に問題が生じる。
To achieve this, it is necessary to use secondary elements with a large number of elements n, but it is difficult to produce two-dimensional multi-element elements at a high yield and at low cost, and the number of pixels cannot be increased too much, resulting in problems with resolution. occurs.

本発明はこのような欠点を解消して、高温度分解能が得
られる赤外撮像装置を提案するものである。
The present invention solves these drawbacks and proposes an infrared imaging device that can obtain high temperature resolution.

[問題点を解決するための手段] その問題は、各画素からの入射赤外光を読み取る受光部
と、入射赤外光に対して感度をもたない不感部とがマト
リックス状に配置された二次元赤外検知素子を備え、赤
外検知素子と集光光学系との間に視野切換用光学系(例
えば、プリズム)を設けて、前記不感部に対応したフィ
ールドからの入射赤外光を視野切換用光学系を操作(例
えば、赤外検知素子の非蓄積時間に対応して切り換え操
作する)して〜前記受光部で複数のフィールドを読み取
り、フィールドの出力を1画素として表示しながら、複
数フィールドで1フレームの画像を形成するようにした
赤外撮像装置によって解決される。
[Means for solving the problem] The problem is that the light receiving part that reads the incident infrared light from each pixel and the insensitive part that is not sensitive to the incident infrared light are arranged in a matrix. A two-dimensional infrared detection element is provided, and a visual field switching optical system (for example, a prism) is provided between the infrared detection element and the condensing optical system to detect incident infrared light from a field corresponding to the dead area. By operating the field-of-view switching optical system (for example, switching according to the non-accumulation time of the infrared detection element) and reading a plurality of fields with the light receiving section and displaying the field output as one pixel, This problem is solved by an infrared imaging device that forms one frame of image using multiple fields.

[作用] 即ち、本発明は、受光部と不感部とがマトリックス状に
配置された二次元赤外検知素子を設け、その赤外検知素
子と集光光学系との間に視野切換用光学系(例えばプリ
ズム)を配置して、不惑部に対応したフィールドからの
入射赤外光を、視野切換用光学系を操作して受光部で読
み取る。その際、視野切換用光学系の切り換えには、例
えば、赤外検知素子の非蓄積時間に同期させておこなう
[Function] That is, the present invention provides a two-dimensional infrared detection element in which a light receiving part and a non-sensing part are arranged in a matrix, and a visual field switching optical system is provided between the infrared detection element and the condensing optical system. (for example, a prism), the incident infrared light from the field corresponding to the unobtrusive area is read by the light receiving unit by operating the visual field switching optical system. At this time, the switching of the visual field switching optical system is performed, for example, in synchronization with the non-storage time of the infrared detection element.

そうすれば、高温度分解能・高解像度を有する赤外撮像
装置が低価格で作成できる。
In this way, an infrared imaging device with high temperature resolution and high resolution can be produced at a low cost.

[実施例コ 以下、図面を参照して一実施例によって詳細に説明する
[Embodiment] Hereinafter, one embodiment will be described in detail with reference to the drawings.

第1図は本発明にかかる赤外撮像装置の2次元検知素子
1)を示しており、本例は3×3画素の場合であるが、
12は受光部、13は不惑部で、14ば画素である。即
ち、1つの受光部と3つの不惑部で画素を形成しており
、図中の番号1〜9は受光部の番号である。この検知素
子1)の大きさは、例えば、受光部が数十ないし100
μm角程度で5その周囲に同寸法の不感部が3つ存在す
る形状である。
FIG. 1 shows a two-dimensional sensing element 1) of an infrared imaging device according to the present invention, and this example is a case of 3×3 pixels.
Reference numeral 12 is a light receiving section, 13 is a light receiving section, and 14 is a pixel. That is, a pixel is formed by one light-receiving section and three non-transparent sections, and the numbers 1 to 9 in the figure are the numbers of the light-receiving sections. The size of this detection element 1) is, for example, several tens to 100 light receiving parts.
It has a shape of about 5 μm square and three blind parts of the same size around it.

次に、第2図(al、 (blは本発明にかかる構成の
原理を説明する図で、同図(a)は撮像画像を示してお
り、図中の矢印は、その番号の受光部で不感部に対応す
る視野からの入射光を受光できるように、視野の切換を
おこなう方向を示したものである。
Next, FIG. 2 (al, (bl) is a diagram explaining the principle of the configuration according to the present invention, and FIG. 2 (a) shows a captured image. It shows the direction in which the field of view is switched so that incident light from the field of view corresponding to the blind area can be received.

