JPS6299020A - Thread cutting control system - Google Patents

Thread cutting control system

Info

Publication number
JPS6299020A
JPS6299020A JP23659885A JP23659885A JPS6299020A JP S6299020 A JPS6299020 A JP S6299020A JP 23659885 A JP23659885 A JP 23659885A JP 23659885 A JP23659885 A JP 23659885A JP S6299020 A JPS6299020 A JP S6299020A
Authority
JP
Japan
Prior art keywords
circuit
phase shift
thread cutting
calculated
threaded portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23659885A
Other languages
Japanese (ja)
Inventor
Hideaki Sofue
祖父江 秀秋
Kazunori Iwai
岩井 和紀
Hiroyuki Nishikawa
宏之 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okuma Corp
Original Assignee
Okuma Machinery Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okuma Machinery Works Ltd filed Critical Okuma Machinery Works Ltd
Priority to JP23659885A priority Critical patent/JPS6299020A/en
Publication of JPS6299020A publication Critical patent/JPS6299020A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To recut a rough cut thread in the same phase, by inputting outputs from a read circuit and a phase shift arithmetic circuit to a thread cutting cycle circuit while a tool locus, generated by correcting a phase shift, to a cutting machine. CONSTITUTION:A sum of a phase shift quantity deltai, correction quantity ST of delay time and a Diff quantity SD and a feed quantity F from a read circuit 1 are input to a phase shift arithmetic circuit 9. A true phase shift quantity deltat is obtained from the residue of (deltai+ST+SD)/F. The circuit 1 and the quantity deltat of the circuit 9 are input to a thread cutting cycle circuit 2, and its output is input to a cutting machine 10 via a circuit 3. By this input of a corrected tool locus, a threaded part is recut and finished in the same phase when roughing is performed.

Description

【発明の詳細な説明】 (発明の技術分野) この発明は、数値制御(Me)旋磐等の工作機械を用い
て行うねじ切り加工の制御方式に関する(51明の技術
的背景とその問題点) 従来、 HrJ盤等を用いてワークにねじ切りを行う場
合に、ワークのねじ部を荒加工から仕上げ加工まで一貫
して実施する場合は問題ないが、その途中の工程で一度
ワークを取外すと、再度取付けた時にそのねじ部の位相
がずれ、この位相合わせが問題となる。実際に、ワーク
によっては、ねじ部の加工工程の途中において別工程を
必要とするため、ねじ部を荒加工したワークを一度取外
し、別工程を終Yしたワークを再度取付けてその荒加工
されたねじ部の仕上げ加工を実施したり、または、別の
工作機械で荒加工したねじ部を仕上げ加工する際に、上
述の位相合わせが大きな問題となり、位相合わせ用の特
殊な治具を用いないと位相ずれが発生し、その位相合わ
せのために作業者に大きな負担をかけている。
[Detailed Description of the Invention] (Technical Field of the Invention) This invention relates to a control method for thread cutting performed using a machine tool such as a numerically controlled (Me) lathe (technical background and problems thereof) Conventionally, when threading a workpiece using an HrJ machine, etc., there is no problem if the threaded part of the workpiece is processed consistently from rough machining to finish machining, but if the workpiece is removed once during the process, it may have to be cut again. When installed, the phase of the threaded portion shifts, and this phase alignment becomes a problem. In fact, depending on the workpiece, a separate process is required in the middle of the process of machining the threaded part, so the workpiece whose threaded part has been roughly machined is removed, and the workpiece that has undergone the separate process is reinstalled and the rough machined part is processed. When finishing a threaded part or finishing a threaded part that has been roughly machined using another machine tool, the above-mentioned phasing becomes a big problem, and it is necessary to use a special jig for phasing. A phase shift occurs, which places a heavy burden on workers to align the phases.

