JPS634657B2 - - Google Patents

Info

Publication number
JPS634657B2
JPS634657B2 JP55188091A JP18809180A JPS634657B2 JP S634657 B2 JPS634657 B2 JP S634657B2 JP 55188091 A JP55188091 A JP 55188091A JP 18809180 A JP18809180 A JP 18809180A JP S634657 B2 JPS634657 B2 JP S634657B2
Authority
JP
Japan
Prior art keywords
gate
gas
thin film
oxide film
field oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55188091A
Other languages
Japanese (ja)
Other versions
JPS57111439A (en
Inventor
Katsuhiro Teraishi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP55188091A priority Critical patent/JPS57111439A/en
Publication of JPS57111439A publication Critical patent/JPS57111439A/en
Publication of JPS634657B2 publication Critical patent/JPS634657B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/414Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS
    • G01N27/4141Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS specially adapted for gases
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/414Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS
    • G01N27/4148Integrated circuits therefor, e.g. fabricated by CMOS processing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Computer Hardware Design (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、絶縁ゲート型電解効果トランジスタ
(以下MOS型FETと言う)構造のガス検知素子
に関する。 本発明者は、特に特願昭50−154248号(特開昭
52−77794号公報参照)において、MOS型FET
のゲート電極としてPd(パラジウム)を用いた水
素ガスセンサーを提案した。この水素ガスセンサ
ーの動作原理は、水素ガスがPdに吸着すること
により、Pdの仕事函数が変化し、その結果MOS
型FETのしきい値特性が変化することを利用し
て水素ガスの有無を検出するものである。 また特開昭52−26292号公報には、ゲート絶縁
膜として固体電解質であるガラスからなるイオン
感応層を用いた。電解液中のイオンを検出するイ
オンセンサーが開示されている。このイオンセン
サーの動作原理も、上述の水素ガスセンサーと同
じであり、ガスセンサーにも応用可能なものであ
る。 しかし、これら水素ガスセンサーおよびイオン
センサーは、いずれも以下に示すような欠点を有
している。 すなわち、これらのセンサーは、どちらもガス
あるいはイオンの有無を感知するゲート電極ある
いはゲート絶縁膜の組成によつて、検出できるガ
スあるいはイオンの種類が限られてしまい、複数
種のガスを検出できる多目的なガスセンサーとし
ては使用できないものである。 これを解決するため、特開昭52−26292号公報
では、ゲート絶縁膜の組成を異ならせたMOS型
FETを複数個設けることが提案されているが、
これでは検出したいガスの種類が多くなればなる
ほど、それに応じてMOS型FETの数も多くしな
ければならず、とうてい小型かつ低価格の多目的
ガスセンサーを実現することはできない。 本発明は、以上の点に鑑み、1個のMOS型
FETで、複数種のガスを検出し得るガス検知素
子を実現し、小型かつ低価格の多目的ガスセンサ
ーを提供することを目的とするものである。 以下に、1実施例を示す。 第1図および第2図は、本発明によるガス検知
素子の概略の構成を示す図であり、1,2,3,
4の部分は、通常のMOS型FETの構造である。
即ち、1はP型Siの半導体基板であり、2はn型
のソース領域およびドレイン領域であり、その間
にチヤンネル領域が形成されている。3はフイー
ルド酸化物であり、酸化ケイ素(SiO2)からな
る。4は金属の中間電極であり、この材質は、
Au(金)、Ag(銀)、Bi(ビスマス)、Al(アルミニ
ウム)、fa(ランタン)、Pr(ブラセオジミウム)、
Nd(ネオジミウム)、Ce(セリウム)、Gd(カドリ
ニウム)Cu(銅)の中から選択された。5は、薄
膜固体電解質であり、LaF3(フツ化ランタン)、
CeF3(フツ化セリウム)、NdF3(フツ化ネオジミ
ウム)、PrF3(フツ化プラセオジミウム)の中か
ら選択された。6は金属のゲート電極であり、ガ
スとの反応速度を高くする目的で、格子メツシユ
状の構造をとつている。材質は、4の同じ元素群
の中から選択されている。7は、Cr/Auのメタ
ライゼンシヨンされた、信号処理回路へのリー
ド・パツド部である。 トランジスタ構造は、周知の手法で製作され、
0.05Ωcmの抵抗を有する<100>方位のボロン添
加のP型Siウエーハを使う。拡散用マスクとし
て、250nmの熱酸化膜で、通常の技術により、
パターニングされる。ドレイン及びソース領域
は、PH3を添加材として、1050℃で拡散される。
酸化膜はHFにより除去され、H2O2−NH3
H2O2−HCl、HF、及び純水で洗浄される。次
に、400℃で、酸素中にてSiH4の分解により、
200nmのSiO2膜をデポジツトする。ゲート酸化
用のゲート部分がエツチングされ、その後に875
℃で乾燥酸素中で、30nmのゲート酸化が行なわ
れる。ソースドレインのコンタクトホールが開か
れ、30nmのクロムと150nmの金が蒸着される。
次に、フオトレジスト技術により、ゲート部分
に、Biを電子ビーム蒸着する。150nmの厚みで
ある。このBi薄膜の上にLaF3膜をデポジツトす
る。200〜1500nmの厚みで良好な結果を示す。
200nm以下はピンホールが発生し、1500nm以上
はインピーダンスが高くなり不適当である。この
LaF3膜の上に、Auの格子状薄膜を構成する。こ
れによりAu/LaF3/Biの構造の薄膜電池構造が
つくられ、この電圧がMOS型FETのゲート電圧
に付加される構成が成立する。 薄膜のデポジシヨンは、全て10-7Torr以下の
高真空で為され、方法は、ボート加熱蒸着、電子
ビーム蒸着、スパツタリング蒸着、イオンビーム
スパツタリング蒸着等が工質に合せて使用され
る。特に、イオンビームスパツタリング蒸着は、
膜質及び物性値がよく制御でき、好適である。基
板温度は200〜300℃である。出発原料材質はいず
れも4N以上の純度である。 MOS型FET部のチヤンネル寸法は、幅20μ、
長さ1000μである。 本素子は、通常のMOS型FETと異なる特徴と
して、中間に電極4を有することである。基板1
に対して6に電圧を印加する効果は通常のFET
効果であるが、このゲート電圧は、4,6間の電
圧の影響を受ける構成であり、ここにガスの効果
を生起させることにより、ガスの検知を行なうも
のである、即わち、4,6間に下記の所定電圧を
印加した状態で、環境ガスに曝露すると、この間
の電流が流れ、インピーダンスが低下し、6の電
位がそのままゲート電圧として作用することにな
る。従つて、下部のFET部を作動させることに
なり、ガスの検知が行なわれたことになる。
The present invention relates to a gas detection element having an insulated gate field effect transistor (hereinafter referred to as MOS FET) structure. In particular, the inventor of the present invention
52-77794), MOS type FET
proposed a hydrogen gas sensor using Pd (palladium) as the gate electrode. The operating principle of this hydrogen gas sensor is that when hydrogen gas is adsorbed on Pd, the work function of Pd changes, and as a result, the MOS
