JPS63100351A - Particle counting device - Google Patents

Particle counting device

Info

Publication number
JPS63100351A
JPS63100351A JP61245265A JP24526586A JPS63100351A JP S63100351 A JPS63100351 A JP S63100351A JP 61245265 A JP61245265 A JP 61245265A JP 24526586 A JP24526586 A JP 24526586A JP S63100351 A JPS63100351 A JP S63100351A
Authority
JP
Japan
Prior art keywords
signal
pulse
light
light source
series
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61245265A
Other languages
Japanese (ja)
Inventor
Tomonori Mimura
智憲 三村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61245265A priority Critical patent/JPS63100351A/en
Publication of JPS63100351A publication Critical patent/JPS63100351A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To measure blood platelets which are smaller in diameter than other blood cells with high accuracy by providing a multichannel analyzer which analyzes the output obtained by time pulse height conversion after discriminating the pulse heights of electric signals from photomultipliers of system A and B. CONSTITUTION:The light from the light source 1 of the system A passes through a part close to the sample injection flow passage 3 of a cell 4 and light from the light source 1' of the system B passes through a part distant from the flow passage 3 of the cell 4. The light from the light source 1 is incident on a photomultiplier 6 and the light from the light source 1' is incident on a photomultipler 6'. Scattered light beams incident on the photomultipliers 6 and 6' are converted by amplifiers 7 and 7' into pulses, which are supplied to pulse height discriminators 8 and 9. Signals passed through the discriminators 8 and 9 are supplied to a time pulse height converter 10, which outputs the time difference as a pulse signal by regarding the signal passed through the photomultiplier 6 as a start signal and the signal passed through the photomultiplier 6' as a stop signal; and the pulse signal is supplied to the multichannel analyzer 11 to measure blood platelets which are smaller in diameter than other blood cells with high accuracy.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、粒子計数装置に係り、特に、直径の異なる多
数の粒子を含むサンプルの多種類の粒子の同時計数およ
び直径の小さい粒子を高感度で計数するのに好適な粒子
計数装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a particle counting device, and in particular, it is capable of increasing the simultaneous counting of many types of particles in a sample containing a large number of particles with different diameters and the simultaneous counting of particles with small diameters. The present invention relates to a particle counting device suitable for counting with high sensitivity.

〔従来の技術〕[Conventional technology]

従来の粒子計数装置は、第7図に示すように、光源1.
スリット2.サンプル注入流路3.セル4、遮蔽板5.
ホトフル6.増幅器7.波高弁別器8,13,14.カ
ウンター12,15.16より構成されている。直径の
異なる粒子を含んだサンプルは生理食塩水で一定倍率に
希釈された後、サンプル注入流路3を経由して、セル4
を第8図に示しであるように粒子が一個ずつ順番に一定
速度で通過する。光源1からの特定波長の光はセル4に
垂直に入射してセル4内の粒子に当って散乱される。散
乱された光は、ホトマル6に入り検知される。粒子に当
らずに直進した光は、遮蔽板5でさえぎられる。ホトマ
ル6に入射した光は、電気信号に変換され、さらに、増
幅器7でその電気信号はパルスに変換され、パルスの高
さは電気信号の大きさに比例する。最終的にパルスの高
さと粒子の直径には相関関係があり、パルスの高さによ
って区切り、一定時間当りのパルス数を計数すれば、サ
ンプル中の直径毎の粒子数を算出できる。
A conventional particle counting device, as shown in FIG. 7, has a light source 1.
Slit 2. Sample injection channel 3. Cell 4, shielding plate 5.
Hotful 6. Amplifier 7. Wave height discriminator 8, 13, 14. It consists of counters 12, 15, and 16. The sample containing particles with different diameters is diluted to a certain ratio with physiological saline, and then passed through the sample injection channel 3 to the cell 4.
As shown in FIG. 8, the particles pass one by one at a constant speed. Light of a specific wavelength from the light source 1 enters the cell 4 perpendicularly, hits particles within the cell 4, and is scattered. The scattered light enters the photomultiplier 6 and is detected. The light that travels straight without hitting the particles is blocked by the shielding plate 5. The light incident on the photomultiplier 6 is converted into an electric signal, and the electric signal is further converted into a pulse in the amplifier 7, and the height of the pulse is proportional to the magnitude of the electric signal. Finally, there is a correlation between the height of the pulse and the diameter of the particle, and by dividing the pulse height and counting the number of pulses per certain period of time, the number of particles for each diameter in the sample can be calculated.

