JPH05158516A - Numerical controller having thread cutting control function - Google Patents

Numerical controller having thread cutting control function

Info

Publication number
JPH05158516A
JPH05158516A JP34780391A JP34780391A JPH05158516A JP H05158516 A JPH05158516 A JP H05158516A JP 34780391 A JP34780391 A JP 34780391A JP 34780391 A JP34780391 A JP 34780391A JP H05158516 A JPH05158516 A JP H05158516A
Authority
JP
Japan
Prior art keywords
phase shift
point
circuit
thread cutting
touch sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34780391A
Other languages
Japanese (ja)
Inventor
Atsushi Endo
淳 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okuma Corp
Original Assignee
Okuma Machinery Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okuma Machinery Works Ltd filed Critical Okuma Machinery Works Ltd
Priority to JP34780391A priority Critical patent/JPH05158516A/en
Publication of JPH05158516A publication Critical patent/JPH05158516A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the work efficiency by measuring a thread part by a touch sensor attached to a movable part of a working machine, and calculating a phase shift amount. CONSTITUTION:The tip part of a touch sensor 102 is moved to a point for coming into contact with a screw thread of a work in the parallel direction (Z axis) against a main spindle rotation shaft, and a measuring position detecting circuit 13 inputs a contact signal SG from the touch sensor 102 through a sensor signal input circuit 12. Subsequently, the tip part of the touch sensor 102 is moved to a point for coming into contact with the screw thread of the work in the parallel direction (Z axis) against the main spindle rotation shaft in the reverse direction, and the measuring position detecting circuit 13 inputs its contact signal SG in the same way. On the other hand, the measuring position detecting circuit 13 always reads in position information SI from a position detecting device 16, stores a position of a working machine 10 at the time when the contact signal SG of each point is inputted, and also, sends it out to a phase shift calculating circuit 14. The phase shift calculating circuit 14 derives a middle point of each point by position information SH, sets a distance between two points as a phase shift amount and sends it out to a phase shift arithmetic circuit 9.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ねじ部が荒加工済みの
ワークを加工機に取付けてねじ部を再加工する場合、ね
じ切り開始点を自動的に補正することができるねじ切り
制御機能を有する数値制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention has a threading control function capable of automatically correcting a threading start point when a workpiece having a roughened threaded portion is mounted on a processing machine and the threaded portion is reworked. The present invention relates to a numerical control device.

【0002】[0002]

【従来の技術】図4は従来のねじ切り制御機能を有する
数値制御装置の一例を示すブロック図である。まず、オ
ペレータ等によってNCテープ等に作成され又は操作盤
から入力されたNCプログラムSAを読込回路1が読込
んで解析する。そして、図5に示すように加工機10に
てねじ切り工具101の刃先を所定のねじ切り開始点P
0に移動させ、続いてねじ切り開始点P0から主軸回転
軸に対して平行方向(Z軸)にねじピッチPの整数倍n
の距離(l=P×n)だけ離れた点P1に早送りで移動
させる。そして、NCプログラムSAの処理を一旦停止
させる。オペレータはパルスハンドルを操作してねじ切
り工具101の刃先を点P1から主軸回転軸に対して平
行方向(Z軸)に移動させてワーク100の荒加工済み
のねじ溝に合わせる。このときのねじ切り工具101の
刃先の位置を点P2とすると、点P1から点P2への移
動量を位相ずれ量δiとして位相ずれ量記憶回路8に記
憶させる。
2. Description of the Related Art FIG. 4 is a block diagram showing an example of a conventional numerical control device having a thread cutting control function. First, the reading circuit 1 reads and analyzes the NC program SA created on an NC tape or the like by an operator or the like and input from the operation panel. Then, as shown in FIG. 5, the cutting edge of the thread cutting tool 101 is moved to a predetermined thread cutting start point P in the processing machine 10.
0, and then an integer multiple n of the thread pitch P from the threading start point P0 in the direction parallel to the spindle rotation axis (Z axis).
It moves to the point P1 which is separated by the distance (1 = P × n) in the fast feed. Then, the processing of the NC program SA is temporarily stopped. The operator operates the pulse handle to move the blade edge of the thread cutting tool 101 from the point P1 in the direction parallel to the main shaft rotation axis (Z axis) to align it with the rough groove of the workpiece 100. When the position of the cutting edge of the thread cutting tool 101 at this time is point P2, the amount of movement from the point P1 to the point P2 is stored in the phase shift amount storage circuit 8 as the phase shift amount δi.