このように、視野を切り換えて順次に撮像し、画像表示
するのであるが、本実施例では3×3画素の検知素子が
、あたかも6×6画素の検知素子と等価となって、6×
6の画像が表示できるもので、第2図(b)はその表示
画像を示している。なお、このとき、受光部の寸法が1
画素14°に対応するように光学的な設定をおこなう。
In this way, the field of view is switched to sequentially capture images and display the images, but in this example, the 3 x 3 pixel detection element becomes equivalent to the 6 x 6 pixel detection element, and the 6 x
6 images can be displayed, and FIG. 2(b) shows the displayed image. In addition, at this time, the dimensions of the light receiving part are 1
Optical settings are made to correspond to a pixel angle of 14°.

次に、第3図は本発明にがかる撮像装置の構成を示して
いる。図中、20は観測視野、20sは検知素子の1画
素に対する視野、 21.22.23.24は視野切換
に対応して検知素子が見込む第1.第2゜第3.第4フ
イールドの視野、25は集光光学系。
Next, FIG. 3 shows the configuration of an imaging device according to the present invention. In the figure, 20 is the observation field of view, 20s is the field of view for one pixel of the sensing element, and 21, 22, 23, and 24 are the first . 2nd゜3rd. The field of view of the fourth field, 25 is a condensing optical system.

26、27はそれぞれX方向、Y方向の視野切換用プリ
ズム、 28.29はプリズム26.27を角度±θだ
け各々X方向、Y方向に振るためのガルバノメータ(又
は、ステップモータ)、1)は二次元検知素子である。
26 and 27 are prisms for switching the field of view in the X direction and Y direction, respectively, 28.29 are galvanometers (or step motors) for swinging the prisms 26 and 27 in the X direction and Y direction by an angle of ±θ, respectively; 1) is It is a two-dimensional sensing element.

このX方向、X方向の視野切換用プリズム26゜27の
振れ角±θの組合せによって、検知素子に入射する視野
を第1フイールドの視野から第4フイールドの視野まで
切り換えることができる。即ち、このようなプリズムは
ゲルマニウムやサファイヤなどで作成され、その厚み、
屈折率、振れ角θを函数として、検知素子の感光部を一
定幅だけX方向あるいはY方向に振ることができ、それ
によって視野を切り換えることができる。
By combining the deflection angles ±θ of the prisms 26 and 27 for switching the field of view in the X direction and the X direction, the field of view incident on the detection element can be switched from the field of view of the first field to the field of view of the fourth field. That is, such prisms are made of germanium, sapphire, etc., and their thickness,
Using the refractive index and the deflection angle θ as a function, the photosensitive portion of the sensing element can be deflected by a certain width in the X direction or the Y direction, thereby making it possible to switch the field of view.

今、X方向、Y方向のそれぞれの振れ角をθX。Now, the deflection angles in the X and Y directions are θX.

θyとして、反時計廻りを正とすると、第1フイールド
の視野はθX=−θ、θy=+θの時に対応し、第2フ
イールドの視野はθX=+θ、θy=十θ、第3フイー
ルドの視野はθX=+θ、θy=−θ、第4フイールド
の視野はθに=−θ。
Assuming that θy is positive in the counterclockwise direction, the field of view of the first field corresponds to when θX = -θ, θy = +θ, and the field of view of the second field corresponds to θX = +θ, θy = 10θ, and the field of view of the third field. is θX=+θ, θy=-θ, and the field of view of the fourth field is θ=-θ.

θy=−θの時にそれぞれ対応する。第4図の動作状態
図における(alおよび(blば、そのX方向、Y方向
の視野に対した振れ角を示しており、(C)は切換後の
静止時に読み取る視野のフィールド番号を示している。
They correspond to each case when θy=−θ. In the operating state diagram of Fig. 4, (al and (bl) indicate the deflection angles with respect to the field of view in the X and Y directions, and (C) indicates the field number of the field of view read when stationary after switching. There is.

