JPS63100728A - X-ray stepper - Google Patents

X-ray stepper

Info

Publication number
JPS63100728A
JPS63100728A JP61245267A JP24526786A JPS63100728A JP S63100728 A JPS63100728 A JP S63100728A JP 61245267 A JP61245267 A JP 61245267A JP 24526786 A JP24526786 A JP 24526786A JP S63100728 A JPS63100728 A JP S63100728A
Authority
JP
Japan
Prior art keywords
rays
ray
electrodes
plasma
incident
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61245267A
Other languages
Japanese (ja)
Other versions
JPH0770457B2 (en
Inventor
Hiroshi Arita
浩 有田
Hiroyuki Sugawara
宏之 菅原
Koji Suzuki
光二 鈴木
Yukio Kurosawa
黒沢 幸夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61245267A priority Critical patent/JPH0770457B2/en
Publication of JPS63100728A publication Critical patent/JPS63100728A/en
Publication of JPH0770457B2 publication Critical patent/JPH0770457B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70008Production of exposure light, i.e. light sources
    • G03F7/70033Production of exposure light, i.e. light sources by plasma extreme ultraviolet [EUV] sources

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • X-Ray Techniques (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Lasers (AREA)

Abstract

PURPOSE:To increase the X-ray brightness of a lithography equipment by a method wherein X-ray laser induction-discharged by means of entering the X-rays into plasma in excited state is led to a semiconductor substrate. CONSTITUTION:The charge of capacitors 2 charged by a high voltage power supply 1 actuates trigger electrodes 5 to be discharged between a pair of electrodes 31-41. Thus, discharged plasma is produced between respective electrodes to bring about an excited state of atoms in plasma. A part of X-rays emitted from spot plasma between the electrodes 31 and 41 become incident x-rays into electrodes 32, 33 inducing induction discharge phenomenon to emit x-rays in the same direction as that of the incident rays so that the induction discharge may take place successively to emit X-rays 9. Finally, the X-rays 9 are picked up on an exposure part through a window 10 to transfer the pattern of a mask 12 on a holder 11 to the Si wafer 13 on an aligner 14. In such a constitution, an X-ray output in high brightness can be generated enabling a fine pattern to be transferred.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はLSI製造用XMリソグラフィ装置のX線源に
係わり、特にXS、輝度向上を図ったX線露光装置に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an X-ray source for an XM lithography apparatus for LSI manufacturing, and more particularly to an X-ray exposure apparatus with improved XS and brightness.

〔従来の技術〕[Conventional technology]

近年、より高性能な半導体集積回路を製造するために、
0.5μm以下の寸法を有する微細パターンを、半導体
基板上に形成する要求が高まっている。X線(主に4〜
13人の軟X線)を使用したパターン転写技術であるX
線露光法は、転写されたパターンの精度が極めて高く、
特にサブミクロンパターン形成において有力な技術とさ
れている。
In recent years, in order to manufacture higher performance semiconductor integrated circuits,
There is an increasing demand for forming fine patterns having dimensions of 0.5 μm or less on semiconductor substrates. X-rays (mainly 4~
X is a pattern transfer technology using soft X-rays)
With the line exposure method, the accuracy of the transferred pattern is extremely high;
In particular, it is considered to be a powerful technology in submicron pattern formation.

ところで、X線露光法を実施するには高出力で安定なX
線発生装置を必要とする。そこで最近。
By the way, in order to carry out the X-ray exposure method, a high-power and stable
Requires a line generator. So recently.

放電プラズマをX線源とするX線発生装置が研究されて
いる。この装置は第6図に示す如く高電圧電源1により
充電されたコンデンサ2の電荷を一対の電極3・4間で
放電させ、電極3・4間に放電プラズマを生成し、プラ
ズマ中で起こるエネルギ遷移によって放射されるX線を
利用するものである。なお、第6図中5はトリガー電極
を示す。
X-ray generators using discharge plasma as an X-ray source are being researched. As shown in Fig. 6, this device discharges the electric charge of a capacitor 2 charged by a high voltage power supply 1 between a pair of electrodes 3 and 4, generates discharge plasma between the electrodes 3 and 4, and generates energy generated in the plasma. It utilizes X-rays emitted by transitions. Note that 5 in FIG. 6 indicates a trigger electrode.

[−このような従来技術としては、例えば、特開昭□、
ル 5g−188040号公報に示される。
[-As such conventional technology, for example, Japanese Patent Application Laid-open No.
5g-188040.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術は、プラズマ中のエネルギー遷移の制御の
点について配慮がされておらず、弱いX線出力しか得ら
れないことに問題があった。すなわちX線発生メカニズ
ムを説明すると、原子は、原子核とその回りを一定のエ
ネルギーレベルを持つた誘導を回る電子とから成る。入
射電子の運動エネルギーが電子の結合エネルギーより大
きくなれば、その殻から電子をたたき出す(光電効果)
The above-mentioned conventional technology does not take into consideration the control of energy transition in plasma, and has a problem in that only a weak X-ray output can be obtained. In other words, to explain the mechanism of X-ray generation, an atom consists of an atomic nucleus and electrons that revolve around it with a certain energy level. If the kinetic energy of the incident electron becomes greater than the electron's binding energy, the electron is knocked out of its shell (photoelectric effect)
.

その空席に外殻軌道の電子が入りこむ時、電子の保有す
るエネルギー差分をX線として放出する。
When an electron in the outer orbit enters the empty space, the energy difference held by the electron is emitted as X-rays.

第7図にその様子を示す、高エネルギーの電子は自然放
出され、遷移が偶発的に起こるもので、X線は不規則に
放出される1以上の様に、自然放出のエネルギー遷移を
利用しているため、制御が困難であった。
The situation is shown in Figure 7, where high-energy electrons are spontaneously emitted and transitions occur accidentally, and X-rays are irregularly emitted and utilize the energy transitions of spontaneous emission. It was difficult to control because of the

本発明の目的は、上記した従来技術の欠点を除去し、高
輝度のX線出力の得られるX線源を有する露光装置を提
供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to eliminate the drawbacks of the prior art described above and to provide an exposure apparatus having an X-ray source that can output high-intensity X-rays.

〔問題点を解決するための手段〕[Means for solving problems]

本発明では上記目的を達成するために、X線発生源に、
励起状態にあるプラズマにX線を入射し、誘導放出を利
用するX線レーザーを使用した。
In the present invention, in order to achieve the above object, the X-ray generation source includes:
They used an X-ray laser that uses stimulated emission by injecting X-rays into an excited plasma.

〔作用〕[Effect]

第8図にMMを示す、励起状態にある原子に入射x腺が
作用すると、入射X線と同じ方向に、同じ周波数位相、
さらに同じ偏光特性のX線が誘導放出され、入射X線の
強さに比例して放出される現象を利用するものである。
Figure 8 shows MM. When an incident x-ray acts on an excited atom, the incident x-rays move in the same direction, have the same frequency phase,
Furthermore, it utilizes the phenomenon that X-rays with the same polarization characteristics are stimulated to be emitted and are emitted in proportion to the intensity of the incident X-rays.

この現象を作り出すX線レーザは、複数のX線発生部を
一直線上に配設し、高速大電流放電により上記励起状態
を形成する。この時、X線が入射されると誘導放出によ
り高輝度のX線出力を得ることができる。
The X-ray laser that produces this phenomenon has a plurality of X-ray generating sections arranged in a straight line, and forms the above-mentioned excited state by high-speed, large-current discharge. At this time, when X-rays are incident, high-intensity X-ray output can be obtained by stimulated emission.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図により説明する。ここ
で第6図の従来例と同一構成要素には同一番号を付けで
ある。真空容器6内に絶縁物15を介して、対向する電
極対31・41.32・42、・・・36,46を設け
、電極41,42.・・・46は各々円筒状の導電路8
1.82・・・、86に接合されている。(第2図にひ
とつの電極対の構成外観を示す、16はX線の通る開孔
部)電極31.32.・・・36の一方とトリガー電極
5を介してコンデンサ2に、また導電路81,82.・
・・86の一方もコンデンサ2に接合されている。トリ
ガー電極5の放電時間制御はトリガ一時間制御器7によ
って調整する。真空容器6の図面下部にはX線取出し窓
10を設置しである。
An embodiment of the present invention will be described below with reference to FIG. Here, the same components as in the conventional example shown in FIG. 6 are given the same numbers. Opposing pairs of electrodes 31, 41, 32, 42, . ... 46 are cylindrical conductive paths 8
1.82..., 86 are joined. (Figure 2 shows the external appearance of one electrode pair, 16 is the opening through which X-rays pass) Electrodes 31.32. ... 36 and the capacitor 2 via the trigger electrode 5, and the conductive paths 81, 82 .・
... One side of 86 is also connected to capacitor 2. The discharge time control of the trigger electrode 5 is adjusted by a trigger hour controller 7. An X-ray extraction window 10 is installed at the bottom of the vacuum container 6 in the drawing.

X線発生にあたっては、高電圧電源1によって充電され
たコンデンサ2の電荷をトリガー電極5を作動させるこ
とによって、電極対31・41間、32・42間、・・
・36・46間で放電させる。これにより各電極間で放
電プラズマを形成し、プラズマ中の原子は励起状態とな
る。電極31・41間でのスポットプラズマ中から発生
したX線の一部は電極32・33間への入射X線となり
、誘導、゛発生する。順次電極対33・43間、34・
44間、・・・36・46間で誘導放出し、X線9を発
生する。微細パターンを転写するため、上記発生Xl1
9を窓10を通して露光部に取り出す、支持体11に支
持されたマスク12のパターンを、アライナ14上のシ
リコンウェハ13上に転写する。
When generating X-rays, by operating the trigger electrode 5, the electric charge of the capacitor 2 charged by the high voltage power supply 1 is transferred between the electrode pairs 31 and 41, between 32 and 42, etc.
・Discharge between 36 and 46. As a result, discharge plasma is formed between each electrode, and atoms in the plasma become excited. A part of the X-rays generated from the spot plasma between the electrodes 31 and 41 become incident X-rays between the electrodes 32 and 33, and are induced and generated. Sequentially between electrode pairs 33 and 43, 34 and
44, . . . stimulated emission between 36 and 46 and generates X-rays 9. In order to transfer the fine pattern, the above generated Xl1
The pattern of the mask 12 supported on the support 11 is transferred onto the silicon wafer 13 on the aligner 14 .

以上説明した様にX線露光用の光源に誘導放出現象を利
用したX線レーザーを使用しているため、高輝度のX線
出力を得ることができる。誘導放出のための入射XM発
生部は第1図のどの電極対から発生しても、同様に高輝
度のX線出力を得られる。
As explained above, since an X-ray laser that utilizes the stimulated emission phenomenon is used as a light source for X-ray exposure, high-intensity X-ray output can be obtained. The incident XM generating section for stimulated emission can similarly obtain high-intensity X-ray output no matter which electrode pair shown in FIG. 1 generates the incident XM.

第3図は別の発明であり、電極対にガスパフ式を適用し
た場合である。各電極対31・41゜32・42.33
・43.34・44を一直線上に配置し、各電極の中心
部にはX線の通路である開孔部が設けである。各電pi
431,32,33゜34の内部にはガス吹き出し孔1
8を設けている。
FIG. 3 shows another invention in which a gas puff type is applied to the electrode pair. Each electrode pair 31・41゜32・42.33
- 43, 34, and 44 are arranged in a straight line, and an opening is provided in the center of each electrode for the passage of X-rays. Each electric pi
431, 32, 33° There is a gas blowing hole 1 inside 34.
There are 8.

X線発生にあたっては、最初にガス導入バイブ17より
、ガス19を電極間に吹き出す、一定の一?′偏する。
To generate X-rays, gas 19 is first blown out between the electrodes from the gas introduction vibrator 17 at a constant rate. 'Be biased.

電極間のガスは電流の磁気ピンチ効果により、高温・高
密度のプラズマとなり、励起状態を形成する。この時、
各プラズマ中にX線が入射すると、誘導放出したX線は
増幅され、X線9を発生する0本発明も第1図と同様に
、高輝度XMを発生させる効果がある。
The gas between the electrodes becomes a high-temperature, high-density plasma due to the magnetic pinch effect of the current, forming an excited state. At this time,
When X-rays are incident on each plasma, the stimulated emitted X-rays are amplified and generate X-rays 9. The present invention also has the effect of generating high-intensity XM, as in FIG. 1.

第4図・第5図は他の発明例を示す、励起状態をレーザ
ーコンド20内部で形成し、高輝度X線を発生させる例
である。紫外線のレーザ光23は集光レンズ22を介し
て、回転ターゲット24に照射される。ターゲット30
上で高温・高密度のプラズマが形成し、X線21を発生
する。このX線は円柱形のレーザーロッド20中に入射
され、レーザーロッドの結晶内部で、誘導放出する。こ
のため増幅されたX線9を発生する。第4図はレーザー
ロッド20の軸方向からX線を入射した場合であるが、
さらに、X線輝度向上のため、径方向から入射した例を
第5図に示す、第4図・第5図の発明共、高輝度X線出
力が得られる。
FIGS. 4 and 5 show another example of the invention in which an excited state is formed inside the laser condo 20 and high-intensity X-rays are generated. The ultraviolet laser beam 23 is irradiated onto a rotating target 24 through a condenser lens 22 . target 30
A high-temperature, high-density plasma is formed above, generating X-rays 21. The X-rays are incident on the cylindrical laser rod 20 and are stimulated to be emitted inside the crystal of the laser rod. Therefore, amplified X-rays 9 are generated. FIG. 4 shows the case where X-rays are incident from the axial direction of the laser rod 20.
Furthermore, in order to improve the X-ray brightness, an example in which the X-rays are incident from the radial direction is shown in FIG. 5, and both the inventions shown in FIGS. 4 and 5 can provide high-brightness X-ray output.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、励起状態にあるプラズマにX線を入射
し、誘導放出を利用するX線レーザーをX線源として用
いたものであるから、高輝度X線出力を得られ、スルー
ブツトを向上する効果がある。
According to the present invention, since an X-ray laser that injects X-rays into excited plasma and utilizes stimulated emission is used as an X-ray source, high-brightness X-ray output can be obtained and throughput can be improved. It has the effect of

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の縦断面図、第2図は本発明
の一実施例の部分構造、第3図は本発明の他の実施例の
縦断面図、第4図・第5図は本発明のさらに別の実施例
の縦断面図、第6図は従来例、第7図は従来例の原理図
、第8図は本発明の原理図。 31・41.32・42.〜36・46・・・電極対、
2・・・コンデンサ、5・・・トリガー電極、20・・
・レー第 1目 峯J の A 寮4 図 を5図
FIG. 1 is a longitudinal sectional view of an embodiment of the present invention, FIG. 2 is a partial structure of an embodiment of the invention, FIG. 3 is a longitudinal sectional view of another embodiment of the invention, and FIGS. FIG. 5 is a vertical sectional view of yet another embodiment of the present invention, FIG. 6 is a conventional example, FIG. 7 is a principle diagram of the conventional example, and FIG. 8 is a principle diagram of the present invention. 31・41.32・42. 〜36・46...electrode pair,
2... Capacitor, 5... Trigger electrode, 20...
・Leh 1st Mine J A Dormitory 4 Diagram 5

Claims (1)

【特許請求の範囲】[Claims] 1、X線発生源よりのX線を利用して、微細パターンを
半導体基板上に形成するX線露光装置において、上記X
線発生源よりのX線を励起状態にあるプラズマに入射す
ることにより誘導放出するX線レーザーを上記半導体基
板上に導びく構成としたことを特徴とするX線露光装置
1. In an X-ray exposure apparatus that forms fine patterns on a semiconductor substrate using X-rays from an X-ray source, the
An X-ray exposure apparatus characterized in that an X-ray laser is guided onto the semiconductor substrate, which stimulates and emits X-rays by making X-rays from a radiation source enter an excited plasma.
JP61245267A 1986-10-17 1986-10-17 X-ray exposure method and X-ray generation source used therefor Expired - Lifetime JPH0770457B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61245267A JPH0770457B2 (en) 1986-10-17 1986-10-17 X-ray exposure method and X-ray generation source used therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61245267A JPH0770457B2 (en) 1986-10-17 1986-10-17 X-ray exposure method and X-ray generation source used therefor

Publications (2)

Publication Number Publication Date
JPS63100728A true JPS63100728A (en) 1988-05-02
JPH0770457B2 JPH0770457B2 (en) 1995-07-31

Family

ID=17131138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61245267A Expired - Lifetime JPH0770457B2 (en) 1986-10-17 1986-10-17 X-ray exposure method and X-ray generation source used therefor

Country Status (1)

Country Link
JP (1) JPH0770457B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007059706A (en) * 2005-08-25 2007-03-08 Takayasu Mochizuki Method for manufacturing semiconductor crystal film and device using it

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56111223A (en) * 1980-02-01 1981-09-02 Chiyou Lsi Gijutsu Kenkyu Kumiai X-ray exposuring device
JPS607130A (en) * 1983-06-06 1985-01-14 ザ・ユニヴア−シテイ−・オブ・ロチエスタ− X-ray lithographic method and device
JPS62273727A (en) * 1986-04-15 1987-11-27 ハンプシヤ− インスツルメンツ,インコ−ポレ−テツド Apparatus and processing method for x-ray lithography

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56111223A (en) * 1980-02-01 1981-09-02 Chiyou Lsi Gijutsu Kenkyu Kumiai X-ray exposuring device
JPS607130A (en) * 1983-06-06 1985-01-14 ザ・ユニヴア−シテイ−・オブ・ロチエスタ− X-ray lithographic method and device
JPS62273727A (en) * 1986-04-15 1987-11-27 ハンプシヤ− インスツルメンツ,インコ−ポレ−テツド Apparatus and processing method for x-ray lithography
JPS62273728A (en) * 1986-04-15 1987-11-27 ハンプシヤ− インスツルメンツ,インコ−ポレ−テツド Apparatus and method for x-ray lithography

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007059706A (en) * 2005-08-25 2007-03-08 Takayasu Mochizuki Method for manufacturing semiconductor crystal film and device using it

Also Published As

Publication number Publication date
JPH0770457B2 (en) 1995-07-31

Similar Documents

Publication Publication Date Title
US7115887B1 (en) Method for generating extreme ultraviolet with mather-type plasma accelerators for use in Extreme Ultraviolet Lithography
TW584879B (en) Star pinch X-ray and extreme ultraviolet photon source
US7180082B1 (en) Method for plasma formation for extreme ultraviolet lithography-theta pinch
US8710475B2 (en) Extreme ultraviolet light source device and method for generating extreme ultraviolet light
JP2001215721A (en) Plasma converging light source having improved pulse power source system
JP2002006096A (en) Electromagnetic wave generating device, semiconductor manufacturing device using it, and manufacturing method therefor
US6567499B2 (en) Star pinch X-ray and extreme ultraviolet photon source
US20030053588A1 (en) Radiation-generating devices utilizing multiple plasma-discharge sources and microlithography apparatus and methods utilizing the same
TW201643549A (en) Extreme ultraviolet radiation apparatus and radiation generating method
Heuberger Comparison of different x-ray sources: X-ray tubes, laser induced plasma sources, compact and conventional storage rings
KR100479372B1 (en) Toroidal filament for plasma generation
JPS63100728A (en) X-ray stepper
Leung The application and status of the radio frequency driven multi-cusp ion source
JPH0661000A (en) Circular accelerator and circular accelerator operating method and semiconductor exposure device
JPH06101315B2 (en) X-ray generator
RU2253194C2 (en) Radiation source built around plasma focus with improved switching-mode supply system
JPH0760654B2 (en) Ion beam generation method and device
JP2002139758A (en) Device for shortening light wavelength
JPH01102838A (en) X-ray generating device
JPH05174752A (en) X-ray generating device
JPH06101316B2 (en) X-ray generator
CN118033992B (en) Extreme ultraviolet light source
JPS6120332A (en) X-ray generating device and x-ray lithography equipment using same
CN118033992A (en) Extreme ultraviolet light source
Clendenin Recent advances in electron and positron sources