【0003】その後、NCプログラムSAの処理を復帰
させると、まず、加工機10にてねじ切り工具101の
刃先をねじ切り開始点P0に早送りで移動させ、ワーク
100が装着されている主軸を回転させる。読込回路1
がNCプログラムSAに指令されているねじ切り指令を
読込むと、ねじ切りサイクル指令SBをねじ切りサイク
ル回路2に送出すると共に、送り量を表わす送り指令F
を遅れ時間補正回路6、DIFF演算回路7及び位相ず
れ演算回路9に送出する。一方、REVパルスカウンタ
4は主軸の回転を計測してパルスデータrpとして主軸
回転数演算回路5に送出する。主軸回転数演算回路5は
パルスデータrpに基づいて1分間当りの主軸回転数R
に変換して遅れ時間補正回路6及びDIFF演算回路7
に送出する。遅れ時間補正回路6は主軸回転数R、送り
指令F及びパルスデータrpの検出から演算完了までの
遅れ時間ΔTにより数1に従って演算処理して演算遅れ
時間補正量Stを求めて位相ずれ演算回路9に送出す
る。
After that, when the processing of the NC program SA is restored, first, the cutting edge of the thread cutting tool 101 is rapidly moved to the thread cutting start point P0 in the processing machine 10 and the spindle on which the work 100 is mounted is rotated. Read circuit 1
Reads the thread cutting command instructed to the NC program SA, the thread cutting cycle command SB is sent to the thread cutting cycle circuit 2 and the feed command F indicating the feed amount is sent.
Is sent to the delay time correction circuit 6, the DIFF calculation circuit 7, and the phase shift calculation circuit 9. On the other hand, the REV pulse counter 4 measures the rotation of the spindle and sends it to the spindle rotation speed calculation circuit 5 as pulse data rp. The spindle rotation speed calculation circuit 5 determines the spindle rotation speed R per minute based on the pulse data rp.
To the delay time correction circuit 6 and the DIFF calculation circuit 7
To send to. The delay time correction circuit 6 performs a calculation process according to the formula 1 by the delay time ΔT from the detection of the spindle rotational speed R, the feed command F and the pulse data rp to the completion of the calculation to obtain the calculation delay time correction amount St, and the phase shift calculation circuit 9 To send to.

【数1】St=(R/60)×F×△T## EQU1 ## St = (R / 60) × F × ΔT

【0004】一方、DIFF演算回路7は主軸回転数
R、送り指令F及びサーボ系の速度偏差Kvにより数2
に従って演算処理してサーボ系遅れ量Sdを求めて位相
ずれ演算回路9に送出する。
On the other hand, the DIFF calculation circuit 7 uses Equation 2 based on the spindle rotational speed R, the feed command F and the speed deviation Kv of the servo system.
Then, the servo system delay amount Sd is calculated according to the above, and the servo system delay amount Sd is sent to the phase shift calculation circuit 9.

【数2】Sd={(R/60)×F}/Kv そして、位相ずれ演算回路9は演算遅れ時間補正量St
とサーボ系遅れ量Sdと位相ずれ量記憶回路8から読出
した位相ずれ量δiとの和を送り指令Fで除した余り
(数3参照)を位相ずれ補正量δtとしてねじ切りサイ
クル回路2へ送出する。
## EQU2 ## Sd = {(R / 60) × F} / Kv Then, the phase shift calculation circuit 9 calculates the calculation delay time correction amount St.
And the sum of the servo system delay amount Sd and the phase shift amount δi read from the phase shift amount storage circuit 8 divided by the feed command F (see Formula 3) is sent to the thread cutting cycle circuit 2 as the phase shift correction amount δt. ..