パルスは波高弁別器8,13.14に入力し、一定範囲
の高さを持つパルスのみが波高弁別器8゜13.14を
通過し、カウンター12,15゜16でそれぞれ粒子数
が計数される。血球カウンターの場合、サンプルは血液
で、波高弁別器8゜13.14はそれぞれ血小板、赤血
球、白血球用であり、波高弁別器8,13.14は各々
の直径に合わせてパルスが通過できる高さに設定しであ
る。白血球、赤血球、血小板の個数は、カウンター12
,15.16でそれぞれ波高弁別器8゜13.14を通
過したパルス数を計数することにより算出される。
The pulses are input to wave height discriminators 8, 13.14, and only pulses with heights within a certain range pass through the wave height discriminators 8, 13, 14, and the number of particles is counted by counters 12, 15, 16, respectively. . In the case of a blood cell counter, the sample is blood, and the pulse height discriminators 8, 13, 14 are for platelets, red blood cells, and white blood cells, respectively, and the pulse height discriminators 8, 13, 14 are set at a height that allows the pulse to pass according to the diameter of each. It is set to . Counter 12 for the number of white blood cells, red blood cells, and platelets
, 15 and 16, respectively, by counting the number of pulses that have passed through the pulse height discriminator 8, 13, and 14.

白血球(直径10〜20μm2個数7000個/IIE
II3)赤血球(直径6〜10μm2個数500万個/
mn5)、血小板(直径2−4μm、個数20万個/m
++’)とは直径2個数とも大幅な違いがある。
White blood cells (diameter 10-20 μm2 7000 pieces/IIE
II3) Red blood cells (diameter 6-10 μm2 5 million pieces/
mn5), platelets (diameter 2-4 μm, number 200,000/m
++') There is a significant difference in both the diameters and the number of pieces.

血球カウンターで測定する場合、赤血球の粒径は一定で
、かつ、個数も多く、測定は容易である。
When measuring with a blood cell counter, the particle size of red blood cells is constant and the number is large, so measurement is easy.

白血球は個数は少ないが、粒径が大きいので測定は容易
である。しかし、血小板の場合は、直径が白血球、赤血
球に比較して小さいため、散乱光が小さく、増幅器7よ
り出力されるパルスの高さも小さくなり、ノイズの影響
を受けやすくなる。がっ、共存している赤血球、白血球
の通過に伴うノイズが発生し、血小板の正確な計数が困
難であった。なお1、公知例としては特開昭60−20
9147号公報がある。
Although the number of white blood cells is small, their particle size is large, so they are easy to measure. However, since platelets have a smaller diameter than white blood cells and red blood cells, the scattered light is small and the height of the pulse output from the amplifier 7 is also small, making them susceptible to noise. However, noise was generated due to the passage of coexisting red blood cells and white blood cells, making it difficult to accurately count platelets. 1. As a publicly known example, JP-A-60-20
There is a publication No. 9147.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術の粒子計数装置では、2種類の異なる粒子
を含むサンプルで直径の大きい粒子と小さい粒子とを同
時に計数することは困難であった。
In the conventional particle counting device described above, it is difficult to simultaneously count large diameter particles and small diameter particles in a sample containing two different types of particles.

特に、粒子計数装置の中の血球カウンターでは、 −サ
ンプルの血液が白血球、赤血球、血小板の3種類であり
、粒子の個数と直径とに大きな差がある。
In particular, in a blood cell counter in a particle counting device, - The blood sample is of three types: white blood cells, red blood cells, and platelets, and there are large differences in the number and diameter of particles.