The presence or absence of hydrogen gas is detected by utilizing changes in the threshold characteristics of the type FET. Further, in JP-A-52-26292, an ion-sensitive layer made of glass, which is a solid electrolyte, is used as a gate insulating film. An ion sensor is disclosed that detects ions in an electrolyte. The operating principle of this ion sensor is also the same as that of the hydrogen gas sensor described above, and it can also be applied to gas sensors. However, these hydrogen gas sensors and ion sensors both have the following drawbacks. In other words, both of these sensors are limited in the types of gases or ions that can be detected depending on the composition of the gate electrode or gate insulating film that senses the presence or absence of gases or ions. It cannot be used as a gas sensor. To solve this problem, Japanese Patent Application Laid-Open No. 52-26292 proposes a MOS type with a different composition of the gate insulating film.
It has been proposed to provide multiple FETs, but
In this case, as the number of gases to be detected increases, the number of MOS FETs must also increase accordingly, making it impossible to create a very compact and low-cost multipurpose gas sensor. In view of the above points, the present invention provides one MOS type
The aim is to create a gas detection element that can detect multiple types of gases using FETs, and to provide a small, low-cost, multipurpose gas sensor. One example is shown below. FIG. 1 and FIG. 2 are diagrams showing the general configuration of a gas detection element according to the present invention.
Part 4 is the structure of a normal MOS type FET.
That is, 1 is a P-type Si semiconductor substrate, 2 is an N-type source region and a drain region, and a channel region is formed between them. 3 is a field oxide made of silicon oxide (SiO 2 ). 4 is a metal intermediate electrode, the material of which is
Au (gold), Ag (silver), Bi (bismuth), Al (aluminum), fa (lanthanum), Pr (braceodymium),
It was selected from Nd (neodymium), Ce (cerium), Gd (cadrinium), and Cu (copper). 5 is a thin film solid electrolyte, LaF 3 (lanthanum fluoride),
It was selected from CeF 3 (cerium fluoride), NdF 3 (neodymium fluoride), and PrF 3 (praseodymium fluoride). Reference numeral 6 denotes a metal gate electrode, which has a lattice mesh structure for the purpose of increasing the reaction rate with gas. The materials are selected from the same four element groups. 7 is a lead pad portion to the signal processing circuit, which is made of Cr/Au metallization. The transistor structure is fabricated using well-known techniques.
A <100> oriented boron-doped P-type Si wafer with a resistance of 0.05 Ωcm is used. As a diffusion mask, a 250 nm thermal oxide film is used using standard techniques.
patterned. The drain and source regions are diffused at 1050° C. with PH 3 as an additive.
The oxide film is removed by HF, H 2 O 2 −NH 3 ,
Washed with H2O2 - HCl , HF, and pure water. Then, by decomposition of SiH4 in oxygen at 400℃,
Deposit a 200nm SiO 2 film. The gate area for gate oxidation is etched and then 875
A 30 nm gate oxidation is performed in dry oxygen at °C. Source-drain contact holes are opened and 30 nm of chromium and 150 nm of gold are deposited.
Next, Bi is electron beam evaporated onto the gate portion using photoresist technology. The thickness is 150nm. A LaF 3 film is deposited on top of this Bi thin film. Good results are shown for thicknesses of 200 to 1500 nm.
If it is less than 200 nm, pinholes will occur, and if it is more than 1500 nm, the impedance will be high and it is inappropriate. this
A lattice thin film of Au is constructed on top of the LaF 3 film. As a result, a thin film battery structure of Au/LaF 3 /Bi is created, and a configuration is established in which this voltage is added to the gate voltage of the MOS FET. All thin film deposition is performed in a high vacuum of 10 -7 Torr or less, and boat heating evaporation, electron beam evaporation, sputtering evaporation, ion beam sputtering evaporation, etc. are used depending on the material. In particular, ion beam sputtering deposition
The film quality and physical property values can be well controlled, which is preferable. The substrate temperature is 200-300°C. All starting materials have a purity of 4N or higher. The channel dimensions of the MOS type FET section are width 20μ,
The length is 1000μ. This element differs from a normal MOS FET in that it has an electrode 4 in the middle. Board 1
The effect of applying voltage to 6 is that of normal FET
As for the effect, this gate voltage is influenced by the voltage between 4 and 6, and by causing the gas effect here, gas detection is performed. When exposed to an environmental gas with a predetermined voltage applied between 6 and 6, a current flows between them, the impedance decreases, and the potential of 6 directly acts as a gate voltage. Therefore, the lower FET section was activated, and gas was detected.