【数3】δt=(δi+St+Sd)/Fの剰余 ねじ切りサイクル回路2はねじ切り開始点POに対して
位相ずれ補正量δt分補正し、補正後のねじ切りサイク
ル指令SCを関数発生回路3に送出する。関数発生回路
3は補正後のねじ切りサイクル指令SCに従って関数S
Eを発生して加工機10のねじ切り動作を制御する。
## EQU3 ## Residue of δt = (δi + St + Sd) / F The thread cutting cycle circuit 2 corrects the thread cutting start point PO by the phase shift correction amount δt and sends the corrected thread cutting cycle command SC to the function generating circuit 3. The function generating circuit 3 outputs the function S according to the corrected thread cutting cycle command SC.
E is generated to control the thread cutting operation of the processing machine 10.

【0005】図6は上述した従来のねじ切り制御機能を
有する数値制御装置で補正されたねじ切り工具の刃先の
軌跡の一例を示す図である。ねじ切り工具101の刃先
は、補正されなければ最初にねじ切り開始点P10から
主軸回転軸に対して直角方向(X軸)に点P20まで移
動するが、補正される場合は点P20から主軸回転軸に
対して平行方向(Z軸)に位相ずれ補正量δt分だけワ
ーク側に近寄った点P11に移動する。次に、ねじ切り
工具101の刃先は所定のピッチでねじ切り加工を行い
ながら点P11から点P12へ移動し、点P12から主
軸回転軸に対して垂直方向(X軸)にワーク100から
離れた点P13まで移動した後ねじ切り開始点P10に
戻る。このように再加工時のねじ切り開始点を補正する
ことができるので、最初に荒加工したときと同一の位相
でそのねじ部を再加工することができる(特開昭62−
99020号公報参照)。
FIG. 6 is a diagram showing an example of the locus of the cutting edge of the thread cutting tool corrected by the above-described conventional numerical control device having a thread cutting control function. If not corrected, the cutting edge of the thread cutting tool 101 first moves from the thread cutting start point P10 to a point P20 in a direction (X axis) perpendicular to the spindle rotation axis, but if corrected, it changes from the point P20 to the spindle rotation axis. On the other hand, it moves to the point P11 approaching the work side by the phase shift correction amount δt in the parallel direction (Z axis). Next, the cutting edge of the thread cutting tool 101 moves from a point P11 to a point P12 while performing thread cutting at a predetermined pitch, and a point P13 separated from the work 100 in a direction (X axis) perpendicular to the spindle rotation axis from the point P12. After moving to, the process returns to the thread cutting start point P10. Since the starting point of thread cutting at the time of reworking can be corrected in this way, the threaded part can be reworked in the same phase as that at the time of first rough working (Japanese Patent Laid-Open No. 62-62-62).
99020 publication).

【0006】[0006]

【発明が解決しようとする課題】上述した従来のねじ切
り制御機能を有する数値制御装置では、荒加工済みのワ
ークのねじ部を再加工する度にオペレータがパルスハン
ドルを操作しながら目視によってねじ切り工具の刃先を
荒加工済みのねじ部のねじ溝に合わせて位相ずれ量を測
定していたので、オペレータの負担が大きく、位相ずれ
量の測定精度にばらつきが生じるという問題があった。
本発明は上述したような事情より成されたものであり、
本発明の目的は、高精度な位相ずれ量の測定を自動的に
行って再加工時のねじ切り開始点を自動的に補正する事
ができるねじ切り制御機能を有する数値制御装置を提供
することにある。
In the above-described conventional numerical control device having a thread cutting control function, the operator visually checks the thread cutting tool while operating the pulse handle each time the thread part of the rough-worked work is reworked. Since the amount of phase shift is measured by adjusting the blade edge to the thread groove of the rough-processed screw portion, there is a problem that the operator's burden is large and the measurement precision of the amount of phase shift varies.
The present invention has been made under the circumstances as described above,
An object of the present invention is to provide a numerical control device having a thread cutting control function capable of automatically performing highly accurate measurement of a phase shift amount and automatically correcting a thread cutting start point during rework. ..

