JPS63101740A - Vertical fet type gas sensor - Google Patents

Vertical fet type gas sensor

Info

Publication number
JPS63101740A
JPS63101740A JP24699586A JP24699586A JPS63101740A JP S63101740 A JPS63101740 A JP S63101740A JP 24699586 A JP24699586 A JP 24699586A JP 24699586 A JP24699586 A JP 24699586A JP S63101740 A JPS63101740 A JP S63101740A
Authority
JP
Japan
Prior art keywords
electrode
thickness
gas sensor
gas
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24699586A
Other languages
Japanese (ja)
Inventor
Kazuo Mogi
一男 茂木
Shigeyuki Tsurumi
重行 鶴見
Juichi Noda
野田 壽一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP24699586A priority Critical patent/JPS63101740A/en
Publication of JPS63101740A publication Critical patent/JPS63101740A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To achieve a higher sensitivity with the element temperature raised up to about 400 deg.C, by arranging two electrodes on and beneath an oxide semiconductor film as source and drain and gate electrodes on both sides of an upper electrode to form an FET construction in which current flows vertically. CONSTITUTION:A band-shaped drain electrode 4 is provided on an insulating substrate 8 comprising aluminum oxide, a ZnO layer 6 is laminated at the thickness of 1-20mum thereon as an oxide semiconductor film ohmic connected to the drain electrode 4 and an insulation layer 2 made of SiO2 is laminated on the ZnO layer 6 at the thickness of 10-100nm. Then, a band-shaped source electrode 3 is provided on the insulation layer 2 almost parallel with the drain electrode 4 and a gate electrode film 1 comprising one kind of metal selected from among Pd, Pt, Rh, Ir, Ru, Os, Au and Re is formed on both sides of the source electrode 3 at the thickness of 5-100nm. A heater 9 for heating elements is provided beneath the insulating substrate 8 to heat semiconductor elements.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、小型にして消費電力が小さく高感度であり、
かつ高速応答性と長期安定性を有する縦型電界効果トラ
ンジスタ型ガスセンサに関スるものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention has a compact size, low power consumption, and high sensitivity.
The present invention also relates to a vertical field-effect transistor type gas sensor that has high-speed response and long-term stability.

〔従来の技術〕[Conventional technology]

従来のガスセンサは第1表に示す様に酸化物半導体よシ
構成されるものが中心で、その測定原理は電気抵抗式と
非電気抵抗式の二種類に大別される。現在実用化されて
いるものの多くは電気抵抗式のものである。これ等は5
n02 、 ZnOなどの酸化物半導体の粉末を、焼結
法により素子化し、その電気抵抗値の変化からガス濃度
を検出する方式で、酸化物半導体とガスとの相互作用が
、半導体表面にとどまるか、内部にまで及ぶかにより、
さらに表面制御墓かバルク制御型に分類する事が出来る
Conventional gas sensors are mainly composed of oxide semiconductors as shown in Table 1, and their measurement principles are roughly divided into two types: electrical resistance type and non-electrical resistance type. Most of the devices currently in practical use are electrical resistance type. These are 5
This is a method in which powder of oxide semiconductors such as n02 and ZnO is made into devices using a sintering method, and gas concentration is detected from changes in electrical resistance. , depending on whether it extends to the inside.
It can be further classified into surface control type or bulk control type.

これら寛気抵抗散素子の大きな欠点は400℃前後の高
温でのみ動作することで、発熱、消費電力が大きく、他
の機能を持つセンサあるいは制御用の集積回路などとの
集積化が困難な点である。
The major disadvantage of these low-resistance diffused elements is that they only operate at high temperatures of around 400°C, which generates a lot of heat and consumes a lot of power, and it is difficult to integrate them with sensors with other functions or integrated circuits for control. It is.

非電気抵抗式によるガスセンサの動作原理は、ガスの吸
着や反応などによる金属電極の仕事関数の変化を直接的
あるいは間接的にガス検出に利用する方式で具体的には
MOSFET !ガスセンサと金属半導体接合ダイオー
ド型がスセンサがある。第4図(、)にMO8FET型
ガスセンサの構造及びその動作状況を示す。第4図(&
)において、1はダート電極、2は5102による絶縁
層、3はソース電極、4はドレイン電極、5は半導体電
流チャンネルである。例としてH2ガスに対する検出機
構をe−)金属がPdの場合について示すと以下の様に
なる。
The operating principle of a non-electrical resistance type gas sensor is to use changes in the work function of a metal electrode due to gas adsorption or reaction, directly or indirectly, for gas detection.More specifically, it uses a MOSFET! There are gas sensors and metal semiconductor junction diode type sensors. FIG. 4(,) shows the structure of the MO8FET type gas sensor and its operating status. Figure 4 (&
), 1 is a dart electrode, 2 is an insulating layer made of 5102, 3 is a source electrode, 4 is a drain electrode, and 5 is a semiconductor current channel. As an example, the detection mechanism for H2 gas in the case where e-) the metal is Pd is as follows.