(発明の目的) この発明は上述のような事情からなされたものであり、
この発明の目的は、ねじ部を荒加工されたワークをNC
旋盤等に取付けて、このワークにねじ切りの仕上げ加工
を行う際に、特殊な冶具を用いることなく、容易に位相
合わせができるようにしたねじ切り制御方式を提供する
ことにある。
(Object of the invention) This invention was made under the above circumstances,
The purpose of this invention is to perform NC processing of a workpiece whose threaded portion has been roughly machined.
It is an object of the present invention to provide a thread cutting control system that is attached to a lathe or the like and allows easy phase alignment without using a special jig when finishing thread cutting on a workpiece.

(発明の概要) この発明は、ねじ部が荒加工済のワークを数値制御工作
機械に取付けて、上記ねじ部を再加工する際におけるね
じ切り制御方式に関し、上記取付は時に発生する上記ね
じ部のねじ溝の位相ずれを測定すると共に、上記数値制
御工作機械のサーボ系の遅れと、数値制御装置の演算遅
れ時間とを演算して求め、上記測定された位相ずれと、
上記演算されたサーボ系の遅れ及び上記演算された演算
遅れ時間とに基づいて、上記ねじ部の位相を合わせて上
記ねじ部を再加工するようにしたものである。
(Summary of the Invention) The present invention relates to a thread cutting control method when a workpiece whose threaded portion has been roughly machined is mounted on a numerically controlled machine tool and the threaded portion is reprocessed. The phase shift of the thread groove is measured, and the delay of the servo system of the numerically controlled machine tool and the calculation delay time of the numerical control device are calculated and determined, and the phase shift determined by the above measurement and
Based on the calculated delay of the servo system and the calculated calculation delay time, the threaded part is reprocessed by matching the phase of the threaded part.

(発明の実施例) 上述のように、ねじ部が荒加工されたワークをそのねじ
部の仕上げ加工のためにNC旋盤等に取付は再加工する
際に、その取付は方や加工機械の相違により、そのねじ
部の位相が元の荒加工の時とはずれてしまう、:g2図
はこのような取付は上で発生する位相ずれ量の測定方法
を示す図であり、同図に示すようにワーク100にはそ
のねじ部にピッチpでねじ切りの荒加工が実施されてい
る。そこでこのワークlOQをNC旋盤に取付け、主軸
を所定のマーカ位置に停止させる。そしてねじ切り開始
点PGに工具(バイト)101の刃先を移動した後、こ
の点POからこのねじの軸方向(Z軸)に沿って上記ピ
ッチPのn倍(ここでnは正の整数)となるJJ=pX
n分移動した点移動に上記刃先を移動する。そして、こ
の点P1から、手送り又はパルスハンドルを手動操作し
てパイ) 101の刃先をワーク100のねじ溝に合わ
せる。この時のバイト101の刃先の位置を点P2とす
ると、この点P2と上記点P1との距離を測定すれば、
上記再取付は上で発生するねじ部の位相ずれ量δl(m
m)が求まる。
(Embodiment of the invention) As mentioned above, when reprocessing a workpiece whose threaded portion has been roughly machined to an NC lathe or the like for finishing the threaded portion, there are differences in the mounting method and the processing machine. As a result, the phase of the threaded part deviates from that during the original rough machining. Figure g2 shows how to measure the amount of phase shift that occurs in this type of installation, and as shown in the figure. The threaded portion of the workpiece 100 has been subjected to rough thread cutting at a pitch p. Therefore, this workpiece IOQ is attached to an NC lathe, and the main spindle is stopped at a predetermined marker position. Then, after moving the cutting edge of the tool (bite) 101 to the thread cutting start point PG, from this point PO along the axial direction (Z-axis) of this screw, the pitch P is multiplied by n (where n is a positive integer). becomes JJ=pX
The cutting edge is moved to a point moved by n minutes. Then, from this point P1, align the cutting edge of the workpiece 101 with the thread groove of the workpiece 100 by hand-feeding or manually operating the pulse handle. If the position of the cutting edge of the cutting tool 101 at this time is point P2, then if the distance between this point P2 and the above point P1 is measured,
The above reinstallation is performed by the amount of phase shift δl (m
m) is found.