血球カウンターでは、血液を生理食塩水で一定倍率に希
釈した後、セル中を一定の流速で通過させ、セルには光
源より一定波長の光を入射させ、その散乱光をホトマル
で検知し、増幅器等を経由した後に単位体積当りの個数
に換算するが、この機構では、赤血球、白血球を計数す
ることは直径が血小板より大きいため簡単であるが、血
小板は散乱光の強度が約1720と極めて小さく、また
、電気系、光学系より発生するノズルもあり、散乱光の
強度が小さい場合は、シグナルとノイズとを区別するこ
とが困難となり、正確な血小板の計数が回連となる。
In a blood cell counter, blood is diluted to a certain ratio with physiological saline, and then passed through a cell at a certain flow rate. Light of a certain wavelength is incident on the cell from a light source, and the scattered light is detected with a photomultiplier. With this mechanism, it is easy to count red blood cells and white blood cells because their diameter is larger than that of platelets, but platelets have an extremely small scattered light intensity of about 1720. There are also nozzles generated by electrical and optical systems, and if the intensity of the scattered light is small, it becomes difficult to distinguish between signal and noise, making accurate platelet counting difficult.

本発明の目的は、直径が異なる多数の粒子を含むサンプ
ルにおいても、直径の大きい粒子はもちろん、他の粒子
等の影響で正確な計数が困難な小さい粒子でも直径毎に
粒子の個数を正確に計数することができる粒子計数装置
を提供することにある。
The purpose of the present invention is to accurately count the number of particles for each diameter, even in samples containing many particles with different diameters, not only large diameter particles but also small particles that are difficult to count accurately due to the influence of other particles. An object of the present invention is to provide a particle counting device capable of counting particles.

【問題点を解決するための手段〕[Means for solving problems]

上記目的は、光源、スリット、遮蔽板、ホトマル、増幅
器および波高弁別器からなるものをA。
The above purpose is A, which consists of a light source, a slit, a shielding plate, a photomultiplier, an amplifier, and a wave height discriminator.

B2系列設け、A系列の光学系の光はセルのサンプル注
入流路に近い側に入射し、B系列の光学系の光はセルの
サンプル注入流路より遠い側に入射するように構成し、
上記A系列のボトマルからの電気信号を増幅器を経て、
波高弁別器で波高弁別した信号と上記B系列のホトマル
からの電気信号を増幅器を経て波高弁別器で波高弁別し
た信号とを入力して各信号の時間的ずれを信号の高さに
変換する時間波高変換器と、この時間波高変換器の一出
力の高さを解析するマルチチャンネルアナライザとを具
備する構成として達成するようにした。
Two B series are provided, the light from the A series optical system is incident on the side of the cell closer to the sample injection channel, and the light from the B series optical system is configured to be incident on the side of the cell farther from the sample injection channel;
The electric signal from the A-series bottom terminal is passed through an amplifier,
Time to convert the time difference of each signal into signal height by inputting the signal whose wave height was discriminated by the wave height discriminator and the signal whose wave height was discriminated by the wave height discriminator after passing the electric signal from the B-series photomultiplier through an amplifier. This is achieved by a configuration that includes a wave height converter and a multichannel analyzer that analyzes the height of one output of the time wave height converter.

〔作用〕 A系列のホトマルで粒子を検出してから所定時間後にB
系列のホトマルで粒子を検出するので、それぞれ検出し
たシグナルをパルスに変換してスタートパルスとストッ
プパルスとして時間波高変換器に入力し、出力としてス
タートパルスとストツブパルスの時間差に比例した高さ
のパルスを出力し、時間波高変換器からの出力はマルチ
チャンネルアナライザで、パルスの高さく時間差)を横
軸に、パルスの個数を縦軸にとってパルスの高さを解析
するようにしたので、ホトマルで検知したものがノイズ
の場合、ランダムな時間差で分布するが、粒子の散乱光
のシグナルは一定時間ずれたところにピークが現れるの
で、これによりノイズの影響が除去されて血小板の高精
度の測定が可能になる。
[Effect] After a predetermined time after detecting particles with A-series photomul
Particles are detected by a series of photomultiples, so each detected signal is converted into a pulse and input as a start pulse and a stop pulse to a time-to-wave height converter, and the output is a pulse with a height proportional to the time difference between the start pulse and stop pulse. The output from the time-to-wave height converter was analyzed using a multi-channel analyzer, with the horizontal axis representing the pulse height and the number of pulses (time difference), and the vertical axis representing the number of pulses. If the object is noise, it will be distributed with random time differences, but the signal of scattered light from particles will have a peak at a certain time lag, so this removes the influence of noise and enables highly accurate measurement of platelets. Become.