H2ガスはPdの表面で吸着解離して原子状水素Haと
なる。H1原子は拡散によりPd−8102界面に達し
そこで分極してダイポール層を形成し界面電位を発生子
る。この結果、第4図(b)のグラフに示す様にFET
の基本特性である閾値ゲート電圧vGがΔVだけ変位す
る。このΔVを測定する事によりH2儂度を観測する事
になるわけである。このMO8FET型ガスセンサの大
きな欠点はFETが81で構成されているため、動作温
度が150℃以下に限定され、検出可能なガスが反応性
の強いH2ガス、COガスに限られる点と、電流が81
と5102の界面をこれと平行に流れるため、界面の欠
陥による影響を受けることである。
H2 gas is adsorbed and dissociated on the surface of Pd to become atomic hydrogen Ha. H1 atoms reach the Pd-8102 interface by diffusion and are polarized there to form a dipole layer and generate an interfacial potential. As a result, as shown in the graph of Figure 4(b), the FET
The threshold gate voltage vG, which is the basic characteristic of , is displaced by ΔV. By measuring this ΔV, the H2 degree can be observed. The major disadvantages of this MO8FET type gas sensor are that the operating temperature is limited to 150°C or less because the FET is composed of 81, the detectable gas is limited to highly reactive H2 gas and CO gas, and the current is 81
Since it flows parallel to the interface between and 5102, it is affected by defects at the interface.

一方、金属半導体接合ダイオード型ガスセンサは、ガス
吸着による金属電極の仕事関数の変化を接合界面におけ
る電位障壁の変化として検出するものであり、感度は高
いが動作原理上ガス検出電極に直接に検出電流が流れる
ので不安定性が大きいという欠点を有している。
On the other hand, metal-semiconductor junction diode gas sensors detect changes in the work function of metal electrodes due to gas adsorption as changes in the potential barrier at the junction interface, and although their sensitivity is high, due to their operating principle, the detection current is directly applied to the gas detection electrode. It has the disadvantage that it is highly unstable because of the flow of water.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は、従来のSSを構成要素としたMO8FET型
ガスセンサの欠点である使用温度が150℃以下に限ら
れる点5t−sto2の界面準位の影響を受ける点を解
決した縦捜電界効果トランジスタ型ガスセンサを提供す
ることを目的とする。
The present invention is a longitudinal field effect transistor type gas sensor that solves the drawbacks of the conventional MO8FET type gas sensor using SS as a component, which is that the operating temperature is limited to 150°C or less and that it is affected by the interface state of 5t-sto2. The purpose is to provide a gas sensor.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上記目的を達成するために、絶縁基板上に帯状
の下部電極を設け、この下部電極とオーム性接続させた
酸化物半導体膜を1〜20μm積層し、この酸化物半導
体膜上に10〜1100nの酸化硅素膜を積層し、さら
にこの酸化硅素膜上に下部電極と略平行なる位置に帯状
の上部電極を設け、前記上部電極の両側に厚さ5〜10
0 nmのPd、 Pt、 Rh、 Ir、 Ru、 
Oa、 Au、 Reの金属のうち一種類を用いてff
−)電極膜を形成した構造を特徴とするものである。
In order to achieve the above object, the present invention provides a band-shaped lower electrode on an insulating substrate, laminates an oxide semiconductor film with a thickness of 1 to 20 μm and is ohmically connected to the lower electrode, A silicon oxide film with a thickness of ~1100 nm is laminated, and a band-shaped upper electrode is provided on the silicon oxide film at a position approximately parallel to the lower electrode, with a thickness of 5 to 10 nm on both sides of the upper electrode.
0 nm of Pd, Pt, Rh, Ir, Ru,
ff using one of the metals Oa, Au, and Re
-) It is characterized by a structure in which an electrode film is formed.

従来技術とはSlを用いずに酸化物半導体膜を用いてF
ETを構成すること及び、ソース、ドレイン、ff−)
の各電極の配置を変え、電流がダート電極や半導体界面
から離れて縦方向に流れる様に構成されている点が異な
る。
The conventional technology uses an oxide semiconductor film without using Sl.
Configuring ET and source, drain, ff-)
The difference is that the arrangement of each electrode is changed so that the current flows in the vertical direction, away from the dart electrodes and the semiconductor interface.

〔作用〕[Effect]

本発明は上記手段によシ酸化物半導体を用い、ソースと
ドレインを上下に配して、電流を縦方向に流す様なFE
T構造を用いているため、素子温度を150℃以上40
0℃程度まで上げる事が可能であり高感度が達成出来る
ほか、半導体表面の影響を受ける事がなく、長期間にわ
たシ安定な特性を得る事が出来る。
The present invention uses a silicon oxide semiconductor by the above means, and has a source and a drain disposed above and below, and a FE that allows current to flow in the vertical direction.
Since the T structure is used, the element temperature can be kept at 150°C or above 40°C.
It is possible to raise the temperature to about 0°C, achieving high sensitivity, and it is not affected by the semiconductor surface, making it possible to obtain stable characteristics over a long period of time.

〔実施例〕〔Example〕

以下図面を参照して本発明の実施例を詳細に説明する。 Embodiments of the present invention will be described in detail below with reference to the drawings.

(実施例1) 第1図(a) # (b)は本発明の第一の実施例を説
明する図であって、第1図(−)は平面図、第1図伽)
は断面図である。1はPdを20 nm付けたダート電
極、2は5to2による絶縁層、3はソース電極、4は
ドレイン電極、6はZnO層、1はZnO層中に生じる
空乏層、8は絶縁性基板(酸化アルミニウム基板)、9
は素子を加熱するための素子加熱用ヒータである。
(Example 1) Figures 1(a) and 1(b) are diagrams for explaining the first embodiment of the present invention, and Figure 1(-) is a plan view, and Figure 1(-) is a plan view.
is a sectional view. 1 is a dirt electrode with 20 nm of Pd attached, 2 is an insulating layer of 5 to 2, 3 is a source electrode, 4 is a drain electrode, 6 is a ZnO layer, 1 is a depletion layer generated in the ZnO layer, 8 is an insulating substrate (oxidized aluminum substrate), 9
is an element heater for heating the element.

第2図はこの素子を動作させるための駆動回路例である
。第2図中、11は定電流電源、12は増幅器、13は
出力端子である。第1図(1) 、 (b)の素子を動
作するにはヒータ9によ#)素子を200℃に加熱しソ
ース電極3とドレイン電極4の間に直流電流10μAを
流す。ソース電極3とドレイン電極4の間に生じる電位
差vDは、H2、00等可燃性ガスのない場合は約1v
となシ長時間にわた)変化はないが、H2、Co等可燃
性ガスに触れるとf−)電極1であるPdの仕事関数が
変化して、空乏層1が減少し、電流が増加してVDが減
少する。
FIG. 2 shows an example of a drive circuit for operating this element. In FIG. 2, 11 is a constant current power supply, 12 is an amplifier, and 13 is an output terminal. To operate the device shown in FIGS. 1(1) and 1(b), a heater 9 is used to heat the device to 200° C., and a direct current of 10 μA is passed between the source electrode 3 and drain electrode 4. The potential difference vD generated between the source electrode 3 and the drain electrode 4 is approximately 1 V in the absence of flammable gas such as H2, 00.
There is no change over a long period of time, but when it comes into contact with flammable gases such as H2 and Co, the work function of Pd, which is the electrode 1, changes, the depletion layer 1 decreases, and the current increases. VD decreases.

素子を200℃に加熱した時のCOガスに対するV、の
時間変化を第3図に示す。COガスの濃度の増加に対す
るVDの減少は極めて大きく、200℃の高温のため変
化は急速に生じる。この結果から明らかな様にZnOの
電子移動度が200 cm /%’・3eCでSlの1
500副/V−s e cに比べて小さく第4図の様な
横型のFET構造では電気抵抗が高くなシ過ぎる点及び
、従来のStでの問題点だつた150℃以下の低感度な
温度領囲でしか使用出来ない点について、第1因にある
様にZnO層を上下の電極で挾む事により、高感度で検
出できる様に改善がなされた。
FIG. 3 shows the temporal change in V with respect to CO gas when the device was heated to 200°C. The decrease in VD with increasing concentration of CO gas is extremely large, and the change occurs rapidly due to the high temperature of 200°C. As is clear from this result, the electron mobility of ZnO is 200 cm /%'・3eC and 1 of Sl
The electric resistance is too high in a horizontal FET structure as shown in Figure 4, which is smaller than 500 sub/Vsec, and the low temperature sensitivity below 150°C, which was a problem with conventional St. Regarding the point that it can only be used in a limited area, an improvement has been made to enable detection with high sensitivity by sandwiching the ZnO layer between upper and lower electrodes as mentioned in the first factor.

(実施例2) 実施例1における素子のf−)金属をPd以外のPt 
、 Rh 、 Ir 、 Ru 、 Os 、 Au 
、 Re 、 Niとした場合の感ガス特性を第2表に
示す。第2表ではガス濃度各101000pp素子温度
200℃である。白金属系の金属は200℃ではすべて
ガス圧反応しVDが1vから低下する。Niは卑金属で
あり全く反応しない。以上の結果から明らかな様に本発
明素子は200℃まで加熱できるので、白金系金属なら
Pd以外の金属でもガス検出を行う事が出来る。
(Example 2) The f-) metal of the element in Example 1 was Pt other than Pd.
, Rh, Ir, Ru, Os, Au
, Re, and Ni are shown in Table 2. In Table 2, each gas concentration is 101,000 pp and the element temperature is 200°C. All platinum-based metals undergo a gas pressure reaction at 200°C and VD decreases from 1V. Ni is a base metal and does not react at all. As is clear from the above results, since the device of the present invention can be heated up to 200° C., gas detection can be performed using platinum-based metals other than Pd.

第2表 〔発明の効果〕 以上説明したように本発明によれば、ソースとドレイン
となる二つの電極を酸化物半導体膜の上下に配置し、ゲ
ート電極を上部電極の両側に設けて電流を縦方向に流す
様なFET構造を用いているため、素子温度を150℃
以上400℃程度まで上げる事が可能であシ高感度が達
成出来るほか、半導体表面の影響を受ける事がなく、長
期間にわたり安定な特性を得る事が出来るという利点が
ある。
Table 2 [Effects of the Invention] As explained above, according to the present invention, two electrodes serving as a source and a drain are arranged above and below an oxide semiconductor film, and gate electrodes are provided on both sides of the upper electrode to conduct a current. Because it uses a FET structure that allows the flow to flow in the vertical direction, the element temperature can be kept at 150℃.
It is possible to raise the temperature up to about 400°C, and in addition to achieving high sensitivity, it has the advantage that it is not affected by the semiconductor surface and stable characteristics can be obtained over a long period of time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す構成図、第2図は本発
明の特徴を最も良く表わしている第1の実施例の駆動回
路図、第3図は本発明のCOガスに対する応答と時間変
化の一例を示す特性図、第4図は横方向に電流が流れる
事を特徴とする従来のMO8FET型ガスセンサの構成
図及びその特性を示すグラフである。 1・・・f−)電極、2・・・8102による絶縁層、
3・・・ソース電極、4・・・ドレイン電極、5・・・
半導体電流チャンネル、6・・・ZnO層、7・・・Z
nO層中の空乏層、8・・・絶縁性基板、9・・・素子
加熱用ヒータ。 出願人代理人  弁理士 鈴 江 武 彦第2図 第3図 (a)                 (b)第4
Fig. 1 is a configuration diagram showing one embodiment of the present invention, Fig. 2 is a drive circuit diagram of the first embodiment that best represents the features of the present invention, and Fig. 3 is a response to CO gas of the present invention. FIG. 4 is a diagram showing the configuration of a conventional MO8FET type gas sensor, which is characterized in that current flows in the horizontal direction, and a graph showing its characteristics. 1... f-) electrode, 2... insulating layer by 8102,
3... Source electrode, 4... Drain electrode, 5...
Semiconductor current channel, 6...ZnO layer, 7...Z
Depletion layer in nO layer, 8... Insulating substrate, 9... Heater for heating element. Applicant's agent Patent attorney Takehiko Suzue Figure 2 Figure 3 (a) (b) Figure 4
figure

Claims (1)

【特許請求の範囲】[Claims]  絶縁基板上に帯状の下部電極を設け、この下部電極と
オーム性接続させた酸化物半導体膜を1〜20μm積層
、この酸化物半導体膜上に10〜100nmの酸化硅素
膜を積層し、さらにこの酸化硅素膜上に下部電極と略平
行なる位置に帯状の上部電極を設け、前記上部電極の両
側に厚さ5〜100nmのPd、Pt、Rh、Ir、R
u、Os、Au、Reの金属のうち一種類を用いてゲー
ト電極膜を形成した構造を特徴とする縦型電界効果トラ
ンジスタ型ガスセンサ。
A strip-shaped lower electrode is provided on an insulating substrate, a 1-20 μm thick oxide semiconductor film is layered ohmically connected to this lower electrode, a 10-100 nm thick silicon oxide film is layered on top of this oxide semiconductor film, and then this A band-shaped upper electrode is provided on the silicon oxide film at a position substantially parallel to the lower electrode, and on both sides of the upper electrode, Pd, Pt, Rh, Ir, R, with a thickness of 5 to 100 nm is provided.
A vertical field effect transistor type gas sensor characterized by a structure in which a gate electrode film is formed using one of the following metals: u, Os, Au, and Re.
JP24699586A 1986-10-17 1986-10-17 Vertical fet type gas sensor Pending JPS63101740A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24699586A JPS63101740A (en) 1986-10-17 1986-10-17 Vertical fet type gas sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24699586A JPS63101740A (en) 1986-10-17 1986-10-17 Vertical fet type gas sensor