ところが、単にこの位相ずれ量δlを補正するだけでは
上記位相ずれは完全には補正できず、工作機械のサーボ
系のdれ(口1ff) 、及び主軸回転数のパルスデー
タの検出から演算完了までの遅れ時間が発生するため、
さらにこれらに対する補正を加える必要がある。
However, simply correcting this phase shift amount δl cannot completely correct the above phase shift, and the process from detection of the d shift of the machine tool's servo system (mouth 1ff) and pulse data of the spindle rotation speed to completion of calculation. Because of the delay time,
Furthermore, it is necessary to add corrections to these.

第1図はこの発明のねじ切り制御方式を実施するNC旋
盤等に用いられる制御部の概略を示すブロック構成図で
あり、以下に同図を参照してこの発明の詳細な説明する
FIG. 1 is a block diagram schematically showing a control section used in an NC lathe or the like that implements the thread cutting control method of the present invention, and the present invention will be described in detail below with reference to the same figure.

第1図において、 NGテープ等に作成された、又は操
作盤から入力されるNGプログラムを読込回路1が読込
み、上記所定のねじ切り開始点POにパイ) 101の
刃先を移動し、早送りで上記位相ずれ凌を測定する点P
1にその刃先を移動する(その移動量見)、そこで、一
度このNGプログラムをストップさせ、上述のように手
動操作により上記刃先を上記点P2に移動させ、上記位
相ずれ量δ1を位相ずれ記憶回路8に測定して記憶する
。その後上記NGプログラムを復帰させ、上記ねじ切り
開始点PGにパイ) 101の刃先を早送りした後、ね
じ切り加工を開始させる。そこで、上記読込み回路lが
ねじ切り指令を読込むと、遅れ時間補正回路6及びDi
n演算回路7と1位相ずれ演算回路9とに送り指令(送
り量F(■m/rev)を指令する。一方、主軸回転数
演算回路5は常時主軸に取付けられたREVパルスカウ
ンタ4から読込んだパルスデータrp(pulse /
sec )よりこのNC旋盤の主軸の回転数を計測して
おり、その計測値R(r、p、s)を上記遅れ時間補正
回路6及び上記Diff演算回路7とに入力する。
In Fig. 1, the reading circuit 1 reads an NG program created on an NG tape or the like or inputted from the operation panel, moves the cutting edge of 101 to the above-mentioned predetermined thread cutting start point PO, and moves the cutting edge of 101 to the above-mentioned phase by rapid traverse. Point P for measuring the deviation
1 (see the amount of movement), then stop this NG program once, move the blade tip to the point P2 by manual operation as described above, and store the phase shift amount δ1 in the phase shift memory. Measure and store in circuit 8. Thereafter, the above-mentioned NG program is returned to the above-mentioned thread cutting start point PG, and after rapidly forwarding the cutting edge of 101, the thread cutting process is started. Therefore, when the reading circuit 1 reads the thread cutting command, the delay time correction circuit 6 and Di
A feed command (feed amount F (■ m/rev) is given to the n calculation circuit 7 and the 1 phase shift calculation circuit 9. On the other hand, the spindle rotation speed calculation circuit 5 always reads the information from the REV pulse counter 4 attached to the spindle. soldered pulse data rp (pulse /
sec), the rotational speed of the main shaft of this NC lathe is measured, and the measured value R (r, p, s) is input to the delay time correction circuit 6 and the Diff calculation circuit 7.

ここにおいて、この遅れ時間補正回路6は。Here, this delay time correction circuit 6 is as follows.

