JPH0661000A - Circular accelerator and circular accelerator operating method and semiconductor exposure device - Google Patents

Circular accelerator and circular accelerator operating method and semiconductor exposure device

Info

Publication number
JPH0661000A
JPH0661000A JP4211240A JP21124092A JPH0661000A JP H0661000 A JPH0661000 A JP H0661000A JP 4211240 A JP4211240 A JP 4211240A JP 21124092 A JP21124092 A JP 21124092A JP H0661000 A JPH0661000 A JP H0661000A
Authority
JP
Japan
Prior art keywords
deflecting
magnets
electron beam
circular accelerator
deflection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4211240A
Other languages
Japanese (ja)
Inventor
淳一 ▲廣▼田
Junichi Hirota
Kazuo Hiramoto
和夫 平本
Masatsugu Nishi
政嗣 西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP4211240A priority Critical patent/JPH0661000A/en
Priority to US08/102,737 priority patent/US5477056A/en
Publication of JPH0661000A publication Critical patent/JPH0661000A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H7/00Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
    • H05H7/06Two-beam arrangements; Multi-beam arrangements storage rings; Electron rings

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Particle Accelerators (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

PURPOSE:To provide a small circular accelerator and a circular accelerator operating method capable of generating highly bright emission light and a semiconductor exposure device capable of using the highly bright emission light. CONSTITUTION:An electron beam 12 emitted from a front stage accelerator 11 is made incident in an accumulation ring by means of an incident unit 13, and is accelerated, and is accumulated. Afterwards, an inserted light source 18 arranged in a straight line orbit part between a main deflection magnet 14 and an auxiliary deflection magnet 15 is excited, and an alternating magnetic field is generated inside of it. The electron beam meanders or is put in spiral motion by means of this alternating magnetic field, and beams of emission light emitted from the apex of an meandering orbit or a spiral orbit are superposed upon each other, so that highly bright emission light 19 can be generated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電子又は陽電子の円形
加速器に係り、特に小型で、輝度の高い放射光を発生す
るのに好適な円形加速器及びその運転方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electron or positron circular accelerator, and more particularly to a circular accelerator suitable for producing synchrotron radiation having a small size and high brightness, and a method of operating the same.

【0002】[0002]

【従来の技術】従来の円形加速器に関しては、技術雑誌
月刊フィジクス Vol.5 No.11,1984,p.711
〜p.721に記載のシンクロトロン放射光発生装置等が
ある。図2に示すシンクロトロン放射光発生装置の概略
図を用いて、従来例を説明する。前段加速器21から出
射した電子又は陽電子ビーム(以下、電子ビーム等と呼
ぶ)を入射器系22により蓄積リングに入射させる。入
射した電子ビーム等は、収束又は発散用4極磁石26,
軌道補正用ステアリング磁石27,偏向磁石23により
周回軌道28上に保持される。その後、電子ビーム等は
加速機能を有する蓄積リングの場合、高周波加速空胴2
5により所望のエネルギーまで蓄積リング内で加速され
る。また、所望エネルギーで入射する場合はそのエネル
ギーのまま蓄積される。所望エネルギーで蓄積された電
子ビーム等は、蓄積リング内を周回するとき、偏向磁石
23により偏向される毎にそのエネルギーの一部を放射
光24として放出する。この放射光を半導体の微細加工
等に使用する。この放射光の放出により失われるエネル
ギーを、蓄積リング内に設けられた高周波加速空胴25
で補償することにより、所望エネルギーの電子ビーム等
を蓄積リング内の周回軌道28上に保持することができ
る。偏向磁石23から放出される放射光24のうち長波
長域の輝度を高くする方法として、蓄積リング内の周回
軌道28に沿って交番磁界を印加し、電子ビーム等に蛇
行又は螺旋運動をさせることにより、蛇行軌道の頂点又
は螺旋軌道上から放出される放射光を重ね合わせる挿入
型発光装置(以下、挿入光源と呼ぶ)18が用いられて
いる。
2. Description of the Related Art Regarding the conventional circular accelerator, a technical magazine, monthly physics Vol.5 No.11, 1984, p.711.
The synchrotron radiation light generating device described in p. A conventional example will be described with reference to the schematic view of the synchrotron radiation generator shown in FIG. An electron or positron beam (hereinafter referred to as an electron beam) emitted from the pre-stage accelerator 21 is made incident on the storage ring by the injector system 22. The incident electron beam or the like is converged or diverged by a quadrupole magnet 26,
It is held on the orbit 28 by the orbit correction steering magnet 27 and the deflection magnet 23. After that, in the case of a storage ring that has an electron beam acceleration function, the high-frequency acceleration cavity
5 accelerates in the storage ring to the desired energy. When the incident energy is the desired energy, the energy is stored as it is. When the electron beam or the like accumulated with desired energy circulates in the accumulation ring, a part of the energy is emitted as radiant light 24 every time it is deflected by the deflection magnet 23. This emitted light is used for fine processing of semiconductors. The energy lost due to the emission of this synchrotron radiation is applied to the high-frequency acceleration cavity 25 provided in the storage ring.
By compensating with, the electron beam or the like of desired energy can be held on the orbit 28 in the storage ring. As a method of increasing the luminance in the long wavelength region of the radiated light 24 emitted from the deflection magnet 23, an alternating magnetic field is applied along the circular orbit 28 in the storage ring to cause the electron beam or the like to meander or spiral. Accordingly, an insertion type light emitting device (hereinafter referred to as an insertion light source) 18 that superposes radiated light emitted from the apex of a meandering orbit or a spiral orbit is used.

【0003】[0003]

【発明が解決しようとする課題】しかし、挿入光源は電
子ビーム等の直線軌道部に設置する必要があるので、小
型化を要求されるような蓄積リングでは、挿入光源を多
数設置できないという問題がある。即ち、小型蓄積リン
グは直線軌道部が少なく、その直線軌道部には前述した
ように4極磁石,ステアリング磁石,入射器系、及び高
周波加速空胴等が設置されるため、小型のまま多数の挿
入光源を設置して、輝度を高くすることはできない。
However, since it is necessary to install the insertion light source on the linear orbital portion of the electron beam or the like, there is a problem that a large number of insertion light sources cannot be installed in the storage ring that requires miniaturization. is there. That is, the small storage ring has a small number of linear orbits, and as described above, the 4-pole magnet, the steering magnet, the injector system, and the high-frequency accelerating cavity are installed in the linear orbital portion. It is not possible to increase the brightness by installing an insertion light source.

【0004】本発明の目的は、小型で、輝度の高い放射
光を発生できる円形加速器及び円形加速器の運転方法、
並びに高輝度の放射光を利用できる半導体露光装置を提
供することにある。
An object of the present invention is to provide a circular accelerator which is small in size and can generate radiant light with high brightness, and a method of operating the circular accelerator,
Another object of the present invention is to provide a semiconductor exposure apparatus that can utilize radiant light with high brightness.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
の第1の発明は、電子ビーム又は陽電子ビームの偏向を
行う偏向部に放射光を重ね合わせる手段を設けたもので
ある。
A first aspect of the present invention for achieving the above object is to provide means for superimposing radiated light on a deflector for deflecting an electron beam or a positron beam.

【0006】上記目的を達成するための第2の発明は、
電子ビーム又は陽電子ビームの偏向を行う偏向部に複数
の偏向磁石を設け、該偏向磁石は励磁量が異なる隣合う
偏向磁石の組を有し、該偏向磁石の間に挿入光源を設け
たものである。
A second invention for achieving the above object is as follows:
A plurality of deflecting magnets are provided in a deflecting unit that deflects an electron beam or a positron beam, the deflecting magnets have a set of adjacent deflecting magnets having different excitation amounts, and an insertion light source is provided between the deflecting magnets. is there.

【0007】第3の発明は、電子ビーム又は陽電子ビー
ムの偏向を行う偏向部に複数の偏向磁石を設け、該偏向
磁石は偏向半径が異なる隣合う偏向磁石の組を有し、該
偏向磁石の間に挿入光源を設けたものである。
According to a third aspect of the invention, a plurality of deflecting magnets are provided in a deflecting section for deflecting an electron beam or a positron beam, and the deflecting magnets have a set of adjacent deflecting magnets having different deflection radii. An insertion light source is provided between them.

【0008】第4の発明は、電子ビーム又は陽電子ビー
ムの偏向を行う偏向部に複数の偏向磁石を設け、該偏向
磁石は偏向角度が異なる隣合う偏向磁石の組を有し、該
偏向磁石の間に挿入光源を設けたものである。
According to a fourth aspect of the invention, a plurality of deflecting magnets are provided in a deflecting unit for deflecting an electron beam or a positron beam, and the deflecting magnets have a set of adjacent deflecting magnets having different deflection angles. An insertion light source is provided between them.

【0009】第5の発明は、電子ビーム又は陽電子ビー
ムの偏向を行う偏向部に複数の偏向磁石を設け、該偏向
磁石は励磁量が異なる隣合う偏向磁石の組と、励磁量が
等しい隣合う偏向磁石の組とを有し、該励磁量が等しい
偏向磁石の間に挿入光源を設けたものである。
According to a fifth aspect of the invention, a plurality of deflecting magnets are provided in a deflecting unit for deflecting an electron beam or a positron beam, and the deflecting magnets are adjacent to each other with a set of adjacent deflecting magnets having different exciting amounts. A pair of deflection magnets, and an insertion light source is provided between the deflection magnets having the same excitation amount.

【0010】第6の発明は、電子ビーム又は陽電子ビー
ムの偏向を行う偏向部から放射される放射光のうち、輝
度が最大となるピーク波長より長波長域の放射光を利用
するようにしたものである。
According to a sixth aspect of the present invention, among the radiated light emitted from the deflecting section for deflecting the electron beam or the positron beam, the radiated light in a wavelength range longer than the peak wavelength at which the brightness is maximized is utilized. Is.

【0011】第7の発明は、電子ビーム又は陽電子ビー
ムの入射時に挿入光源を動作させ、ビームのベータトロ
ン振動の放射減衰時間を短縮するようにしたものであ
る。
In a seventh aspect of the present invention, the insertion light source is operated when an electron beam or a positron beam is incident to shorten the radiation decay time of the betatron oscillation of the beam.

【0012】第8の発明は、電子ビーム又は陽電子ビー
ムの偏向を行う偏向部に複数の偏向磁石を設け、該偏向
磁石は励磁量が異なる隣合う偏向磁石の組を有し、該偏
向磁石の間に挿入光源を設けた円形加速器と、前記偏向
部から放射される放射光を反射又は集光する手段と、該
手段で反射又は集光された放射光を用いて半導体基板上
に所望のパターンを転写するパターン転写装置とで構成
したものである。
According to an eighth aspect of the invention, a plurality of deflecting magnets are provided in a deflecting section for deflecting an electron beam or a positron beam, and the deflecting magnets have a set of adjacent deflecting magnets having different excitation amounts. A circular accelerator provided with an insertion light source therebetween, a means for reflecting or condensing the radiation light emitted from the deflection section, and a desired pattern on the semiconductor substrate using the radiation light reflected or focused by the means And a pattern transfer device for transferring

【0013】[0013]

【作用】第1の発明では、放射光を重ね合わせる手段を
偏向部に設けることによって、偏向部で電子ビーム等か
ら放出される放射光を重ね合わせることができるので、
輝度の高い放射光を発生することができる。
According to the first aspect of the present invention, by providing the deflecting section with means for superposing the emitted light, the emitted light emitted from the electron beam or the like in the deflecting section can be superposed.
It is possible to generate radiant light with high brightness.

【0014】第2の発明及び第5の発明では、励磁量が
異なる隣合う偏向磁石の組を有する複数の偏向磁石を偏
向部に設けることによって、偏向磁石の励磁量を適切に
選択すれば、偏向部の軌道長をほとんど変えずに、偏向
磁石間に直線軌道部を設けることができる。この偏向磁
石間の直線軌道部に挿入光源を設けることによって、挿
入光源内で電子ビーム等に蛇行又は螺旋運動をさせ、蛇
行軌道の頂点又は螺旋軌道上から放出される放射光を重
ね合わせることができるので、小型蓄積リングの大きさ
を変えずに輝度の高い放射光を発生することができる。
In the second invention and the fifth invention, if the deflection unit is provided with a plurality of deflection magnets each having a set of adjacent deflection magnets having different excitation amounts, the excitation amount of the deflection magnets is appropriately selected. A straight track portion can be provided between the deflecting magnets with almost no change in the track length of the deflecting portion. By providing the insertion light source in the linear orbital portion between the deflection magnets, it is possible to cause the electron beam or the like to meander or spiral in the insertion light source, and superpose the emitted light from the apex of the serpentine orbit or the spiral orbit. Therefore, it is possible to generate radiant light with high brightness without changing the size of the small storage ring.

【0015】第3の発明では、偏向半径が異なる隣合う
偏向磁石の組を有する複数の偏向磁石を偏向部に設ける
ことによって、偏向磁石の偏向半径を適切に選択すれ
ば、偏向部の軌道長をほとんど変えずに、偏向磁石間に
直線軌道部を設けることができる。従って、この偏向磁
石間の直線軌道部に挿入光源を設けることによって、小
型蓄積リングの大きさを変えずに輝度の高い放射光を発
生することができる。
According to the third aspect of the invention, by providing a plurality of deflection magnets each having a set of adjacent deflection magnets having different deflection radii in the deflection section, if the deflection radius of the deflection magnet is appropriately selected, the trajectory length of the deflection section. It is possible to provide a linear track portion between the deflection magnets with almost no change. Therefore, by providing the insertion light source in the straight track portion between the deflection magnets, it is possible to generate radiant light with high brightness without changing the size of the small storage ring.

【0016】第4の発明では、偏向角度が異なる隣合う
偏向磁石の組を有する複数の偏向磁石を偏向部に設ける
ことによって、偏向磁石の偏向角度を適切に選択すれ
ば、偏向部の軌道長をほとんど変えずに、偏向磁石間に
直線軌道部を設けることができる。従って、この偏向磁
石間の直線軌道部に挿入光源を設けることによって、小
型蓄積リングの大きさを変えずに輝度の高い放射光を発
生することができる。
According to the fourth aspect of the present invention, by providing a plurality of deflecting magnets each having a pair of adjacent deflecting magnets having different deflecting angles in the deflecting section, if the deflecting angle of the deflecting magnet is appropriately selected, the orbit length of the deflecting section is increased. It is possible to provide a linear track portion between the deflection magnets with almost no change. Therefore, by providing the insertion light source in the straight track portion between the deflection magnets, it is possible to generate radiant light with high brightness without changing the size of the small storage ring.

【0017】第6の発明では、偏向部から放射される放
射光のうち、輝度が最大となるピーク波長より長波長域
の放射光を利用することによって、ミラー等の反射手段
を適切に選択すれば、広範囲な反射角に渡って放射光を
反射・集光できるので、輝度の高い放射光とすることが
できる。
According to the sixth aspect of the invention, of the radiated light emitted from the deflection section, the radiated light in the wavelength range longer than the peak wavelength at which the brightness is maximized is used, so that the reflecting means such as a mirror can be appropriately selected. For example, since the emitted light can be reflected and collected over a wide range of reflection angles, the emitted light can have high brightness.

【0018】第7の発明では、電子ビーム等の入射時に
挿入光源を動作させ、ビームのベータトロン振動の放射
減衰時間を短縮することによって、低エネルギーの電子
ビーム等を多数回蓄積リング内に入射できる。従って、
蓄積リング内の蓄積電流を増加させ、輝度の高い放射光
を発生することができる。
In the seventh invention, the insertion light source is operated at the time of incidence of an electron beam or the like to shorten the radiative decay time of the betatron oscillation of the beam so that a low energy electron beam or the like is made to enter the storage ring many times. it can. Therefore,
It is possible to increase the stored current in the storage ring and to generate a bright emission light.

【0019】第8の発明では、励磁量が異なる隣合う偏
向磁石の組を有する複数の偏向磁石を偏向部に設けるこ
とにより、偏向磁石の励磁量を適切に選択すれば、偏向
部の軌道長をほとんど変えずに偏向磁石間に直線軌道部
を設けることができる。従って、この偏向磁石間の直線
軌道部に挿入光源を設けることにより小型蓄積リングの
大きさを変えずに輝度の高い放射光を発生することがで
き、この放射光を用いることにより高輝度の半導体露光
処理を行うことができる。
According to the eighth aspect of the present invention, by providing a plurality of deflection magnets having a pair of adjacent deflection magnets having different excitation amounts in the deflection section, if the excitation amount of the deflection magnet is appropriately selected, the orbit length of the deflection section. It is possible to provide a straight track portion between the deflection magnets with almost no change. Therefore, by providing an insertion light source in the linear orbital portion between the deflection magnets, radiant light with high brightness can be generated without changing the size of the small storage ring. By using this radiant light, a semiconductor with high brightness can be obtained. An exposure process can be performed.

【0020】[0020]

【実施例】図1を用いて本発明の第1の実施例を説明す
る。図1は、電子ビームを用いたレーストラック型のシ
ンクロトロン放射光発生装置の概略図を示す。同図は、
電子ビームを加速・蓄積する蓄積リングと、蓄積リング
に電子ビーム12を入射させる前段加速器11からな
る。蓄積リングは、電子ビーム12の入射器13と、収
束又は発散用の4極磁石16と、エネルギー供給用の高
周波加速空胴17と、偏向用の偏向部とからなる。偏向
部は、主偏向磁石14と補助偏向磁石15とで構成さ
れ、主偏向磁石14の励磁量を補助偏向磁石15の励磁
量よりも大きくして、主偏向磁石14と補助偏向磁石1
5の間に作った直線軌道部に4ケの挿入光源18を配置
している。前段加速器11から出射した電子ビーム12
を入射器13により蓄積リング内に入射させた後、主偏
向磁石14,補助偏向磁石15,4極磁石16、及び高
周波加速空胴17をパターン運転することによって、所
望のエネルギーまで電子ビームをシンクロトロン加速
し、蓄積リング内に蓄積する。電子ビームを蓄積後、主
偏向磁石14と補助偏向磁石15の間の直線軌道部に設
置した挿入光源18を励磁することにより挿入光源内に
交番磁界を発生させる。この交番磁界で電子ビームを蛇
行又は螺旋運動させ、蛇行軌道の頂点又は螺旋軌道上か
ら放出される放射光を重ね合わせることにより、輝度の
高い放射光19を発生させることが可能となる。尚、挿
入光源として永久磁石を用い、その磁極幅を狭めること
により、上記放射光の重ね合わせを行うこともできる。
EXAMPLE A first example of the present invention will be described with reference to FIG. FIG. 1 shows a schematic diagram of a racetrack type synchrotron radiation light generator using an electron beam. This figure shows
It comprises a storage ring for accelerating and storing the electron beam, and a pre-stage accelerator 11 for injecting the electron beam 12 into the storage ring. The storage ring includes an injector 13 for the electron beam 12, a quadrupole magnet 16 for converging or diverging, a high frequency acceleration cavity 17 for supplying energy, and a deflecting unit for deflection. The deflecting unit is composed of a main deflecting magnet 14 and an auxiliary deflecting magnet 15, and the main deflecting magnet 14 and the auxiliary deflecting magnet 1 are made to have an excitation amount larger than that of the auxiliary deflecting magnet 15.
Four insertion light sources 18 are arranged on the linear orbit portion formed between the five. Electron beam 12 emitted from pre-accelerator 11
After being injected into the storage ring by the injector 13, the main deflection magnet 14, the auxiliary deflection magnet 15, the quadrupole magnet 16 and the high frequency acceleration cavity 17 are pattern-operated to synchronize the electron beam to a desired energy. Tron accelerates and accumulates in the accumulation ring. After accumulating the electron beam, the insertion light source 18 installed on the linear orbit between the main deflection magnet 14 and the auxiliary deflection magnet 15 is excited to generate an alternating magnetic field in the insertion light source. This alternating magnetic field causes the electron beam to meander or spiral, and superimposes the radiated light emitted from the apex of the meandering orbit or the spiral orbit, thereby making it possible to generate radiant light 19 with high brightness. It is also possible to superimpose the emitted light by using a permanent magnet as the insertion light source and narrowing the magnetic pole width.

【0021】ここで、図1の構成を用いたときの輝度の
増加について説明する。前段加速器11としてレースト
ラックマイクロトロンを使用し、電子を20MeV程度
に加速して入射し、その後、蓄積リング内で1GeVま
で加速して蓄積する場合を考える。このとき、偏向磁石
の磁場Bは、 B=E/(0.3ρ) …(数1) B:偏向磁場(T) E:電子のエネルギー(GeV) ρ:偏向磁石の曲率半径(m) となる。また、挿入光源18から放出される放射光のピ
ーク波長λは、 λ=λ0(1+cK2)/2γ2 …(数2) λ :挿入光源から放出される放射光のピーク波長
(m) λ0 :挿入光源のピッチ(m) c :挿入光源の型で決まる定数 c=1/2 プレーナ型 c=1 ヘリカル型 K:挿入光源を特徴づける定数 K=93.4Bλ0 γ:相対論のガンマ(=電子のビームエネルギー/電子
の静止エネルギー) と表わすことができる。挿入光源としてはアンジュレー
タとウイグラーとがあり、挿入光源内での電子ビームの
振動回数が多いものをアンジュレータ、振動回数が少な
いものをウイグラーと呼んでいる。数2に示した定数K
を用いれば、K≦1なるものがアンジュレータ、1≪K
なるものがウイグラーである。アンジュレータとウイグ
ラーとでは振動回数の差により、輝度を高める効果に違
いが生じる。即ち、アンジュレータでは図3の33で示
すように、特定の波長の輝度を選択的に高めることがで
きる。これは、アンジュレータ内での振動回数が多いの
で、放射光の重ね合わせが十分に行われることにより、
波長が揃ってくるためである。これに対して、ウイグラ
ーでは図3の32で示すように、アンジュレータのよう
な波長選択性はなく、広い波長域に渡って輝度が高くな
る。特に、偏向磁石のスペクトル31に比べて、短波長
側の輝度を高くできることが特徴である。これは、ウイ
グラー内での振動回数が少ないので、放射光の重ね合わ
せが十分に行われないことによる。
Here, the increase in brightness when the configuration of FIG. 1 is used will be described. Consider a case where a racetrack microtron is used as the pre-stage accelerator 11, electrons are accelerated to about 20 MeV and incident, and then accelerated to 1 GeV in the storage ring to be accumulated. At this time, the magnetic field B of the deflection magnet is: B = E / (0.3ρ) (Equation 1) B: Deflection magnetic field (T) E: Electron energy (GeV) ρ: Radius of curvature of deflection magnet (m) Become. The peak wavelength λ of the emitted light emitted from the insertion light source 18 is λ = λ 0 (1 + cK 2 ) / 2γ 2 (Equation 2) λ: The peak wavelength (m) λ of the emission light emitted from the insertion light source 0 : Inserted light source pitch (m) c: Constant determined by the type of inserted light source c = 1/2 Planar type c = 1 Helical type K: Constant characterizing the inserted light source K = 93.4Bλ 0 γ: Gamma of relativity (= Electron beam energy / electron rest energy). There are an undulator and a wiggler as an insertion light source. An undulator having a large number of vibrations of an electron beam in the insertion light source is called an undulator and a one having a small number of vibrations is called a wiggler. Constant K shown in equation 2
, The undulator with K ≦ 1 is 1 << K
What is is a wiggler. Due to the difference in the frequency of vibration between the undulator and the wiggler, there is a difference in the effect of increasing the brightness. That is, the undulator can selectively increase the brightness of a specific wavelength, as indicated by 33 in FIG. This is because the number of vibrations in the undulator is large, so that the superposition of the emitted light is sufficient,
This is because the wavelengths are aligned. On the other hand, the wiggler does not have wavelength selectivity like an undulator, as indicated by reference numeral 32 in FIG. 3, and the luminance becomes high over a wide wavelength range. In particular, it is characterized in that the brightness on the short wavelength side can be increased as compared with the spectrum 31 of the deflection magnet. This is because the number of vibrations in the wiggler is small, so that the radiated lights are not sufficiently superposed.

【0022】以下、一例としてヘリカル型アンジュレー
タを用いて説明する。ヘリカル型アンジュレータを用い
た場合の放射光の輝度Pは、 P=6.5×101122 …(数3) P:挿入光源を用いた時の輝度 N:挿入光源の周期数 と表わすことができる。挿入光源を用いないときの放射
光の輝度P´は、 P´=2×10112 …(数4) であるから、挿入光源を用いた場合、従来の輝度を挿入
光源の周期数の2乗に比例して増加させることができ
る。
A helical undulator will be described below as an example. The radiance P of the radiated light when the helical undulator is used is P = 6.5 × 10 11 E 2 N 2 (Equation 3) P: Luminance when the insertion light source is used N: The number of cycles of the insertion light source Can be represented. The brightness P ′ of the radiated light when the insertion light source is not used is P ′ = 2 × 10 11 E 2 (Equation 4). Therefore, when the insertion light source is used, the conventional brightness is set to the cycle number of the insertion light source. It can be increased in proportion to the square.

【0023】次に小型化について説明する。放射光の波
長を一例として約150Åとする。放射光の輝度をでき
るだけ落とさないようにするため電子のエネルギーをE
=1GeV一定として、従来装置と本発明を図2と図1
を用いて比較する。
Next, the miniaturization will be described. The wavelength of synchrotron radiation is set to about 150Å as an example. The energy of electrons is set to E in order to reduce the brightness of synchrotron radiation as much as possible.
FIG. 2 and FIG. 1 show the conventional device and the present invention with = 1 GeV constant.
To compare.

【0024】まず、従来装置の大きさを見積もる。従来
装置で偏向磁石から放出される放射光のピーク波長λ´
は、 λ´=18.6/(E2B) …(数5) λ´:偏向磁石から放出される放射光のピーク波長
(Å) で与えられる。ピーク波長をλ´=150Åとするため
に必要な偏向磁石の磁場は数5より、B=0.12 Tと
なる。これに対応する偏向磁石の曲率半径は数1より、
ρ=27.8 mで、この偏向磁石を用いて図2のような
蓄積リングを構成すると蓄積リングの周長は最低でも約
170mと非常に大きくなる。そこで、輝度の低下を多
少認めても小型化することを優先させ、ピーク波長より
長波長域の放射光を利用することを考える。蓄積リング
を小型化するためには、偏向磁石の曲率半径ρを小さく
する必要がある。数1より曲率半径ρを小さくするため
には、偏向磁場Bを大きくする必要があり、これに伴
い、数5で表わされる放射光のピーク波長λ´は小さく
なる。いま、ピーク波長をλ´=10Åとすれば、図3
の31で示した放射光のスペクトル特性から、波長15
0Åにおける輝度はピーク波長における輝度P´の1/
3〜1/2程度に低下する。この輝度低下を認めれば、
数5より偏向磁場はB=1.9T となり、これと数1よ
り曲率半径はρ=1.8m となる。これにより、蓄積リ
ング周長を直線軌道部を含めて約17mと小さくでき
る。
First, the size of the conventional device is estimated. The peak wavelength λ'of the radiation emitted from the deflection magnet in the conventional device
Is given by: λ '= 18.6 / (E 2 B) (Equation 5) λ': Peak wavelength (Å) of radiation emitted from the deflection magnet. The magnetic field of the deflection magnet required to set the peak wavelength to λ ′ = 150Å is B = 0.12 T from the equation (5). The radius of curvature of the deflection magnet corresponding to this is given by
When ρ = 27.8 m, a storage ring as shown in FIG. 2 is constructed by using this deflecting magnet, and the circumference of the storage ring becomes extremely large, at least about 170 m. Therefore, it is considered to prioritize downsizing even if a slight decrease in brightness is recognized and to use radiated light in a wavelength range longer than the peak wavelength. In order to downsize the storage ring, it is necessary to reduce the radius of curvature ρ of the deflection magnet. In order to make the radius of curvature ρ smaller than the expression 1, it is necessary to increase the deflection magnetic field B, and accordingly, the peak wavelength λ ′ of the emitted light expressed by the expression 5 becomes smaller. Assuming now that the peak wavelength is λ ′ = 10Å,
From the spectral characteristics of the synchrotron radiation shown in 31
The brightness at 0Å is 1 / the brightness P'at the peak wavelength.
It falls to about 3 to 1/2. If you notice this decrease in brightness,
From Equation 5, the deflection magnetic field is B = 1.9T, and from this and Equation 1, the radius of curvature is ρ = 1.8 m. As a result, the circumference of the storage ring including the straight track portion can be reduced to about 17 m.

【0025】一方、図1に示す本発明の場合、放射光の
ピーク波長λ=150Åを実現するための挿入光源は、
例えばピッチ5cm、周期数10,K=1.14(挿入光源
磁場=0.2T)、全長0.8mとなる。いま、従来装置
との比較のために補助偏向磁石15の磁場は従来と同じ
B=1.9T とする。この場合、主偏向磁石の磁場を4
Tとすると、主偏向磁石と補助偏向磁石の間に挿入光源
を設置するための直線軌道部を約1m作り出すことがで
きる。この蓄積リングの周長は約17mであり、ピーク
波長を10Åとした従来型のリングと同程度になる。ま
た、補助偏向磁石15の磁場を強くしたり、磁場に勾配
をつけたりする(弱収束型とする)ことにより、さらに
小型のシステムを構成することが可能となる。この場
合、挿入光源から放出される放射光の輝度は、数3,数
4より従来型の約325倍となり、約325倍の電流を
蓄積することと等価になる。以上のように、本実施例に
よれば、小型で、輝度の高い放射光を発生することがで
きる。
On the other hand, in the case of the present invention shown in FIG. 1, the insertion light source for realizing the peak wavelength λ = 150Å of the emitted light is
For example, the pitch is 5 cm, the cycle number is 10, K = 1.14 (inserted light source magnetic field = 0.2 T), and the total length is 0.8 m. Now, for comparison with the conventional apparatus, the magnetic field of the auxiliary deflection magnet 15 is B = 1.9T, which is the same as the conventional one. In this case, the magnetic field of the main deflection magnet is 4
When T is set, a linear orbit portion for installing the insertion light source between the main deflection magnet and the auxiliary deflection magnet can be created by about 1 m. The circumference of this storage ring is about 17 m, which is about the same as a conventional ring with a peak wavelength of 10 Å. Further, by making the magnetic field of the auxiliary deflection magnet 15 strong or by making the magnetic field have a gradient (weakly converging type), it is possible to configure a smaller system. In this case, the brightness of the radiated light emitted from the insertion light source is about 325 times that of the conventional type, which is equivalent to accumulating a current of about 325 times that of the conventional type. As described above, according to this embodiment, it is possible to generate radiant light that is small and has high brightness.

【0026】尚、上記実施例では、主偏向磁石14の励
磁量を補助偏向磁石15の励磁量よりも大きくしたもの
について説明したが、主偏向磁石14の曲率半径又は偏
向角度を、補助偏向磁石15の曲率半径又は偏向角度よ
りも大きくして、主偏向磁石14と補助偏向磁石15の
間に直線軌道部を作り、ここに挿入光源18を設置して
も同様の効果が得られる。また、上記実施例では、レー
ストラック型蓄積リングの例について説明したが、これ
以外の構造の蓄積リングにおいても同様の効果が得られ
る。
In the above embodiment, the excitation amount of the main deflection magnet 14 is set to be larger than that of the auxiliary deflection magnet 15, but the radius of curvature or the deflection angle of the main deflection magnet 14 is changed to the auxiliary deflection magnet. The same effect can be obtained by making the radius of curvature of 15 or the deflection angle larger than that of 15 to form a linear track portion between the main deflection magnet 14 and the auxiliary deflection magnet 15 and installing the insertion light source 18 therein. Further, in the above embodiment, the example of the racetrack type storage ring has been described, but the same effect can be obtained with a storage ring having a structure other than this.

【0027】次に、図4を用いて本発明の第2の実施例
を説明する。本実施例の基本構成は図1と同じで、図1
の主偏向磁石14が2個の主偏向磁石141とその間に
設置した挿入光源18とに置き変わっている。その他の
構成は図1と同じなので、ここでは説明を省略する。図
1に示した第1の実施例において、補助偏向磁石15,
挿入光源18、及び主偏向磁石14により構成される偏
向部の電子軌道は、主偏向磁石14の中心線に対して対
称となっている。従って、主偏向磁石14をその中心線
で分割しても他の部分の電子軌道にはほとんど影響しな
い。主偏向磁石を中心線で2分割したものが図4に示す
第2の実施例である。2分割した主偏向磁石141の間
には直線軌道部が生じるので、ここにも挿入光源18を
設置することが可能となる。従って、2ケ所の偏向部を
本実施例のように構成することにより、蓄積リングの周
長をあまり変化させずに蓄積リングに6個の挿入光源を
設置できるので、小型の蓄積リングで、輝度の高い放射
光を発生できると共に、放射光の取り出し領域を拡大で
きる。これにより、発生させた放射光を同時に、複数の
用途に利用することができる。
Next, a second embodiment of the present invention will be described with reference to FIG. The basic configuration of this embodiment is the same as that shown in FIG.
The main deflecting magnets 14 are replaced by two main deflecting magnets 141 and an insertion light source 18 installed between them. Since the other configurations are the same as those in FIG. 1, description thereof will be omitted here. In the first embodiment shown in FIG. 1, the auxiliary deflection magnets 15,
The electron trajectories of the deflection section formed by the insertion light source 18 and the main deflection magnet 14 are symmetrical with respect to the center line of the main deflection magnet 14. Therefore, even if the main deflection magnet 14 is divided by its center line, it has little effect on the electron trajectories of other parts. A second embodiment shown in FIG. 4 is one in which the main deflection magnet is divided by two along the center line. Since a linear orbital portion is generated between the two divided main deflection magnets 141, the insertion light source 18 can be installed here as well. Therefore, by arranging the two deflecting portions as in this embodiment, six insertion light sources can be installed in the storage ring without changing the circumference of the storage ring so much that the brightness can be reduced by a small storage ring. It is possible to generate radiated light having a high emission and to expand the radiated light extraction region. Thereby, the generated emitted light can be used for a plurality of purposes at the same time.

【0028】次に、図5を用いて本発明の第3の実施例
を説明する。本実施例では、蓄積リングの外側に偏向磁
石から放出される放射光を集光するミラー51と、ミラ
ー51で集光した放射光を用いて半導体基板上に所望の
パターンを転写するパターン転写装置52とを設置して
いる。また、図1では蓄積リングの外側に配置していた
前段加速器11を蓄積リングの内側に配置した。本実施
例の蓄積リングの基本構成は図1と同じであるので、こ
こでは説明を省略する。放射光のうちピーク波長以外の
輝度は、図3の31で示したように低下するが、主偏向
磁石14又は補助偏向磁石15から放出される放射光の
うち、ピーク波長より長波長域の放射光をミラー51で
集光することにより、この輝度低下を改善することがで
きる。即ち、長波長域の放射光を用いることにより、広
範囲な反射角に渡ってミラーを用いて放射光を反射・集
光できるので、放射光の輝度を高くすることができる。
こうして、輝度を高めた長波長域の放射光をパターン転
写装置52に導くことにより、縮小露光処理などに利用
することができる。また、本実施例では偏向磁石から放
出される放射光を集光する例を示したが、挿入光源から
放出される放射光を集光することによって、複数の挿入
光源の放射光を重ね合わせて、より高輝度の放射光とす
ることもできる。更に、本実施例では前段加速器11を
蓄積リングの内側に配置することにより、装置全体を小
型にすると共に、放射光の取り出し領域を広範囲に拡大
できるので、発生させた放射光を同時に、複数の用途に
利用できる。
Next, a third embodiment of the present invention will be described with reference to FIG. In this embodiment, a mirror 51 for condensing the radiation light emitted from the deflection magnet on the outside of the storage ring, and a pattern transfer device for transferring a desired pattern onto the semiconductor substrate using the radiation light condensed by the mirror 51. 52 and 52 are installed. Further, in FIG. 1, the pre-stage accelerator 11 arranged outside the storage ring is arranged inside the storage ring. Since the basic structure of the storage ring of this embodiment is the same as that of FIG. 1, its explanation is omitted here. The brightness of the radiated light other than the peak wavelength decreases as indicated by 31 in FIG. 3, but the radiated light emitted from the main deflection magnet 14 or the auxiliary deflection magnet 15 has a wavelength longer than the peak wavelength. By condensing the light with the mirror 51, this decrease in brightness can be improved. That is, by using the radiated light in the long wavelength range, the radiated light can be reflected and condensed by using the mirror over a wide range of reflection angles, so that the brightness of the radiated light can be increased.
In this way, by guiding the radiated light in the long wavelength region with increased brightness to the pattern transfer device 52, it can be used for reduction exposure processing and the like. Further, in the present embodiment, an example in which the radiation light emitted from the deflection magnet is collected has been shown. However, by collecting the radiation light emitted from the insertion light source, the radiation lights of a plurality of insertion light sources are superposed. It is also possible to use radiant light of higher brightness. Furthermore, in this embodiment, by disposing the pre-accelerator 11 inside the storage ring, the entire device can be made compact and the extraction area of the emitted light can be expanded in a wide range. It can be used for various purposes.

【0029】次に、低エネルギーの電子ビーム入射時の
運転方法について説明する。工業用途を目指した放射光
発生装置では、設置面積の小さいことは第一に要求され
ることである。そのためには、蓄積リング内で所望のエ
ネルギーまで電子を加速する機能を有することは必須で
あり、これに応じて入射エネルギーを低くすることがで
きる。入射直後、電子ビームは大きなベータトロン振動
を有している。この振幅は、電子ビームが偏向磁石を通
過するとき放射光を放出することにより次第に減衰して
ゆく。しかし、電子ビームのエネルギーが小さいときに
は放出される放射光の波長が長く、放射パワーも小さい
ためこの減衰時間は非常に長い(数分〜数十分)。従っ
て、入射を多数回繰り返すことはできない。放射光のピ
ーク波長は、数1,数5より、電子のエネルギーの3乗
に逆比例し、偏向磁石の曲率半径に比例する。そこで、
図1に示す構成の蓄積リングに電子ビームを入射したと
きに主偏向磁石と補助偏向磁石の間に設置した挿入光源
を励磁し入射電子を蛇行又は螺旋運動させて放射光の放
出を促進させることによって、放射減衰時間を短縮する
ことができる。放射減衰時間が短縮されると入射電子ビ
ームの空間的広がり(エミッタンス)を小さくでき、入
射電子ビームの損失を抑えることができる。さらに、低
エネルギー状態でも多数回の電子ビーム入射が可能とな
り、蓄積電流を大電流化できる。従って、輝度の高い放
射光を発生することができる。
Next, an operating method when a low energy electron beam is incident will be described. In a synchrotron radiation device intended for industrial use, a small installation area is the first requirement. To that end, it is essential to have the function of accelerating the electrons in the storage ring to the desired energy, and the incident energy can be lowered accordingly. Immediately after the incidence, the electron beam has a large betatron oscillation. This amplitude is gradually attenuated by emitting radiation as the electron beam passes through the deflecting magnet. However, when the energy of the electron beam is small, the wavelength of the emitted light is long and the radiation power is also small, so this decay time is very long (several minutes to tens of minutes). Therefore, the incidence cannot be repeated many times. From Equations 1 and 5, the peak wavelength of the emitted light is inversely proportional to the cube of the electron energy and is proportional to the radius of curvature of the deflection magnet. Therefore,
When an electron beam is incident on the storage ring having the configuration shown in FIG. 1, an insertion light source installed between the main deflection magnet and the auxiliary deflection magnet is excited to cause the incident electrons to meander or spiral to accelerate emission of emitted light. Thus, the radiation decay time can be shortened. When the radiation decay time is shortened, the spatial spread (emittance) of the incident electron beam can be reduced, and the loss of the incident electron beam can be suppressed. Furthermore, the electron beam can be injected many times even in a low energy state, and the accumulated current can be increased. Therefore, radiant light with high brightness can be generated.

【0030】尚、以上の実施例では電子ビームを用いた
例について説明したが、陽電子ビームを用いても同様の
効果は得られる。
In the above embodiments, an example using an electron beam has been described, but the same effect can be obtained by using a positron beam.

【0031】[0031]

【発明の効果】本発明によれば、小型で、輝度の高い放
射光を発生できる円形加速器及び円形加速器の運転方
法、並びに高輝度の放射光を利用できる半導体露光装置
を提供することができる。また、放射光の取り出し領域
を拡大できるので、発生させた放射光を同時に、複数の
用途に利用できる。
According to the present invention, it is possible to provide a small-sized circular accelerator that can generate radiant light with high brightness, a method of operating the circular accelerator, and a semiconductor exposure apparatus that can use high-radiation radiant light. Further, since the extraction area of the emitted light can be enlarged, the generated emitted light can be used for a plurality of purposes at the same time.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例を示す概略図。FIG. 1 is a schematic diagram showing a first embodiment of the present invention.

【図2】従来のシンクロトロン放射光発生装置を示す概
略図。
FIG. 2 is a schematic diagram showing a conventional synchrotron radiation generator.

【図3】偏向磁石及び挿入光源から放出される放射光の
スペクトル特性を示す図。
FIG. 3 is a diagram showing spectral characteristics of radiated light emitted from a deflection magnet and an insertion light source.

【図4】本発明の第2の実施例を示す概略図。FIG. 4 is a schematic diagram showing a second embodiment of the present invention.

【図5】本発明の第3の実施例を示す概略図。FIG. 5 is a schematic diagram showing a third embodiment of the present invention.

【符号の説明】[Explanation of symbols]

11…前段加速器、12…電子ビーム、13…入射器、
14…主偏向磁石、15…補助偏向磁石、16…4極磁
石、17…高周波加速空胴、18…挿入光源、19…放
射光、31…偏向磁石から放出される放射光スペクト
ル、32…ウィグラーから放出される放射光スペクト
ル、33…アンジュレータから放出される放射光スペク
トル、51…ミラー、141…2分割した主偏向磁石。
11 ... Pre-accelerator, 12 ... Electron beam, 13 ... Injector,
14 ... Main deflection magnet, 15 ... Auxiliary deflection magnet, 16 ... Quadrupole magnet, 17 ... High frequency acceleration cavity, 18 ... Insertion light source, 19 ... Radiant light, 31 ... Radiant light spectrum emitted from deflection magnet, 32 ... Wiggler Radiation spectrum emitted from 33, Radiation spectrum emitted from undulator, 51 ... Mirror, 141 ... Main deflection magnet divided into two.

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】電子ビーム又は陽電子ビームを加速・蓄積
する円形加速器において、前記電子ビーム又は陽電子ビ
ームの偏向を行う偏向部に放射光を重ね合わせる手段を
設けたことを特徴とする円形加速器。
1. A circular accelerator for accelerating and accumulating an electron beam or a positron beam, characterized in that means for superimposing radiated light is provided on a deflecting portion for deflecting the electron beam or positron beam.
【請求項2】電子ビーム又は陽電子ビームを加速・蓄積
する円形加速器において、前記電子ビーム又は陽電子ビ
ームの偏向を行う偏向部に複数の偏向磁石を設け、該偏
向磁石は励磁量が異なる隣合う偏向磁石の組を有し、該
偏向磁石の間に挿入光源を設けたことを特徴とする円形
加速器。
2. A circular accelerator for accelerating and accumulating an electron beam or a positron beam, wherein a deflection part for deflecting the electron beam or the positron beam is provided with a plurality of deflection magnets, and the deflection magnets are adjacent to each other with different excitation amounts. A circular accelerator having a set of magnets, wherein an insertion light source is provided between the deflection magnets.
【請求項3】電子ビーム又は陽電子ビームを加速・蓄積
する円形加速器において、前記電子ビーム又は陽電子ビ
ームの偏向を行う偏向部に複数の偏向磁石を設け、該偏
向磁石は偏向半径が異なる隣合う偏向磁石の組を有し、
該偏向磁石の間に挿入光源を設けたことを特徴とする円
形加速器。
3. A circular accelerator for accelerating / accumulating an electron beam or a positron beam, wherein a plurality of deflecting magnets are provided in a deflecting part for deflecting the electron beam or the positron beam, and the deflecting magnets are adjacent to each other and have different deflection radii. Have a set of magnets,
A circular accelerator, wherein an insertion light source is provided between the deflection magnets.
【請求項4】電子ビーム又は陽電子ビームを加速・蓄積
する円形加速器において、前記電子ビーム又は陽電子ビ
ームの偏向を行う偏向部に複数の偏向磁石を設け、該偏
向磁石は偏向角度が異なる隣合う偏向磁石の組を有し、
該偏向磁石の間に挿入光源を設けたことを特徴とする円
形加速器。
4. A circular accelerator for accelerating and accumulating an electron beam or a positron beam, wherein a deflecting unit for deflecting the electron beam or the positron beam is provided with a plurality of deflection magnets, and the deflection magnets have adjacent deflections with different deflection angles. Have a set of magnets,
A circular accelerator, wherein an insertion light source is provided between the deflection magnets.
【請求項5】電子ビーム又は陽電子ビームを加速・蓄積
する円形加速器において、前記電子ビーム又は陽電子ビ
ームの偏向を行う偏向部に複数の偏向磁石を設け、該偏
向磁石は励磁量が異なる隣合う偏向磁石の組と、励磁量
が等しい隣合う偏向磁石の組とを有し、該励磁量が等し
い偏向磁石の間に挿入光源を設けたことを特徴とする円
形加速器。
5. A circular accelerator for accelerating and accumulating an electron beam or a positron beam, wherein a deflecting unit for deflecting the electron beam or the positron beam is provided with a plurality of deflection magnets, and the deflection magnets are adjacent to each other with different excitation amounts. A circular accelerator having a set of magnets and a set of adjacent deflection magnets having the same excitation amount, and an insertion light source provided between the deflection magnets having the same excitation amount.
【請求項6】請求項2乃至請求項5の何れかに記載の円
形加速器において、前記挿入光源として、プレーナ型又
はヘリカル型のアンジュレータ、若しくは、プレーナ型
又はヘリカル型のウィグラーを用いたことを特徴とする
円形加速器。
6. The circular accelerator according to claim 2, wherein a planar or helical undulator or a planar or helical wiggler is used as the insertion light source. Circular accelerator.
【請求項7】電子ビーム又は陽電子ビームを加速・蓄積
する円形加速器において、前記電子ビーム又は陽電子ビ
ームの偏向を行う偏向部から放射される放射光のうち、
輝度が最大となるピーク波長より長波長域の放射光を利
用することを特徴とする円形加速器。
7. A circular accelerator for accelerating and accumulating an electron beam or a positron beam, wherein among radiated light emitted from a deflecting section for deflecting the electron beam or positron beam,
A circular accelerator characterized by using radiation in a wavelength range longer than the peak wavelength at which the brightness is maximized.
【請求項8】請求項7に記載の円形加速器において、前
記ピーク波長より長波長域の放射光を反射・集光する手
段を設けたことを特徴とする円形加速器。
8. The circular accelerator according to claim 7, further comprising means for reflecting and condensing radiation light having a wavelength longer than the peak wavelength.
【請求項9】請求項1乃至請求項8の何れかに記載の円
形加速器において、前記電子ビーム又は陽電子ビームの
前段加速器を蓄積リングの内側に設けたことを特徴とす
る円形加速器。
9. The circular accelerator according to claim 1, wherein a pre-stage accelerator for the electron beam or positron beam is provided inside a storage ring.
【請求項10】請求項2乃至請求項6の何れかに記載の
円形加速器の運転方法において、前記電子ビーム又は陽
電子ビームの入射時に前記挿入光源を動作させることに
より、ビームのベータトロン振動の放射減衰時間を短縮
することを特徴とする円形加速器の運転方法。
10. The method of operating a circular accelerator according to claim 2, wherein the insertion light source is operated when the electron beam or the positron beam is incident, so that the betatron oscillation of the beam is radiated. A method of operating a circular accelerator, characterized by shortening the decay time.
【請求項11】放射光を用いて半導体の露光処理を行う
半導体露光装置において、電子ビーム又は陽電子ビーム
の偏向を行う偏向部に複数の偏向磁石を設け、該偏向磁
石は励磁量が異なる隣合う偏向磁石の組を有し、該偏向
磁石の間に挿入光源を設けた円形加速器と、前記偏向部
から放射される放射光を反射又は集光する手段と、該手
段で反射又は集光された放射光を用いて半導体基板上に
所望のパターンを転写するパターン転写装置とで構成し
たことを特徴とする半導体露光装置。
11. A semiconductor exposure apparatus for exposing a semiconductor by using synchrotron radiation, wherein a plurality of deflecting magnets are provided in a deflecting section for deflecting an electron beam or a positron beam, and the deflecting magnets are adjacent to each other with different excitation amounts. A circular accelerator having a set of deflection magnets and an insertion light source provided between the deflection magnets, a means for reflecting or condensing radiation emitted from the deflecting section, and a means for reflecting or condensing the means. A semiconductor exposure apparatus comprising: a pattern transfer device that transfers a desired pattern onto a semiconductor substrate using synchrotron radiation.
JP4211240A 1992-08-07 1992-08-07 Circular accelerator and circular accelerator operating method and semiconductor exposure device Pending JPH0661000A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP4211240A JPH0661000A (en) 1992-08-07 1992-08-07 Circular accelerator and circular accelerator operating method and semiconductor exposure device
US08/102,737 US5477056A (en) 1992-08-07 1993-08-06 Circular accelerator, operation method thereof, and semiconductor irradiation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4211240A JPH0661000A (en) 1992-08-07 1992-08-07 Circular accelerator and circular accelerator operating method and semiconductor exposure device

Publications (1)

Publication Number Publication Date
JPH0661000A true JPH0661000A (en) 1994-03-04

Family

ID=16602612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4211240A Pending JPH0661000A (en) 1992-08-07 1992-08-07 Circular accelerator and circular accelerator operating method and semiconductor exposure device

Country Status (2)

Country Link
US (1) US5477056A (en)
JP (1) JPH0661000A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000286097A (en) * 1999-03-31 2000-10-13 Sumitomo Heavy Ind Ltd Operation controller for accelerator facilities
WO2019223053A1 (en) * 2018-05-24 2019-11-28 新瑞阳光粒子医疗装备(无锡)有限公司 Synchrotron

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2600109B2 (en) * 1994-09-05 1997-04-16 高エネルギー物理学研究所長 Positive and negative ion injector
JP3736343B2 (en) * 2000-03-09 2006-01-18 三菱電機株式会社 DC electron beam accelerator and DC electron beam acceleration method thereof
JP2005228489A (en) * 2004-02-10 2005-08-25 Japan Atom Energy Res Inst Method of utilizing orbital radiation light of large strength narrow band simultaneously with a plurality of beam lines
US9000660B2 (en) * 2010-11-15 2015-04-07 Laurence H. Cooke Uses of hydrocarbon nanorings
WO2012078241A1 (en) * 2010-12-06 2012-06-14 Lawrence Livermore National Security, Llc Device for detection and identification of carbon- and nitrogen-containing materials
US10193300B2 (en) * 2017-02-21 2019-01-29 Lyncean Technologies, Inc. Compact storage ring extreme ultraviolet free electron laser

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4491948A (en) * 1981-02-13 1985-01-01 Deacon David A G Isochronous free electron laser
US4442522A (en) * 1982-01-26 1984-04-10 The United States Of America As Represented By The United States Department Of Energy Circular free-electron laser
SE436962B (en) * 1983-06-17 1985-01-28 Scanditronix Instr RACE-TRACK MICROTRON FOR STORING AN ENERGY-rich ELECTRON RADIATION
US4631743A (en) * 1983-09-22 1986-12-23 Agency Of Industrial Science & Technology X-ray generating apparatus
EP0253283A3 (en) * 1986-07-15 1988-07-20 Siemens Aktiengesellschaft Semiconductor wafer exposure device with synchrotron radiation in a lithography apparatus
US4992746A (en) * 1988-04-26 1991-02-12 Acctek Associates Apparatus for acceleration and application of negative ions and electrons
JP2627543B2 (en) * 1988-09-05 1997-07-09 キヤノン株式会社 SOR exposure system
JPH03280586A (en) * 1990-03-29 1991-12-11 Matsushita Electric Ind Co Ltd Free electron laser device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000286097A (en) * 1999-03-31 2000-10-13 Sumitomo Heavy Ind Ltd Operation controller for accelerator facilities
WO2019223053A1 (en) * 2018-05-24 2019-11-28 新瑞阳光粒子医疗装备(无锡)有限公司 Synchrotron

Also Published As

Publication number Publication date
US5477056A (en) 1995-12-19

Similar Documents

Publication Publication Date Title
JP4578901B2 (en) Extreme ultraviolet light source device
JP2796071B2 (en) Radiation generation method using electron storage ring and electron storage ring
US10212796B2 (en) X-ray pulse source and method for generating X-ray pulses
JPS63218200A (en) Superconductive sor generation device
JPH05198398A (en) Circular accelerator and beam incidence method for circular accelerator
JPH0661000A (en) Circular accelerator and circular accelerator operating method and semiconductor exposure device
Meyer The ORNL ECR multicharged ion source
RU2142666C1 (en) Method and device for production of hard radiation laser beam
Nuhn From storage rings to free electron lasers for hard x-rays
Milton et al. FEL development at the Advanced Photon Source
Liger et al. A bunching scheme for FEL applications at CEBAF
Winick Synchrotron radiation sources: Past, present and future
JP3650354B2 (en) Electron accelerator
Clendenin Recent advances in electron and positron sources
Tazzari et al. Trends in high energy particle accelerators
JP3594406B2 (en) Free electron laser device
Clayton et al. A 2 MeV, 100 mA electron accelerator for a small laboratory environment
Alicea Study of an Online Electron Elastic Scattering System for Radioactive Beam
Litvinenko et al. Short-wavelength light sources at Duke storage ring
JPH05198400A (en) Charged particle beam device
JP2625062B2 (en) Free electron laser generator
Ferrario Frontiers of RF Photoinjectors
Arnold et al. The FEL development at the Advanced Photon Source
JPS63102147A (en) X-ray generator
Hoffmann et al. A preliminary study of synchrotron light sources for x-ray lithography