Publications (1)

Publication Number Publication Date
JPS63101740A true JPS63101740A (en) 1988-05-06

Family

ID=17156807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24699586A Pending JPS63101740A (en) 1986-10-17 1986-10-17 Vertical fet type gas sensor

Country Status (1)

Country Link
JP (1) JPS63101740A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100701555B1 (en) * 2002-05-22 2007-03-30 마사시 카와사키 Semiconductor device and display comprising same
JP2010019555A (en) * 2008-07-08 2010-01-28 Sumitomo Electric Ind Ltd Gas sensor
JP2010145402A (en) * 2008-12-16 2010-07-01 Robert Bosch Gmbh Gas sensor with field-effect transistor
US8093589B2 (en) 2003-06-20 2012-01-10 Sharp Kabushiki Kaisha Semiconductor device with an active layer containing zinc oxide, manufacturing method, and electronic device
US8502217B2 (en) 2007-12-04 2013-08-06 Canon Kabushiki Kaisha Oxide semiconductor device including insulating layer and display apparatus using the same
WO2015178754A1 (en) * 2014-05-20 2015-11-26 Mimos Berhad Isfet integrated with a micro-heater and fabrication method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100701555B1 (en) * 2002-05-22 2007-03-30 마사시 카와사키 Semiconductor device and display comprising same
US7205640B2 (en) 2002-05-22 2007-04-17 Masashi Kawasaki Semiconductor device and display comprising same
US8093589B2 (en) 2003-06-20 2012-01-10 Sharp Kabushiki Kaisha Semiconductor device with an active layer containing zinc oxide, manufacturing method, and electronic device
US8502217B2 (en) 2007-12-04 2013-08-06 Canon Kabushiki Kaisha Oxide semiconductor device including insulating layer and display apparatus using the same
JP2010019555A (en) * 2008-07-08 2010-01-28 Sumitomo Electric Ind Ltd Gas sensor
JP2010145402A (en) * 2008-12-16 2010-07-01 Robert Bosch Gmbh Gas sensor with field-effect transistor
WO2015178754A1 (en) * 2014-05-20 2015-11-26 Mimos Berhad Isfet integrated with a micro-heater and fabrication method thereof

Similar Documents

Publication Publication Date Title
JP6740159B2 (en) Gas detection device and gas detection method
JP5603193B2 (en) Gas sensor
US9228973B2 (en) Gas sensor
US6111280A (en) Gas-sensing semiconductor devices
US5362975A (en) Diamond-based chemical sensors
JP6740160B2 (en) Gas sensor device, gas sensor module, and gas detection method
JP6432672B2 (en) Gas sensor and sensor device
US20050258051A1 (en) Hydrogen sensor and method for detecting hydrogen
Chiu et al. Comprehensive investigation on planar type of Pd–GaN hydrogen sensors
US20200124563A1 (en) Gas sensor and sensor device
CN112666229A (en) Field-effect tube hydrogen sensor and preparation method thereof
JPS63101740A (en) Vertical fet type gas sensor
JP6536592B2 (en) Gas sensor and sensor device
Robins Drift effects in transition metal gate MOS and MISFETs
KR20200120381A (en) Hydrogen gas sensor
JPS63139241A (en) Diode type humidity sensor
JP2001281213A (en) Gas sensor
CN2408573Y (en) Low temperature (normal temperature) field effect gas sensitive element
JPS62124454A (en) Hetero junction type gas sensor
JPS6040945A (en) Semiconductor gas sensor
CN206364020U (en) A kind of groove gate type Schottky diode
Varenne et al. Influence of electrical characteristics on the sensitivity of p-InP-based pseudo-Schottky diodes for NO2 monitoring in atmosphere
CN116879375A (en) Floating gate structure field effect type gas sensor and preparation method thereof
JPS634657B2 (en)
JPH01295151A (en) Gas detector