【表】 第2図に示す如くに、A部はFET部分であり、
Bは電池構成部であり、C部はバイアス印加制御
部であり、D部は信号源である。C部は例えば
MOS型OPアンプ回路により駆動でき、D部の先
に、CPUを接続して各種の制御に適応できる。
A、B、C部は、高抵抗回路で、低電圧駆動が可
能であり、極めて低消費電力である。さらに、前
述の如く、きわめて応答の早いガス検知信号の発
生が可能であり、当然本素子は常温で作動でき、
加熱回路は不要である。 以上の如く、本発明の原理による検知素子は、
小型、薄型に設計でき、低消費電力、低電圧駆動
が可能で、ガスの選択性があり、さらに信頼性も
充分期待できる素子である。 従つて、小型、携帯型のガス検知測定器、警報
器、又はモニターに絶好の素子である。この場合
周辺の信号処理回路は、基板のSiウエーハ内に集
積できることは大きな特徴であり、システムの低
コスト化が可能である。 さらに、本発明の検知素子は、中間電極とゲー
ト電極間に印加するバイアス電圧の値を変えるだ
けで、異なる複数のガスの検出が可能となるた
め、1個の検知素子で多目的のガスセンサーを構
成でき、その応用性はきわめて高いものである。
[Table] As shown in Figure 2, part A is the FET part,
B is a battery component, C section is a bias application control section, and D section is a signal source. For example, part C is
It can be driven by a MOS type OP amplifier circuit, and can be adapted to various types of control by connecting a CPU at the end of the D section.
Sections A, B, and C are high resistance circuits that can be driven at low voltage and have extremely low power consumption. Furthermore, as mentioned above, it is possible to generate a gas detection signal with extremely quick response, and of course this device can operate at room temperature.
No heating circuit is required. As described above, the sensing element according to the principle of the present invention is
It is a device that can be designed to be small and thin, has low power consumption, can be driven at low voltage, has gas selectivity, and is expected to be highly reliable. Therefore, it is an ideal element for small, portable gas detection measuring instruments, alarms, or monitors. In this case, a major feature is that the peripheral signal processing circuits can be integrated within the Si wafer of the substrate, making it possible to reduce the cost of the system. Furthermore, the sensing element of the present invention can detect multiple different gases by simply changing the value of the bias voltage applied between the intermediate electrode and the gate electrode, so a single sensing element can be used as a multipurpose gas sensor. can be configured, and its applicability is extremely high.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は、本発明の原理的な構成
を示す図である。第3図は本発明の1実施例に係
る回路概念図である。
FIG. 1 and FIG. 2 are diagrams showing the basic configuration of the present invention. FIG. 3 is a conceptual diagram of a circuit according to an embodiment of the present invention.