〔実施例〕〔Example〕

以下、本発明を第1図、第2図に示した実施例および第
3図〜第6図を用いて詳細に説明する。  l第1図は
本発明の粒子計数装置の一実施例を示す概略図である。
Hereinafter, the present invention will be explained in detail using the embodiment shown in FIGS. 1 and 2 and FIGS. 3 to 6. FIG. 1 is a schematic diagram showing an embodiment of the particle counting device of the present invention.

第1図において、1,1′は光源、2,2′はスリット
、3はサンプル注入流路、4はセル、5,5′は遮蔽板
、6,6′はホトマル、7,7′は増幅器、8,9,1
3.14は波高弁別器で、光源1.スリット2.遮蔽板
5.ホマトル6.増幅器7.波高弁別器8,13.14
はA系列のものを示し、光源1′、スリット2′。
In Fig. 1, 1 and 1' are light sources, 2 and 2' are slits, 3 is a sample injection channel, 4 is a cell, 5 and 5' are shielding plates, 6 and 6' are photomultipliers, and 7 and 7' are amplifier, 8,9,1
3.14 is a pulse height discriminator, and light source 1. Slit 2. Shielding plate 5. Homatru6. Amplifier 7. Wave height discriminator 8, 13.14
indicates A series, light source 1', slit 2'.

遮蔽板5′、ホトフル6′、増幅器7′、波高弁別器9
はB系列のものを示し、これらは2系列あり、A系列の
光源1からの光はセル4のサンプル注入流路3に近い部
分を通り、B系列の光源1′からの光はセル4のサンプ
ル注入流路3より離れた部分を通るようにしである。セ
ル4はガラス製で細長く、断面は正方形になっており、
サンプルとなる血液はセル4の下部のサンプル注入流路
3より流れ込んで、上部へ向けて一定の流速で流れてい
る。A系列の光源1からの光は、スリット2を経てセル
4に垂直に入射し、セル4に入射した光は、血液中の白
血球、赤血球、血小板で散乱され示トマル6で検出され
る。散乱されなかった光はそのまま直進し、遮蔽板5で
さえぎられる。B系列のものも同様で、光源1′からの
光はスリット2′を経てセル4の異なる位置に垂直に入
射し、血液中の白血球、赤血球、血小板で散乱されてホ
トマル6′で検出され、散乱されなかった光はそのまま
直進し、遮蔽板5′でさえぎられる。ホトマル6,6′
に入射した散乱光は、それぞれ第2図に示すように電気
信号17.17’に変換され、さらに、それぞれ増幅器
7,7′でパルスに変換される。そして変換されたパル
スの高さは電気信号17.17’の大きさに比例する。
Shielding plate 5', photofluid 6', amplifier 7', wave height discriminator 9
indicates the B series, and there are two series. The light from the A series light source 1 passes through the part near the sample injection channel 3 of the cell 4, and the light from the B series light source 1' passes through the cell 4. It is arranged to pass through a portion remote from the sample injection channel 3. Cell 4 is made of glass and is elongated and has a square cross section.
Blood serving as a sample flows into the sample injection channel 3 at the bottom of the cell 4 and flows toward the top at a constant flow rate. Light from an A-series light source 1 passes through a slit 2 and enters a cell 4 perpendicularly, and the light that enters the cell 4 is scattered by white blood cells, red blood cells, and platelets in the blood and detected by an indicator 6. The unscattered light continues straight and is blocked by the shielding plate 5. The same is true for the B series, where the light from the light source 1' passes through the slit 2' and enters the cell 4 at different positions perpendicularly, is scattered by white blood cells, red blood cells, and platelets in the blood, and is detected by the photomultiplier 6'. The unscattered light continues straight and is blocked by the shielding plate 5'. Photomaru6,6'
The scattered light incident on each of them is converted into electric signals 17 and 17' as shown in FIG. 2, and further converted into pulses by amplifiers 7 and 7', respectively. The height of the converted pulse is then proportional to the magnitude of the electrical signal 17.17'.

ところで、ホトマル6からの電気信号17は第3図に1
示すような波形をしており、増幅器7に入力されるが、
増幅器7では一定のレベル18以下(本実施例では0.
1 v以下)の電気信号は、ノイズとしてカットされる
。そして、増幅器7に電気信号17が入力し、一定の検
知レベル18を超えたときから一定時間Δtc  (本
実施例では’ 100nsec)経過後の電気信号17
の電圧を高さとするパルス19に変換される。ホトマル
6′からの電気信号17′についても同様である。
By the way, the electric signal 17 from the photomaru 6 is shown in FIG.
It has a waveform as shown, and is input to amplifier 7.
The amplifier 7 has a certain level of 18 or less (in this embodiment, 0.
Electrical signals below 1 V) are cut off as noise. Then, the electric signal 17 is input to the amplifier 7, and after a certain period of time Δtc ('100 nsec in this embodiment) has passed since the electric signal 17 exceeds the certain detection level 18.
is converted into a pulse 19 having a voltage of . The same applies to the electric signal 17' from the photomultiplex 6'.

次に、ホトマル6からの電気信号は波高弁別器8.13
.14に入力し、波高弁別器8は白血球用で6.0〜9
.Ov、波高弁別器13は赤血球用で4.0〜5.OV
、波高弁別器14は血小板用で0.2〜0.5  Vに
設定してあり、これらの範囲の大きさを持つパルスのみ
がそれぞれの波高弁別器8,13.14を通過する。波
高弁別器13.14を通過したパルスはそれぞれカウン
ター15.16で計数され、赤血球、白血球の個数を測
定される。
Next, the electric signal from the photomultiplier 6 is sent to a wave height discriminator 8.13.
.. 14, and the pulse height discriminator 8 is for white blood cells and is 6.0 to 9.
.. Ov, the wave height discriminator 13 is for red blood cells and is 4.0 to 5. O.V.
, the pulse height discriminator 14 is set to 0.2 to 0.5 V for platelets, and only pulses having magnitudes within these ranges pass through the respective pulse height discriminators 8, 13.14. The pulses passing through the pulse height discriminators 13 and 14 are respectively counted by counters 15 and 16 to measure the number of red blood cells and white blood cells.

ホトマル6′に入射した散乱光は電気信号に変換されて
から、増幅器7′で電気信号17′がパルスに変換され
、変換されたパルスの高さは電気信号17′の大きさに
比例し、このパルスは波高弁別器9に入力する。波高弁
別器9は血小板用で10.2〜0.5 Vに設定してあ
り、この範囲の大きさを持つパルスのみが波高弁別器9
を通過する。
The scattered light incident on the photomultiplier 6' is converted into an electric signal, and then the electric signal 17' is converted into a pulse in the amplifier 7', and the height of the converted pulse is proportional to the magnitude of the electric signal 17'. This pulse is input to the pulse height discriminator 9. The pulse height discriminator 9 is set to 10.2 to 0.5 V for platelets, and only pulses having a magnitude within this range are detected by the pulse height discriminator 9.
pass through.

血小板測定用の波高弁別器8,9を通過したパルスは、
時間波高変換器10に入力し、時間波高変換器10では
、ホトマル6を経由したシグナルをスタート信号、ホト
マル6′を経由したシグナルをストップ信号として取り
扱い、スタートとストップとの時間差をパルス信号とし
て出力する。このパルス信号は、マルチチャンネルアナ
ライザー11(MCAと略す)に入力する。MCAl1
では、横軸にスタートパルス20とストップパルス21
の時間差をとり、パルスの個数を縦軸にとっている。ホ
トマル6′で粒子を検出するとき、すでにホトマル6よ
りもΔを秒時量的なずれが生じているので、ピークはΔ
を秒だけずれたところにあられれる。このピークの総パ
ルス数を計数して血小板の個数とする。
The pulses that have passed through the pulse height discriminators 8 and 9 for platelet measurement are
The signal is input to the time pulse height converter 10, and the time pulse height converter 10 treats the signal that has passed through the photomul 6 as a start signal, the signal that has passed through the photomul 6' as a stop signal, and outputs the time difference between the start and stop as a pulse signal. do. This pulse signal is input to a multi-channel analyzer 11 (abbreviated as MCA). MCAl1
Now, the horizontal axis shows the start pulse 20 and the stop pulse 21.
The vertical axis represents the number of pulses. When detecting particles with Photomul 6', there is already a shift in Δ in terms of time and quantity compared to Photomul 6, so the peak is Δ
It will appear at a location with a difference of only a second. The total number of pulses at this peak is counted and determined as the number of platelets.

これにより、血小板の計数で問題となるランダムなノイ
ズを防止することができる。
This makes it possible to prevent random noise that can be a problem when counting platelets.

上記した本発明の実施例によれば、白血球、赤血球、血
小板と直径の異なる粒子を含むサンプルで、白血球、赤
血球とともに、直径が他の血球より小さい血小板も高精
度で測定できる。第1表(次頁)は健康な人間の血液を
サンプルとして測定した場合の再現性を示す結果である
According to the above-described embodiment of the present invention, in a sample containing particles having different diameters from white blood cells, red blood cells, and platelets, it is possible to measure platelets with a smaller diameter than other blood cells with high precision, in addition to white blood cells and red blood cells. Table 1 (next page) shows the results showing the reproducibility when measuring healthy human blood as a sample.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、白血球。 As explained above, according to the present invention, white blood cells.

赤血球、血小板と直径の異なる粒子を含むサンプルで、
白血球、赤血球とともに直径が他の血球より小さい血小
板も高精度で測定できるという効果がある。
A sample containing red blood cells, platelets, and particles of different diameters.
This method has the advantage that, along with white blood cells and red blood cells, platelets, which are smaller in diameter than other blood cells, can be measured with high precision.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の粒子計数装置の一実施例を示す概略図
、第2図は第1図の電気回路とパルス波形概略図、第3
図は第2図のホトマルの電気出力と増幅器のパルス信号
の波形図、第4図は第2図の波高弁別器8と9とのパル
ス出力とのタイムチャート、第5図は第2図の時間波形
変換器出力パルスの波形図、第6図は第2図のMCA出
力を示す図、第7図は従来の粒子計数装置の概略図であ
る。 1.1′・・・光源、2,2′・・・スリット、3・・
・サンプル注入流路、4・・・セル、5,5′・・・遮
蔽板、6゜6′・・・ホトマル、7,7′・・・増幅器
、8,9゜13.14・・・波高弁別器、10・・・時
間波高変換器、11・・・MCA、12,15,16・
・・カウンター。
FIG. 1 is a schematic diagram showing one embodiment of the particle counting device of the present invention, FIG. 2 is a schematic diagram of the electric circuit and pulse waveform of FIG. 1, and FIG.
The figure is a waveform diagram of the electrical output of the photomultiplier and the pulse signal of the amplifier in figure 2, figure 4 is a time chart of the pulse output of the pulse height discriminators 8 and 9 in figure 2, and figure 5 is the waveform diagram of the pulse signal of the pulse height discriminator 8 and 9 in figure 2. FIG. 6 is a waveform diagram of the output pulse of the time waveform converter, FIG. 6 is a diagram showing the MCA output of FIG. 2, and FIG. 7 is a schematic diagram of a conventional particle counting device. 1.1'...Light source, 2,2'...Slit, 3...
・Sample injection flow path, 4...Cell, 5, 5'...Shielding plate, 6゜6'...Photometer, 7,7'...Amplifier, 8,9゜13.14... Wave height discriminator, 10... Time pulse height converter, 11... MCA, 12, 15, 16.
··counter.

Claims (1)

【特許請求の範囲】[Claims] 1、光源、スリツト、セル、遮蔽板、ホトマルが一直線
上に設置され、増幅器、波高弁別器、カウンタを備えた
粒子計数装置において、前記光源、スリツト、遮蔽板、
ホトマル、増幅器および波高弁別器からなる系列がA系
列とB系列とよりなり、前記A系列の光源からの光が前
記セルのサンプル注入流路に近い側に入射し、前記B系
列の光源からの光が前記セルのサンプル注入流路より遠
い側に入射するように構成し、前記A系列のホトマルか
らの電気信号を増幅器を経て、波高弁別器で波高弁別し
た信号と前記B系列のホトマルからの電気信号を、増幅
器を経て波高弁別器で波高弁別した信号とを入力して、
各信号の時間的ずれを信号の高さに変換する時間波高変
換器と、該時間波高変換器の出力の高さを解析するマル
チチヤンネルアナライザとを具備することを特徴とする
粒子計数装置。
1. A particle counting device in which a light source, a slit, a cell, a shielding plate, and a photomultiplier are installed in a straight line, and is equipped with an amplifier, a pulse height discriminator, and a counter, wherein the light source, the slit, the shielding plate,
The series consisting of a photomultiplier, an amplifier, and a pulse height discriminator consists of an A series and a B series, and the light from the A series light source is incident on the side of the cell near the sample injection channel, and the light from the B series light source is incident on the side of the cell near the sample injection channel. The cell is configured so that the light is incident on the side farther from the sample injection flow path, and the electric signal from the A-series photomultiply is passed through an amplifier, and the signal from the B-series photomultiplier is differentiated by a pulse height discriminator. Input the electrical signal and the signal that has been subjected to pulse height discrimination by a pulse height discriminator via an amplifier,
1. A particle counting device comprising: a time-to-wave-height converter that converts the time lag of each signal into a signal height; and a multi-channel analyzer to analyze the height of the output of the time-to-wave-height converter.
JP61245265A 1986-10-17 1986-10-17 Particle counting device Pending JPS63100351A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61245265A JPS63100351A (en) 1986-10-17 1986-10-17 Particle counting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61245265A JPS63100351A (en) 1986-10-17 1986-10-17 Particle counting device

Publications (1)

Publication Number Publication Date
JPS63100351A true JPS63100351A (en) 1988-05-02

Family

ID=17131107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61245265A Pending JPS63100351A (en) 1986-10-17 1986-10-17 Particle counting device

Country Status (1)

Country Link
JP (1) JPS63100351A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5531471A (en) * 1991-06-26 1996-07-02 Nissan Motor Co., Ltd. Air bag and lid arrangement for vehicle
JP2008539446A (en) * 2005-04-29 2008-11-13 ハネウェル・インターナショナル・インコーポレーテッド Cytometer cell counting and sizing system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5531471A (en) * 1991-06-26 1996-07-02 Nissan Motor Co., Ltd. Air bag and lid arrangement for vehicle
JP2008539446A (en) * 2005-04-29 2008-11-13 ハネウェル・インターナショナル・インコーポレーテッド Cytometer cell counting and sizing system

Similar Documents

Publication Publication Date Title
US4021117A (en) Process for automatic counting and measurement of particles
JP5058171B2 (en) Method and apparatus for performing platelet measurements
EP0240942B1 (en) Method and apparatus for determining the count per unit volume of particles
JP2641927B2 (en) Particle measurement device
JP2815435B2 (en) Particle analyzer and blood cell counter
US4188121A (en) Multiple ratio single particle counter
Leary et al. Laser flow cytometric light scatter and fluorescence pulse width and pulse rise-time sizing of mammalian cells.
US3662176A (en) Photo-optical particle analysis method and apparatus
CN104215562A (en) Optical system of particle analyzer
US3781112A (en) Method and apparatus for analysis of leukocytes using light scattered by each leukocyte at absorbing and non-absorbing wavelength
JP3532274B2 (en) Particle detector
JP3521381B2 (en) Particle counting device
JPS63100351A (en) Particle counting device
CA1091350A (en) Particle-density measuring system
NL8003429A (en) METHOD AND APPARATUS FOR MEASURING PARTICLES IN A FLUIDUM
JPH0792076A (en) Grain analyzing device
JP2720069B2 (en) Flow cell analyzer
JPS6326553A (en) Measuring instrument for corpuscle in liquid
JPH0220674Y2 (en)
JPS6259839A (en) Particle counter
JPH0226054Y2 (en)
RU2006824C1 (en) Method of analysis of impulse pairs in photoelectric aerosol counters
CN213301970U (en) Blood cell analyzer
JPS59102139A (en) Blood corpuscle counter
RU2504753C1 (en) Photoelectric method of determining size and concentration of suspended particles