さて、このようなプリズム26,27の角度切換は、検
知素子1)の動作周期に同期させておこない、素子の受
光部12が読取(受光)して蓄積動作している間は、一
定の角度関係を保って静止状態にあり、その蓄積動作が
終了してから次のフィールドの蓄積動作が始まるまでの
間、即ち、CODなどのレジスタで読み出し動作を行な
っている間に、プリズムの切換をおこなう。第4図の動
作状態図における(d)は、検知素子の蓄積読み出し状
態を図示してたものである。
Now, such angle switching of the prisms 26 and 27 is performed in synchronization with the operating cycle of the detection element 1), and while the light receiving section 12 of the element is reading (receiving light) and performing an accumulation operation, the prisms 26 and 27 are switched at a constant angle. The prism is switched while maintaining the relationship and remaining in a stationary state from the end of the accumulation operation until the start of the accumulation operation of the next field, that is, while the read operation is being performed in a register such as COD. . (d) in the operating state diagram of FIG. 4 illustrates the storage readout state of the sensing element.

第4図(e)はフィールドの読取に必要な時間−同図(
f)は1フレームの表示画像に必要な時間を示しており
、かくして、表示画像は視野切換して読み取った第1フ
イールドから第4フイールドまでの画像で、1フレーム
を形成するようにする。
Figure 4(e) shows the time required to read the field - Figure 4(e)
f) indicates the time required for one frame of display image, and thus, one frame is formed by displaying images from the first field to the fourth field read by switching the field of view.

このように構成した撮像装置によれば、二次元検知素子
の画素数を4倍にしたと同じ効果が得られ、不感部が実
質的に受光部と同等になった検知素子で読取ったことに
なる。且つ、第1図のように形成した二次元検知素子は
受光部が少なくて、不感部が多いから、歩留良く形成す
ることができて、安価となる。そして、4倍の画素数で
観測するために、高解像度となり検知ミスは減少して、
高温度分解能をもった撮像装置になる。
According to the imaging device configured in this way, the same effect as quadrupling the number of pixels of the two-dimensional sensing element can be obtained, and the detection element whose insensitive area is essentially the same as the light receiving area can be used for reading. Become. Moreover, since the two-dimensional sensing element formed as shown in FIG. 1 has few light-receiving parts and many non-sensing parts, it can be formed at a high yield and at low cost. In addition, since observation is performed with four times the number of pixels, the resolution is high and detection errors are reduced.
It becomes an imaging device with high temperature resolution.

なお、本発明による撮像装置は視野切換を集束光でおこ
なうから、小さな視野切換用光学系(プリズム)を用い
ることができて、撮像装置が小型になる利点もある。
Note that since the imaging device according to the present invention performs field of view switching using focused light, a small field of view switching optical system (prism) can be used, which has the advantage that the imaging device can be made smaller.

[発明の効果] 以上の実施例の説明から明らかなように、本発明によれ
ば高温度分解能・高解像度の赤外撮像装置が安価に得ら
れて、極めて優れた撮像装置の構成と云うことができる
[Effects of the Invention] As is clear from the description of the embodiments above, according to the present invention, an infrared imaging device with high temperature resolution and high resolution can be obtained at a low cost, and the configuration of the imaging device is extremely excellent. I can do it.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明にかかる赤外撮像装置の検知素子を示す
図、 第2図+8)および(b)は本発明にかかる赤外撮像装
置の原理を説明する図、 第3図は本発明にかかる赤外撮像装置の構成を示す図、 第4図はその動作状態を示す図、 第5図は従来の赤外撮像装置の構、成を示す図である。 図において、 1)は2次元検知素子、 12ば受光部、13は不感部
、     14.14°は画素、20は観測視野、 2O3は検知素子の1画素に対する視野−21、22,
23,24はそれぞれ第1.第2.第3.第4のフィー
ルドの視野、 25は集光光学系、
Fig. 1 is a diagram showing a detection element of an infrared imaging device according to the present invention, Fig. 2 +8) and (b) is a diagram explaining the principle of an infrared imaging device according to the present invention, and Fig. 3 is a diagram illustrating the principle of an infrared imaging device according to the present invention. FIG. 4 is a diagram showing the operating state of the infrared imaging device; FIG. 5 is a diagram showing the configuration of a conventional infrared imaging device. In the figure, 1) is a two-dimensional detection element, 12 is a light receiving part, 13 is a dead part, 14.14° is a pixel, 20 is an observation field of view, 2O3 is a field of view for one pixel of the detection element - 21, 22,
23 and 24 are the first. Second. Third. 4th field field of view, 25 is a condensing optical system;

Claims (2)