Claims (1)

【特許請求の範囲】 1 半導体基板、該半導体基板に形成されたソー
スおよびドレイン領域、少なくとも該ソース領域
およびドレイン領域間のチヤンネル領域上に形成
されたフイールド酸化膜、該フイールド酸化膜上
に形成された中間電極、該中間電極上に形成され
た薄膜固体電解質および該薄膜固体電解質上に形
成されたゲート電極からなることを特徴とするガ
ス検知素子。 2 前記ゲート電極を格子メツシユ状に形成した
ことを特徴とする特許請求の範囲第1項記載のガ
ス検知素子。
[Scope of Claims] 1. A semiconductor substrate, a source and drain region formed on the semiconductor substrate, a field oxide film formed on at least a channel region between the source region and the drain region, and a field oxide film formed on the field oxide film. What is claimed is: 1. A gas sensing element comprising: an intermediate electrode formed on the intermediate electrode; a thin film solid electrolyte formed on the intermediate electrode; and a gate electrode formed on the thin film solid electrolyte. 2. The gas sensing element according to claim 1, wherein the gate electrode is formed in the shape of a lattice mesh.
JP55188091A 1980-12-29 1980-12-29 Gas detecting element Granted JPS57111439A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55188091A JPS57111439A (en) 1980-12-29 1980-12-29 Gas detecting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55188091A JPS57111439A (en) 1980-12-29 1980-12-29 Gas detecting element

Publications (2)

Publication Number Publication Date
JPS57111439A JPS57111439A (en) 1982-07-10
JPS634657B2 true JPS634657B2 (en) 1988-01-29

Family

ID=16217540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55188091A Granted JPS57111439A (en) 1980-12-29 1980-12-29 Gas detecting element

Country Status (1)

Country Link
JP (1) JPS57111439A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62250352A (en) * 1986-04-23 1987-10-31 Seitai Kinou Riyou Kagakuhin Shinseizou Gijutsu Kenkyu Kumiai Field effect transistor type oxygen gas sensor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5226292A (en) * 1975-08-23 1977-02-26 Res Dev Corp Of Japan Ion sensor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5226292A (en) * 1975-08-23 1977-02-26 Res Dev Corp Of Japan Ion sensor

Also Published As

Publication number Publication date
JPS57111439A (en) 1982-07-10

Similar Documents

Publication Publication Date Title
US6109094A (en) Method and device for gas sensing
US7157054B2 (en) Membrane type gas sensor and method for manufacturing membrane type gas sensor
US4892834A (en) Chemical sensor
CN107449811B (en) FET-based humidity sensor with barrier layer protecting gate dielectric
US20020114125A1 (en) Capacitance type humidity sensor and manufacturing method of the same
CN107430086B (en) Gas sensor and sensor device
WO2015189889A1 (en) Gas sensor and sensor device
US4816888A (en) Sensor
US20140061728A1 (en) Gate Biasing Electrodes For FET Sensors
EP0168200A2 (en) Gas sensor
JPS634657B2 (en)
WO2016125283A1 (en) Gas sensor and sensor device
JPS58190061A (en) Amorphous silicon semiconductor device and manufacture thereof
JP2010517280A (en) Electronic components
JPH0116379B2 (en)
JPH0115015B2 (en)
Stoev et al. An integrated gas sensor on silicon substrate with sensitive SnOx layer
JPH083476B2 (en) FET type sensor
JPS61153537A (en) Semiconductor pressure sensor
JPS63101740A (en) Vertical fet type gas sensor
JPH0210146A (en) Humidity sensing element and its operating circuit
JP2000187016A (en) Semiconductor ion sensor
JPS63139241A (en) Diode type humidity sensor
CN116008355A (en) Humidity sensor and preparation method thereof
JP2792461B2 (en) Method for manufacturing semiconductor device