【0007】[0007]

【課題を解決するための手段】本発明は、ねじ部が荒加
工済みのワークを加工機に取付けて前記ねじ部を再加工
する場合、前記取付け時に発生する前記ねじ部のねじ溝
の位相ずれ量と、前記加工機のサーボ系遅れ量と、数値
制御装置の演算遅れ時間とから算出した位相ずれ補正量
でねじ切り開始点を補正してねじ切り制御する機能を有
する数値制御装置に関するものであり、本発明の目的
は、前記ねじ部を前記加工機の可動部に取付けられたタ
ッチセンサにより計測して前記位相ずれ量を算出する算
出手段を具備する事によって達成される。
SUMMARY OF THE INVENTION According to the present invention, when a workpiece having a roughened screw portion is mounted on a processing machine and the screw portion is reprocessed, the phase shift of the thread groove of the screw portion occurs at the time of mounting. Amount, the servo system delay amount of the processing machine, and a numerical control device having a function of controlling the thread cutting by correcting the thread cutting start point with a phase shift correction amount calculated from the calculation delay time of the numerical control device, The object of the present invention is achieved by providing a calculating unit that measures the threaded portion with a touch sensor attached to a movable portion of the processing machine to calculate the phase shift amount.

【0008】[0008]

【作用】本発明にあっては、タッチセンサ先端部をねじ
山に接触させ、その時のタッチセンサ先端部の位置を検
出することにより位相ずれ量を自動的に算出するので、
高精度な位相ずれ量を得ることができる。
In the present invention, the phase shift amount is automatically calculated by bringing the tip of the touch sensor into contact with the screw thread and detecting the position of the tip of the touch sensor at that time.
A highly accurate phase shift amount can be obtained.

【0009】[0009]

【実施例】図1は本発明の数値制御装置の一例を図4に
対応させて示すブロック図であり、同一構成箇所は同符
号を付して説明を省略する。読込回路1はNCプログラ
ムSAに指令されている加工機10の可動部に取付けら
れたタッチセンサ102の動作に必要な動作方向及び位
置の情報を含むタッチセンサ動作指令SFをセンサ制御
回路11へ送出する。センサ制御回路11はタッチセン
サ動作指令SFを解析して、計測制御指令SJを作成し
て関数発生回路3へ送出する。関数発生回路3は計測制
御指令SJに従って関数を発生し、制御用モータ15の
動作を制御してタッチセンサ102の位置制御を行う。
即ち、図2に示すように最初にタッチセンサ102の先
端部をねじ切り開始点P0から主軸回転軸に対して平行
方向(Z軸)にねじのピッチPの整数倍nの距離(l=
P×n)だけ離れた点P1に移動させ、続いて点P1か
ら主軸回転軸にに対して垂直方向(X軸)にワーク10
0に向かった点P30まで移動させる。そして、図3に
示すように点P30まで移動させたタッチセンサ102
の先端部を主軸回転軸に対して平行方向(Z軸)にワー
ク100のねじ山に接触する点P31まで移動させ、そ
の接触と同時にタッチセンサ102からの接触信号SG
をセンサ信号入力回路12を介して計測位置検出回路1
3が入力する。そして、点P31まで移動させたタッチ
センサ102の先端部を先とは逆方向に主軸回転軸に対
して平行方向(Z軸)にワーク100のねじ山に接触す
る点P32まで移動させ、その接触と同時にタッチセン
サ102からの接触信号SGをセンサ信号入力回路12
を介して計測位置検出回路13が入力する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a block diagram showing an example of a numerical controller according to the present invention in correspondence with FIG. 4, and the same components are designated by the same reference numerals and their description is omitted. The reading circuit 1 sends to the sensor control circuit 11 a touch sensor operation command SF including information on the operation direction and position necessary for the operation of the touch sensor 102 attached to the movable part of the processing machine 10 instructed by the NC program SA. To do. The sensor control circuit 11 analyzes the touch sensor operation command SF, creates a measurement control command SJ, and sends it to the function generation circuit 3. The function generation circuit 3 generates a function according to the measurement control command SJ, controls the operation of the control motor 15, and controls the position of the touch sensor 102.
That is, as shown in FIG. 2, first, the tip portion of the touch sensor 102 is moved from the thread cutting start point P0 in the direction parallel to the spindle rotation axis (Z axis) at a distance n which is an integer multiple of the screw pitch P (l =
The workpiece 10 is moved in the direction (X axis) perpendicular to the spindle rotation axis from the point P1.
It moves to the point P30 which went to 0. Then, as shown in FIG. 3, the touch sensor 102 moved to the point P30.
Is moved to a point P31 in contact with the thread of the work 100 in a direction parallel to the main shaft rotation axis (Z axis), and at the same time as the contact, a contact signal SG from the touch sensor 102 is generated.
To the measurement position detection circuit 1 via the sensor signal input circuit 12
3 inputs. Then, the tip end portion of the touch sensor 102 moved to the point P31 is moved in the opposite direction to the point P32 which comes into contact with the thread of the work 100 in the direction parallel to the spindle rotation axis (Z axis), and the contact is made. At the same time, the contact signal SG from the touch sensor 102 is sent to the sensor signal input circuit 12
The measurement position detection circuit 13 inputs via the.

【0010】一方、計測位置検出回路13は位置検出装
置16から位置情報SIを常時読込んでおり、点P31
及び点P32の接触信号SGを入力したときの加工機1
0の位置を記憶すると共にそれらの位置情報SHを位相
ずれ算出回路14へ送出する。位相ずれ算出回路14は
位置情報SHにより数4に従って図3に示すように点P
31と点P32との中点である点P33を求め、この点
P33と点P30との距離を位相ずれ量δiとして算出
して位相ずれ演算回路9へ送出する。
On the other hand, the measurement position detection circuit 13 constantly reads the position information SI from the position detection device 16, and the point P31
And the processing machine 1 when the contact signal SG of the point P32 is input
The position of 0 is stored and the position information SH thereof is sent to the phase shift calculation circuit 14. The phase shift calculation circuit 14 uses the position information SH to calculate the point P as shown in FIG.
A point P33, which is the midpoint between 31 and the point P32, is obtained, the distance between the point P33 and the point P30 is calculated as the phase shift amount δi, and the calculated value is sent to the phase shift calculation circuit 9.

【数4】δi={(P31+P32)/2}−P30 なお、図2においてタッチセンサ102の先端部を点P
1から点P30へ移動させる際にワーク100に接触し
てしまった場合には、タッチセンサ102の先端部を一
旦点P1へ戻し、主軸回転軸に対して平行方向(Z軸)
に予め設定された移動量だけ平行移動させた後で、主軸
回転軸に対して垂直方向(X軸)にワーク100に向か
って移動させればよい。この予め設定された移動量及び
移動方向はタッチセンサ動作指令の中に指示されてい
る。
## EQU00004 ## .delta.i = {(P31 + P32) / 2} -P30 In addition, in FIG.
If the workpiece 100 comes into contact when moving from 1 to the point P30, the tip of the touch sensor 102 is temporarily returned to the point P1 and is parallel to the main shaft rotation axis (Z axis).
After the parallel movement by the preset movement amount, the movement may be made toward the work 100 in the direction (X axis) perpendicular to the main shaft rotation axis. The preset movement amount and movement direction are specified in the touch sensor operation command.

【0011】[0011]

【発明の効果】以上の様に本発明のねじ切り制御機能を
有する数値制御装置によれば、自動的に高精度な位相ず
れ量の測定を行って再加工時のねじ切り開始点を自動的
に補正することができるので、オペレータの労力が軽減
されて作業効率の向上を図ることができると共に、高精
度なねじ切り加工を行う事ができる。
As described above, according to the numerical controller having the thread cutting control function of the present invention, the highly accurate measurement of the phase shift amount is automatically performed to automatically correct the thread cutting start point at the time of reworking. Therefore, it is possible to reduce the labor of the operator, improve the work efficiency, and perform highly accurate thread cutting.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のねじ切り制御機能を有する数値制御装
置の一例を示すブロック図である。
FIG. 1 is a block diagram showing an example of a numerical control device having a thread cutting control function of the present invention.

【図2】本発明装置による位相ずれ量の測定方法の一例
を説明するための第1の図である。
FIG. 2 is a first diagram for explaining an example of a method of measuring a phase shift amount by the device of the present invention.

【図3】本発明装置による位相ずれ量の測定方法の一例
を説明するための第2の図である。
FIG. 3 is a second diagram for explaining an example of a method of measuring a phase shift amount by the device of the present invention.

【図4】従来のねじ切り制御機能を有する数値制御装置
の一例を示すブロック図である。
FIG. 4 is a block diagram showing an example of a conventional numerical control device having a thread cutting control function.

【図5】従来装置による位相ずれ量の測定方法の一例を
説明するための図である。
FIG. 5 is a diagram for explaining an example of a method of measuring a phase shift amount by a conventional device.

【図6】従来装置において位相ずれ量が補正された後の
工具の軌跡の一例を示す図である。
FIG. 6 is a diagram showing an example of a trajectory of a tool after a phase shift amount is corrected in a conventional device.

【符号の説明】[Explanation of symbols]

11 センサ制御回路 12 センサ信号入力回路 13 計測位置算出回路 14 位相ずれ算出回路 15 制御用モータ 16 位置検出装置 102 タッチセンサ 11 sensor control circuit 12 sensor signal input circuit 13 measurement position calculation circuit 14 phase shift calculation circuit 15 control motor 16 position detection device 102 touch sensor

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ねじ部が荒加工済みのワークを加工機に
取付けて前記ねじ部を再加工する場合、前記取付け時に
発生する前記ねじ部のねじ溝の位相ずれ量と、前記加工
機のサーボ系遅れ量と、数値制御装置の演算遅れ時間と
から算出した位相ずれ補正量でねじ切り開始点を補正し
てねじ切り制御する機能を有する数値制御装置におい
て、前記ねじ部を前記加工機の可動部に取付けられたタ
ッチセンサにより計測して前記位相ずれ量を算出する算
出手段を備えたことを特徴とするねじ切り制御機能を有
する数値制御装置。
1. When a workpiece having rough threaded parts is mounted on a processing machine and the threaded parts are reprocessed, the amount of phase shift of the thread groove of the threaded parts generated at the time of mounting and the servo of the processing machine. In a numerical control device having a function of correcting a thread cutting start point with a phase shift correction amount calculated from a system delay amount and a calculation delay time of a numerical control device, and controlling the thread cutting, the screw part is provided as a movable part of the processing machine. A numerical control device having a thread cutting control function, comprising a calculating means for measuring the amount of phase shift by measuring with a mounted touch sensor.
JP34780391A 1991-12-03 1991-12-03 Numerical controller having thread cutting control function Pending JPH05158516A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34780391A JPH05158516A (en) 1991-12-03 1991-12-03 Numerical controller having thread cutting control function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34780391A JPH05158516A (en) 1991-12-03 1991-12-03 Numerical controller having thread cutting control function

Publications (1)

Publication Number Publication Date
JPH05158516A true JPH05158516A (en) 1993-06-25

Family

ID=18392692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34780391A Pending JPH05158516A (en) 1991-12-03 1991-12-03 Numerical controller having thread cutting control function

Country Status (1)

Country Link
JP (1) JPH05158516A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110153510A (en) * 2019-03-26 2019-08-23 宁夏天地奔牛实业集团有限公司 A kind of digital control type interlocks feed Screw thread process method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110153510A (en) * 2019-03-26 2019-08-23 宁夏天地奔牛实业集团有限公司 A kind of digital control type interlocks feed Screw thread process method

Similar Documents

Publication Publication Date Title
WO2006016420A1 (en) Method for machining work
EP0557530A1 (en) Numerical control device
US5477117A (en) Motion controller and synchronous control process therefor
KR940011352B1 (en) Numerically controlled machine tool
KR100231115B1 (en) Servomotor control method
US6539275B1 (en) Machine controller and process with two-step interpolation
KR0139526B1 (en) Numerical Control Unit for Grinding Machine
US4387327A (en) Numerical control system for a crankshaft milling machine integral interpolators
JP4193799B2 (en) Threading control method and apparatus
EP0487738B1 (en) System for correcting quantity of deformation of tool
EP0453571A1 (en) Method of correcting positional fluctuations of machine
JPH05138497A (en) Correction of wear of tool
JPH05158516A (en) Numerical controller having thread cutting control function
JPH04256552A (en) Tracer control unit
JP4236483B2 (en) Machine tools with tool wear compensation
JPH07210225A (en) Numerical controller
JP3230594B2 (en) Position control method and apparatus for electric discharge machine
JPH0895625A (en) Backlash measurement/correction device for machining of spherical or circular arc surface
JPH09258812A (en) Numerical controller
JPS6299020A (en) Thread cutting control system
JPH06246589A (en) Noncircular workpiece error correcting method by in-machine measurement
JP2802117B2 (en) Processing machine with teaching function
JPS62270291A (en) Real time control device in laser beam machine
JPS63146105A (en) Locus controller
JP2001071235A (en) Numerical control device