上記入力される送り量F、主軸の回転数B及び上記主軸
回転数のパルスデータの検出から演算完了までの遅れ時
間ΔT(sec)により、その遅れ時間による補正Fa
st (+u+)を次式により演算する。
Correction Fa based on the delay time ΔT (sec) from detection of the input feed amount F, spindle rotation speed B, and pulse data of the spindle rotation speed to completion of calculation
st (+u+) is calculated using the following equation.

S+=  (R/80)XFXΔ丁  ・・・・・・(
1)また、上記Diff演算回路7は、上記入力される
送りriF及び主軸の回転aRにより、そのDiFfm
so (am)を次式により演算する。ここにおいて、
Kυはサーボ系の速度偏差を示す。
S+= (R/80)XFXΔDing ・・・・・・(
1) Also, the Diff calculation circuit 7 calculates its DiFfm based on the input feed riF and rotation aR of the main shaft.
so (am) is calculated using the following equation. put it here,
Kυ indicates the speed deviation of the servo system.

そこで、位相ずれ演算回路9は、上記測定され位相ずれ
記憶回路8に記憶されている取付は上の位相ずれ量δl
 、上記(1)式により演算された遅れ時間の補正MS
+及び上記(2)式により@算されたDiffQSpの
和を上記読込回路1から指令された送りIFで除した余
りにより、真の位相ずれ量δtを求める。
Therefore, the phase shift calculation circuit 9 calculates that the above-mentioned mounting measured and stored in the phase shift storage circuit 8 is the above phase shift amount δl.
, the delay time correction MS calculated by the above equation (1)
The true phase shift amount δt is obtained from the remainder obtained by dividing the sum of + and DiffQSp calculated by the above formula (2) by the feed IF commanded from the reading circuit 1.

すなわち、(δH+S++So) / Fの剰余が真の
位相ずれ量の距離δt  (am)として求まる。
That is, the remainder of (δH+S++So)/F is found as the distance δt (am) of the true phase shift amount.

そこで、上記読込回路1からの指令を受けてねじ切りサ
イクルを開始しているねじ切りサイクル回路2に、上記
求まった真の位相ずれ埴δ1を人力し、上記ねじ切り開
始点POに対してこの真の位相ずれ量δ【分補正して、
その補正されたバイトの加工軌跡の関数を関数発生回路
3で発生する。この位相ずれを補正されたバイトの軌跡
を第3図に示して説明すると、バイト101の刃先は、
ねじ切り開始点PIGからワーク100に直交する方向
に近接する点P2oに対し2上記補正量δ【分補正され
た点pHに移動し、ワークlOOのねじ部を所定のピッ
チで不完全ねじ部の点PI2 までねじ切りした後、点
P13 に引かれて上記開始点PIGに戻る。
Therefore, the true phase shift value δ1 obtained above is input to the thread cutting cycle circuit 2, which starts the thread cutting cycle in response to the command from the reading circuit 1, and the true phase difference δ1 with respect to the thread cutting start point PO is After correcting the deviation amount δ[,
A function generating circuit 3 generates a function of the corrected machining locus of the cutting tool. The trajectory of the cutting tool with this phase shift corrected is shown in FIG. 3, and the cutting edge of the cutting tool 101 is as follows.
Move from the thread cutting start point PIG to the point P2o that is close to the workpiece 100 in the direction perpendicular to it, and move to the point pH corrected by the above correction amount δ[, and cut the threaded part of the workpiece lOO at a predetermined pitch to the point of the incomplete threaded part. After cutting the thread to PI2, it is pulled to point P13 and returns to the starting point PIG.

このようにして位相ずれが補正されて発生されたバイト
軌跡が入力されると、加工filOは再取付けしたねじ
であっても、最初に荒加工した時と同一の位相でそのね
じ部を再加工できることになる。
When the bite trajectory generated with the phase shift corrected in this way is input, machining filO will re-process the threaded part using the same phase as when it was first rough-machined, even if it is a reinstalled screw. It will be possible.

(発明の効果) 以上のように、この発明のねじ切り制御方式によれば、
ねじ部を荒加工され一度取外されたワークをNG旋盤等
に再取付けして、このワークにねじ切りの仕上げ加工を
行う場合でも、特殊な冶具を用いることなく、容易に位
相合わせができ、作業者に負担をかけることなく、容易
に]与ねじ加工ができるようになる。
(Effects of the Invention) As described above, according to the thread cutting control method of the present invention,
Even when a workpiece whose threaded portion has been rough-machined and once removed is reinstalled on an NG lathe and the workpiece is finished with thread cutting, phase alignment can be easily performed without using special jigs, making the work easier. Threading can be easily performed without placing any burden on the operator.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明のねじ切り制御方式を実施する制御装
置の概略を示すブロック構成図、第2図はこのねじ切り
における位相ずれの測定力法を説明するための図、第3
図はこの発明により位相ずれを補正されたねじ切り工程
におけるバイトの軌跡を示す図である。 1・・・読込回路、2・・・ねじ切りサイクル回路、3
・・・関数発生回路、4・・・REVパルスカウンタ、
5・・・主軸回転数演算回路、6・・・遅れ時間補正回
路、7・・・D i f f flij算回路、8・・
・位相ずれ記憶回路、9・・・位相ずれ演算回路、10
・・・加工機。 100・・・ワーク、lot・・・バイト。 第3 図
FIG. 1 is a block configuration diagram showing an outline of a control device that implements the thread cutting control method of the present invention, FIG. 2 is a diagram for explaining the force method for measuring phase shift in thread cutting, and FIG.
The figure shows the locus of the cutting tool in the thread cutting process in which the phase shift is corrected according to the present invention. 1...Reading circuit, 2...Thread cutting cycle circuit, 3
...Function generation circuit, 4...REV pulse counter,
5... Main shaft rotation speed calculation circuit, 6... Delay time correction circuit, 7... D i f f flij calculation circuit, 8...
- Phase shift storage circuit, 9... Phase shift calculation circuit, 10
···Processing machine. 100...work, lot...part-time job. Figure 3

Claims (1)

【特許請求の範囲】[Claims] ねじ部が荒加工済のワークを数値制御工作機械に取付け
て、前記ねじ部を再加工する際に、前記取付け時に発生
する前記ねじ部のねじ溝の位相ずれを測定すると共に、
前記数値制御工作機械のサーボ系の遅れと、数値制御装
置の演算遅れ時間とを演算して求め、前記測定された位
相ずれと、前記演算されたサーボ系の遅れ及び前記演算
された演算遅れ時間とに基づいて、前記ねじ部の位相を
合わせて前記ねじ部を再加工するようにしたことを特徴
とするねじ切り制御方式。
When a workpiece whose threaded portion has been roughly machined is mounted on a numerically controlled machine tool and the threaded portion is reprocessed, a phase shift of the thread groove of the threaded portion that occurs during the installation is measured, and
The delay of the servo system of the numerically controlled machine tool and the calculation delay time of the numerical control device are calculated and calculated, and the measured phase shift, the calculated delay of the servo system, and the calculated calculation delay time are calculated. A thread cutting control method characterized in that the threaded portion is reprocessed by matching the phase of the threaded portion based on the above.
JP23659885A 1985-10-23 1985-10-23 Thread cutting control system Pending JPS6299020A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23659885A JPS6299020A (en) 1985-10-23 1985-10-23 Thread cutting control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23659885A JPS6299020A (en) 1985-10-23 1985-10-23 Thread cutting control system

Publications (1)

Publication Number Publication Date
JPS6299020A true JPS6299020A (en) 1987-05-08

Family

ID=17003015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23659885A Pending JPS6299020A (en) 1985-10-23 1985-10-23 Thread cutting control system

Country Status (1)

Country Link
JP (1) JPS6299020A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02180523A (en) * 1988-12-28 1990-07-13 Tsubakimoto Chain Co Cutting method for screw shaft
WO2004087359A1 (en) * 2003-03-28 2004-10-14 Mitsubishi Denki Kabushiki Kaisha Thread cutting control method and thread cutting controller
JP2010201571A (en) * 2009-03-04 2010-09-16 Mitsubishi Electric Corp Method and device for reworking variable pitch screw
CN103941636A (en) * 2013-01-17 2014-07-23 发那科株式会社 Numerical controller having function of re-machining thread cutting cycle

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55150918A (en) * 1979-05-11 1980-11-25 Mitsubishi Electric Corp Overlap screw cutting controller
JPS59232750A (en) * 1983-06-13 1984-12-27 Fanuc Ltd Neumeric control method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55150918A (en) * 1979-05-11 1980-11-25 Mitsubishi Electric Corp Overlap screw cutting controller
JPS59232750A (en) * 1983-06-13 1984-12-27 Fanuc Ltd Neumeric control method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02180523A (en) * 1988-12-28 1990-07-13 Tsubakimoto Chain Co Cutting method for screw shaft
JPH0763893B2 (en) * 1988-12-28 1995-07-12 株式会社椿本チエイン Cutting method of screw shaft for ball screw
WO2004087359A1 (en) * 2003-03-28 2004-10-14 Mitsubishi Denki Kabushiki Kaisha Thread cutting control method and thread cutting controller
US7613541B2 (en) 2003-03-28 2009-11-03 Mitsubishi Denki Kabushiki Kaisha Thread control method and system therefor
DE10394200B4 (en) * 2003-03-28 2013-08-08 Mitsubishi Denki K.K. Tapping control method and system for it
JP2010201571A (en) * 2009-03-04 2010-09-16 Mitsubishi Electric Corp Method and device for reworking variable pitch screw
CN103941636A (en) * 2013-01-17 2014-07-23 发那科株式会社 Numerical controller having function of re-machining thread cutting cycle
JP2014137731A (en) * 2013-01-17 2014-07-28 Fanuc Ltd Numerical control device having function of performing reprocessing of thread cutting cycle
CN103941636B (en) * 2013-01-17 2016-05-04 发那科株式会社 There is the numerical control device of the reprocessing function of carrying out the screw chasing cycle
US9417619B2 (en) 2013-01-17 2016-08-16 Fanuc Corporation Numerical controller having function of re-machining thread cutting cycle

Similar Documents

Publication Publication Date Title
US4580225A (en) Method for producing multiple entry threads
US20180307200A1 (en) Method for compensating milling cutter deflection
JP2002224936A (en) Tool presetter and method for calculation of tool offset data
CN109725602B (en) Numerical controller, CNC machine tool, computer-readable information recording medium, and numerical control method
JPH0675818B2 (en) Anguilura grinder
JPH0692057B2 (en) Numerical control machine tool
KR870001582B1 (en) Numerically controlled manufacturing method
JP2010247246A (en) Numerical control apparatus
JPS62237504A (en) Numerical controller
JP4059411B2 (en) NC machine tool controller
EP0487738B1 (en) System for correcting quantity of deformation of tool
JPWO2004087359A1 (en) Threading control method and apparatus
JPS6299020A (en) Thread cutting control system
KR880001305B1 (en) Numerically controlled working method
JPH07136906A (en) Numerical controller
JP3901290B2 (en) Compensation method for bore size and NC lathe capable of performing this compensation method
EP0091320A1 (en) Turning control apparatus and method
Wilson et al. Adaptive control for a CNC lathe
JP7469466B2 (en) Machine tool control device, control system
JP2926524B2 (en) Numerical controller with trial cutting function
US20020025758A1 (en) Tool path preparing method and machining method
JPH0223285B2 (en)
JPH0788743A (en) Screw thread cutting method in nc lathe
JPH05158516A (en) Numerical controller having thread cutting control function
KR920005250B1 (en) Data control method