【特許請求の範囲】[Claims] (1)各画素からの入射赤外光を読み取る受光部と、入
射赤外光に対して感度をもたない不感部とがマトリック
ス状に配置された二次元赤外検知素子を備え、該赤外検
知素子と集光光学系との間に視野切換用光学系を設けて
、前記赤外検知素子の不感部に対応したフィールドから
の入射赤外光を、該視野切換用光学系を操作して、前記
赤外検知素子の受光部で複数のフィールドを読み取り、
1フィールドの各画素出力を1画素として表示しながら
、複数フィールドで1フレームの画像を形成するように
したことを特徴とする赤外撮像装置。
(1) Equipped with a two-dimensional infrared detection element in which a light receiving part that reads incident infrared light from each pixel and a dead part that is not sensitive to the incident infrared light are arranged in a matrix, A field of view switching optical system is provided between the external detection element and the condensing optical system, and the field of view switching optical system is operated to direct incident infrared light from a field corresponding to a dead section of the infrared detection element. read a plurality of fields with the light receiving part of the infrared detection element,
An infrared imaging device characterized in that each pixel output of one field is displayed as one pixel, and one frame of image is formed using a plurality of fields.
(2)前記視野切換用光学系が、集光光学系の光軸に対
してX方向およびY方向に、一定振れ角θで動作するプ
リズムからなり、前記赤外検知素子の非蓄積時間に同期
させて、該プリズムを各フィールドに切り換えるように
したことを特徴とする特許請求の範囲第1項記載の赤外
撮像装置。
(2) The visual field switching optical system is composed of a prism that operates at a constant deflection angle θ in the X direction and the Y direction with respect to the optical axis of the condensing optical system, and is synchronized with the non-accumulation time of the infrared detection element. 2. The infrared imaging device according to claim 1, wherein the prism is switched to each field.
JP61062638A 1986-03-20 1986-03-20 Infrared imaging device Expired - Fee Related JPH06100507B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61062638A JPH06100507B2 (en) 1986-03-20 1986-03-20 Infrared imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61062638A JPH06100507B2 (en) 1986-03-20 1986-03-20 Infrared imaging device

Publications (2)

Publication Number Publication Date
JPS62218825A true JPS62218825A (en) 1987-09-26
JPH06100507B2 JPH06100507B2 (en) 1994-12-12

Family

ID=13206065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61062638A Expired - Fee Related JPH06100507B2 (en) 1986-03-20 1986-03-20 Infrared imaging device

Country Status (1)

Country Link
JP (1) JPH06100507B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106525245A (en) * 2016-11-03 2017-03-22 浙江大学 Rapid sequential blind pixel detection and correction method based on tri-gradient thresholds

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106525245A (en) * 2016-11-03 2017-03-22 浙江大学 Rapid sequential blind pixel detection and correction method based on tri-gradient thresholds
CN106525245B (en) * 2016-11-03 2018-10-30 浙江大学 A kind of detection of quick sequential blind element and bearing calibration based on three Grads threshold

Also Published As

Publication number Publication date
JPH06100507B2 (en) 1994-12-12

Similar Documents

Publication Publication Date Title
JP3549898B2 (en) Wide angle image forming system and method
AU647173B2 (en) A display arrangement
US20120081511A1 (en) Interlaced focal plane array for wide-area surveillance
AU638865B2 (en) Imaging system
AU643064B2 (en) An imager
JPS62218825A (en) Infrared image pickup device
JP3309532B2 (en) Thermal image / visible image detector
JPH0436632B2 (en)
JPH0476062B2 (en)
JPH07255006A (en) Scanning light beam valve sensor system
JPS59126378A (en) Image pickup device
JPS62190980A (en) High-resolution television camera
CN1120381C (en) Infrared multispectral scanning thermal imager
JP4332906B2 (en) Line sensor camera
JPS61120589A (en) Supervisory device
JPS62250344A (en) Infrared image pickup apparatus
JPS6318226A (en) Infrared image sensing device
CA1303217C (en) Apparatus including multielement detectors for recording heat images
WO2019127251A1 (en) Imaging device and imaging method
JPH0479567B2 (en)
JPH0618334Y2 (en) Imaging device
JPH0854349A (en) Camera and picture quality inspecting device using it
JPH09218101A (en) Reference system for thermal image pickup device
JPH0667095A (en) Scanning type laser microscope
JP2004215228A (en) Photographing device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees