JPS6298718A - Vapor growth device - Google Patents

Vapor growth device

Info

Publication number
JPS6298718A
JPS6298718A JP23986385A JP23986385A JPS6298718A JP S6298718 A JPS6298718 A JP S6298718A JP 23986385 A JP23986385 A JP 23986385A JP 23986385 A JP23986385 A JP 23986385A JP S6298718 A JPS6298718 A JP S6298718A
Authority
JP
Japan
Prior art keywords
wafer
reaction chamber
vapor phase
wafer support
stand
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23986385A
Other languages
Japanese (ja)
Inventor
Kazuhiro Karatsu
唐津 和裕
Mikio Takebayashi
幹男 竹林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP23986385A priority Critical patent/JPS6298718A/en
Publication of JPS6298718A publication Critical patent/JPS6298718A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To form the film of good quality having excellent uniformity by a method wherein the center part of a wafer supporting stand is composed of a first member having a low absorption factor for infrared rays, the outer circumference of the wafer supporting stand is composed of a second member having a high absorption factor for infrared rays, and a conveying means with which said wafer-carrying second member is carried to outside a reaction chamber is provided. CONSTITUTION:A wafer supporting stand 19 is composed of the first member 19a made of quartz having the disc-shaped center part and the disc-shaped and SiC-coated member 19b made of graphite surrounding the side of the first member 19a. Also, the center part of the first member 19a is supported by a supporting post 22, and the lower end of the supporting post 22 is coupled to a rotating means 23. A round- shaped and convexed placing stand 30, having the upper part of diameter smaller than the inside diameter of the second member 19b of the wafer supporting stand and two arms 32 to be used as the conveying means with which a wafer 31 is carried between the reaction chamber and the placing stand 30 in the state wherein the wafer is placed on the second member 19b of the wafer supporting stand, are provided on the outside of a reaction chamber 12 at the position opposing to the wafer supporting stand 19 astriding an aperture 29.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、半導体工業で広く移用される赤外線加熱方式
を採用した気相成長装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a vapor phase growth apparatus employing an infrared heating method, which is widely used in the semiconductor industry.

従来の技術 半導体工業′における気相成長装置においては、反応ガ
ス分子をウェハ表面で熱により分解析出させ、多結晶シ
リコン等の薄膜を形成させるものである。こうして形成
される膜の厚さ、および比抵抗の均一性は、ウェハ表面
温度に大きく影響される。従って良質な気相成長膜を得
るためには、半導体基板を全面に渡って均一な温度分布
に保持することが必要である。
Conventional vapor phase growth equipment in the semiconductor industry uses heat to separate reactive gas molecules on the surface of a wafer to form a thin film of polycrystalline silicon or the like. The thickness of the film thus formed and the uniformity of resistivity are greatly influenced by the wafer surface temperature. Therefore, in order to obtain a high quality vapor phase grown film, it is necessary to maintain a uniform temperature distribution over the entire surface of the semiconductor substrate.

従来の赤外線加熱方式を採用した気相成長装置は、例え
ば特公昭57−44009号公報に示されているように
、第4図のような構成になっていた。
A conventional vapor phase growth apparatus employing an infrared heating method has a configuration as shown in FIG. 4, as shown in Japanese Patent Publication No. 57-44009, for example.

反応室は石英ベルジャ1とベース板2によって完全に外
気と遮断できるようになっており、ベース板2には反応
ガスを供給するだめのガス供給口3と、反応ガスを排出
するためのガス排出口4が取り付けられている。また、
ベース板2上には、ウェハ6を載置するウェハ支持台6
が設置されている。また、石英ペルジャズの外側には、
ウェハ5を加熱するだめの赤外線ランプ7と、赤外線ラ
ンプ7の反射光線が効率よくウェハ6に照射するように
反射鏡8が取り付けられている。
The reaction chamber can be completely isolated from the outside air by a quartz belljar 1 and a base plate 2, and the base plate 2 has a gas supply port 3 for supplying the reaction gas and a gas exhaust port for discharging the reaction gas. Outlet 4 is installed. Also,
On the base plate 2 is a wafer support stand 6 on which the wafer 6 is placed.
is installed. Also, on the outside of the quartz perjaz,
An infrared lamp 7 for heating the wafer 5 and a reflecting mirror 8 are installed so that reflected light from the infrared lamp 7 can efficiently irradiate the wafer 6.

発明が解決しようとする問題点 しかしながら上記のように構成された従来の気相成長装
置では、ウェハ5表面の温度分布は、赤外線ランプ7か
ら供給される熱エネルギーと、ウェハ5およびウェハ支
持台6からの対流、輻射等による熱の放出量により決定
され、ウエノ・支持台6の上面は、赤外線ランプ7から
の一定の輻射熱を受け、一方、外周面については、その
表面温度に対応した大量の熱が放出される。従って、ウ
ェハ支持台6の表面、即ちウェハ5の温度分布は、中央
部が高く外周はど低いという分布になってしまう。また
赤外線ランプ自体も、端部に比べて中央部がより発熱温
度が高い傾向にある。これらの結果、ウェハ6上に気相
成長させた薄膜は、中央に比べて端の方が薄くなるとい
う欠点を有していた。これらの事態を回避するため、各
赤外線ランプの夫々に印加する電力を制御する方法がと
られているが、各赤外線ランプと平行に位置する部分の
温度分布むらは解消されない。更に、ウェハ支持台を回
転する方法が考えられるが、今後、処理するウニろ・の
径が大きくなると、温度分布むらを解消するのは難しく
なってくる。
Problems to be Solved by the Invention However, in the conventional vapor phase growth apparatus configured as described above, the temperature distribution on the surface of the wafer 5 depends on the thermal energy supplied from the infrared lamp 7 and the wafer 5 and wafer support 6. The upper surface of the support base 6 receives a certain amount of radiant heat from the infrared lamp 7, while the outer peripheral surface receives a large amount of heat corresponding to its surface temperature. Heat is released. Therefore, the temperature distribution on the surface of the wafer support 6, that is, on the wafer 5, is high at the center and low at the outer periphery. Furthermore, the temperature of the infrared lamp itself tends to be higher at the center than at the edges. As a result, the thin film grown on the wafer 6 by vapor phase growth has the disadvantage that it is thinner at the edges than at the center. In order to avoid these situations, methods have been taken to control the power applied to each infrared lamp, but this does not solve the problem of uneven temperature distribution in the portions located parallel to each infrared lamp. Furthermore, a method of rotating the wafer support table is considered, but as the diameter of the sea urchin filtrate to be processed becomes larger in the future, it will become difficult to eliminate uneven temperature distribution.

まだ、処理速度の高速化を図るためウェハの移送手段を
設けた気相成長装置(例えば、特開昭59−22292
2)も考案されているが、この装置においては第5図に
示すようにウニ/−9の移送を爪を備えたアーム10で
行っているため、ウェハ支持台11には必然的に複数の
凹部が設けられており、この凹部による膜形成の均一性
が低下するとともに、ウェハ支持台に回転機構を設けた
場合、ウェハの移送が難しくなる。さらに、膜はウェハ
上のみならず、温度が高くなっているウェハ支持台上に
も当然付着する。繰り返し成長を行うと付着した膜が剥
離してウェハ上に落下し、異常成長や汚れの原因となる
。従って、複数回成長を行った後、ウェハ支持台を取り
出し付着した膜を定期的に除去する必要があり、上述の
ウエノ・の移送手段を備えても、この作業により、処理
速度が大巾に低下してしまう。
There are still vapor phase growth apparatuses equipped with wafer transfer means to increase processing speed (for example, Japanese Patent Laid-Open No. 59-22292
2) has also been devised, but in this device, as shown in FIG. A recess is provided, which reduces the uniformity of film formation, and also makes it difficult to transfer the wafer if a rotation mechanism is provided on the wafer support. Furthermore, the film naturally adheres not only to the wafer but also to the wafer support, which is at a high temperature. If growth is repeated, the attached film will peel off and fall onto the wafer, causing abnormal growth and contamination. Therefore, after performing multiple growths, it is necessary to take out the wafer support and periodically remove the attached film, and even if the above-mentioned wafer transfer means is provided, this operation greatly reduces the processing speed. It will drop.

そこで本発明は、ウェハ上の温度均一化をはかり、均一
性のすぐれた良質の気相成長膜を形成するとともにウェ
ハの移載を効率よく行うことのできる気相成長装置を提
供するものである、問題点を解決するだめの手段 上記問題点を解決するために本発明の気相成長装置は、
回転自在なウェハ支持台の中央部を赤外光の吸収率の低
い第1の部材で、その外周を赤外光の吸収率の高い第2
の部材で構成し、ウェハを載置した前記の第2の部材を
移送する手段を備えたものである。
Therefore, the present invention provides a vapor phase growth apparatus that can uniformize the temperature on the wafer, form a high quality vapor phase growth film with excellent uniformity, and efficiently transfer the wafer. Means for Solving the Problems In order to solve the above problems, the vapor phase growth apparatus of the present invention includes:
The center of the rotatable wafer support is a first member with a low absorption rate of infrared light, and the outer periphery is a second member with a high absorption rate of infrared light.
The second member has a wafer placed thereon and is provided with means for transporting the second member on which the wafer is placed.

作   用 本発明は上記した構成によって、赤外線ランプから照射
される赤外光は、ウェハ支持台の外周部がより吸収され
、外周からの熱の放出と相殺されウェハ全面にわたって
温度が均一となる。捷だ、ウェハの移載をウェハ支持台
に載置した状態で行うため、ウェハ支持台からウェハを
浮かす必要がなく、機構が簡単で形成した膜の均一性も
得やすくなる。さらに、ウェハ支持台に付着した膜を除
去する場合は、反応室外にウェハ支持台を移送した際定
期的に別のウェハ支持台と交換して行うことができる。
Effect of the Invention According to the above-described structure of the present invention, the infrared light emitted from the infrared lamp is absorbed more in the outer peripheral part of the wafer support, and the temperature is made uniform over the entire surface of the wafer by canceling out the heat released from the outer peripheral part. Since the wafer is transferred while placed on the wafer support, there is no need to lift the wafer from the wafer support, the mechanism is simple, and it is easier to obtain uniformity in the formed film. Furthermore, in order to remove the film attached to the wafer support, this can be done by periodically replacing the wafer support with another wafer support when the wafer support is transferred outside the reaction chamber.

実施例 以下、本発明の実施例を図面を参照して説明する。第1
図は、本発明の一実施例における気相成長装置の外観図
であり、第2図は反応室の断面図を示したものである。
Embodiments Hereinafter, embodiments of the present invention will be described with reference to the drawings. 1st
The figure is an external view of a vapor phase growth apparatus in one embodiment of the present invention, and FIG. 2 is a sectional view of a reaction chamber.

図において、反応室12は、内部に水冷溝2oが施され
たステンレスより成る壁面部材21と、上部に設けた透
明石英プレート13から構成されている。この透明石英
プレート13は、Oリング等の既知のガスシール手段を
介して上記壁面部材21に固定されている。反応室12
の側壁の一端に図示しないガス供給装置から伸びたガス
供給管が結合したガス供給口14と、他端には図示しな
いロータリーポンプなどの真空排気装置と連結した排気
口15が設けである。まだ、前記反応室12の外部上方
には、加熱ブロック16が取り付けである。この加熱ブ
ロック16は、水平な棒状の赤外線ランプ1了が前記ガ
ス供給口14からガス排出口15に流れる反応ガスの流
れ方向と直交するように等間隔で複数本(7本〕配列さ
れ、それらの上部には反射鏡18が配置された構造にな
っている。そして、赤外線ランプ17は、ガス供給側2
本、中央3本、ガス排出側2本の3つのゾーンに分け、
それぞれ図示しない電力調整ユニットに電気的に接続さ
れ、ガス流れ方向の温度制御を可能にしている。また、
前記反応室12の内部には、ウェハを載置するウエノ・
支持台19が設置されている。このウェハ支持台19は
、第3図に示すように中心部が円板形状の石英よりなる
第1の部材19aと、この第1の部材19aの倶H1j
を囲む円板形状のSiCでコーティングされたグラファ
イトよりなる第2の部材19bで構成されている。また
、前記第1の部材19aの中心部は支持ポスト22によ
り支持されており、前記支持ポスト22の下端が回転手
段23に連結されている。従って支持ポスト22を介し
て、ウェハ支持台19が回転される。また反応室の排気
口側には、キャリアガス供給管24に連結され、透明石
英プレート12の下面に近接した位置に開口を有するキ
ャリアガス供給口25が形成されている。
In the figure, the reaction chamber 12 is composed of a wall member 21 made of stainless steel and having a water cooling groove 2o therein, and a transparent quartz plate 13 provided on the upper part. This transparent quartz plate 13 is fixed to the wall member 21 via a known gas sealing means such as an O-ring. Reaction chamber 12
A gas supply port 14 connected to a gas supply pipe extending from a gas supply device (not shown) is provided at one end of the side wall, and an exhaust port 15 connected to a vacuum evacuation device such as a rotary pump (not shown) is provided at the other end. A heating block 16 is still attached above the outside of the reaction chamber 12. This heating block 16 has a plurality of horizontal rod-shaped infrared lamps (7 lamps) arranged at equal intervals so as to be perpendicular to the flow direction of the reaction gas flowing from the gas supply port 14 to the gas discharge port 15. The infrared lamp 17 is connected to the gas supply side 2.
Divided into three zones: main, three in the center, and two on the gas exhaust side.
Each is electrically connected to a power adjustment unit (not shown), making it possible to control the temperature in the gas flow direction. Also,
Inside the reaction chamber 12, there is a wafer plate on which a wafer is placed.
A support stand 19 is installed. As shown in FIG. 3, this wafer support stand 19 includes a first member 19a made of quartz and having a disk-shaped center, and a part H1j of this first member 19a.
The second member 19b is made of SiC-coated graphite and has a disc shape surrounding it. Further, the center portion of the first member 19a is supported by a support post 22, and the lower end of the support post 22 is connected to a rotating means 23. Therefore, the wafer support stand 19 is rotated via the support post 22. Further, on the exhaust port side of the reaction chamber, a carrier gas supply port 25 is formed which is connected to the carrier gas supply pipe 24 and has an opening close to the lower surface of the transparent quartz plate 12.

更に、第2図に示しであるように、キャリアガス供給口
25の下方近接した位置に反応室側壁の突出部26に外
周を支持され、透明石英プレート13の下面との間でキ
ャリアガス供給口25から供給されたキャリアガスが矢
印のようにまず透明石英プレート13の下面に沿って流
れ、続いてガス供給口14側で折り返して反応室12内
に噴出するように、流路を形成する仕切板27が配置さ
れている。この仕切板27は透明石英のような赤外光を
透過する材質より形成されている。また、反応室12の
前部側壁にはゲートバルブ28を具備した開口29を有
し、反応室12の外部にはこの開口29をはさんでウェ
ハ支持台19と相対した位置に上部がウェハ支持台の第
2の部材19bの内径より小さい円形凸状の載14台3
oと、ウェハ31をウェハ支持台の第2の部材19bに
載置したまま、反応室内と載置台30との間を移送する
ための移送手段としての2本のアーム32が設けられて
いる。このアーム32は、例えば石英のような耐熱性、
耐腐蝕性を有する材料からなるものである。更に、載置
台3oの近くには、図示していないウニバカセントと載
置台30との間でウェハ31を移送するウェハ移載装置
33が設けである。
Furthermore, as shown in FIG. 2, the outer periphery of the carrier gas supply port 25 is supported by a protrusion 26 on the side wall of the reaction chamber at a position close to the bottom of the carrier gas supply port 25, and the carrier gas supply port A partition that forms a flow path so that the carrier gas supplied from 25 first flows along the lower surface of the transparent quartz plate 13 as shown by the arrow, then turns around at the gas supply port 14 side and is ejected into the reaction chamber 12. A plate 27 is arranged. The partition plate 27 is made of a material that transmits infrared light, such as transparent quartz. Further, the front side wall of the reaction chamber 12 has an opening 29 equipped with a gate valve 28, and the upper part of the reaction chamber 12 supports a wafer at a position facing the wafer support 19 across the opening 29. A circular convex pedestal 14 3 smaller than the inner diameter of the second member 19b of the pedestal
o and two arms 32 are provided as transfer means for transferring the wafer 31 between the reaction chamber and the mounting table 30 while the wafer 31 is placed on the second member 19b of the wafer support. This arm 32 is made of heat-resistant material such as quartz, for example.
It is made of a material that is corrosion resistant. Furthermore, a wafer transfer device 33 for transferring the wafer 31 between the univaccent and the mounting table 30 (not shown) is provided near the mounting table 3o.

上記構成による気相成長装置において、その動作を多結
晶/リコンの成長を例にとり説明すると、まず、赤外線
ランプ17に図示しない電力調整ユニットを介して電力
を供給し、ウェハ温度を600°C以上の所定温度に加
熱する。この時ウェハ支持台19を支持ポスト22を介
して回転手段23により回転させながらガス供給口14
を通してモノシラン等の反応ガスを適当な濃度で含有し
たヘリウムベースの混合ガスを供給することによって、
この混合ガスは、ガス排気口15に向って流れ、この間
にウェハ支持台19に接したガス相から反応ガスが分解
析出し、ウェハ31の表面に多結晶シリコン膜が形成さ
れる。この時同時にキャリアガス供給口25を通して非
反応ガスとしてヘリウムのみを供給する。このガスは透
明石英プレート13に沿って流れだ後、仕切板27の下
面に沿って反応室12内に混合ガスと同方向に噴出され
る。
To explain the operation of the vapor phase growth apparatus having the above configuration using polycrystalline/recon growth as an example, first, power is supplied to the infrared lamp 17 via a power adjustment unit (not shown) to raise the wafer temperature to 600°C or higher. heating to a specified temperature. At this time, while rotating the wafer support stand 19 by the rotation means 23 via the support post 22, the gas supply port 14
By supplying a helium-based gas mixture containing a reactive gas such as monosilane at an appropriate concentration through the
This mixed gas flows toward the gas exhaust port 15, and during this time, a reactive gas is separated out from the gas phase in contact with the wafer support 19, and a polycrystalline silicon film is formed on the surface of the wafer 31. At this time, only helium is supplied as a non-reactive gas through the carrier gas supply port 25. After flowing along the transparent quartz plate 13, this gas is ejected into the reaction chamber 12 along the lower surface of the partition plate 27 in the same direction as the mixed gas.

このようにガスを供給することによって、非反応ガス膜
が上層に形成され、反応ガスを含む混合ガスが固体壁面
に接触することが断たれ、透明石英部品に反応生成物が
付着することがない。
By supplying the gas in this way, a non-reactive gas film is formed on the upper layer, preventing the mixed gas containing the reactive gas from coming into contact with the solid wall surface, and preventing reaction products from adhering to the transparent quartz parts. .

この気相成長工程において、ウェハ支持台19に単一材
質、例えばSiCでコーティングしたグラファイトを用
いた場合、ウニ/1支持台19中心部の温度が高くなり
、加熱ブロック16の各ゾーンの赤外線ランプ18に供
給する電力を調整してもウニ八表面の温度分布むらを抑
制できなかったが、本実施例に示すようにウェハ支持台
中心部を周辺部に比較して赤外光を透過しやすい材質に
することにより温度分布むらを解消し、ウェハ内の膜厚
のばらつきが改善された。
In this vapor phase growth process, if a single material such as graphite coated with SiC is used for the wafer support 19, the temperature at the center of the urchin/1 support 19 will be high, and the infrared lamps in each zone of the heating block 16 will Although the temperature distribution unevenness on the surface of the wafer support 18 could not be suppressed by adjusting the power supplied to the wafer support 18, as shown in this example, infrared light is more easily transmitted through the center of the wafer support than the peripheral area. By changing the material, uneven temperature distribution was eliminated, and variations in film thickness within the wafer were improved.

次にウェハの移送機構について説明すると、まず、気相
成長が終了した後、反応室内を非反応ガス、例えばヘリ
ウムでパージし、反応室内より完全に反応ガスを追い出
す。次に常圧にもどし、ゲートパルプ28を開ける。2
本のアーム32は載置台3Qとウェハ支持台19とを結
ぶ方向と上下方向に動作可能であり、ゲートパルプ2B
が開い取り出す。当然、2本のアームは、第2の部材1
9bのみを移送する様、その間隔を規定した。
Next, the wafer transfer mechanism will be described. First, after the vapor phase growth is completed, the reaction chamber is purged with a non-reactive gas, such as helium, to completely expel the reaction gas from the reaction chamber. Next, the pressure is returned to normal and the gate pulp 28 is opened. 2
The book arm 32 is movable in the direction connecting the mounting table 3Q and the wafer support table 19 and in the vertical direction, and
opens and takes it out. Naturally, the two arms are connected to the second member 1
The interval was determined so that only 9b was transferred.

反応室外に取り出した第2の部材19bとウニノ・31
を載せたアームは載置台上で下方に移動し、ウェハ31
のみを載置台30の先端部に載置させ、次に、ウェハ移
載装置33によりウニノー31を図示しないウェハカセ
ットに収納する。更に、気相成長を続ける場合は新しい
ウェハをウェハカセットから取り出し載置台30の上に
載せ、アーム32で反応室内に挿入して行う。
The second member 19b and Unino 31 taken out of the reaction chamber
The arm carrying the wafer moves downward on the mounting table, and the wafer 31 is placed on the arm.
Then, the wafer transfer device 33 stores the unicorn 31 in a wafer cassette (not shown). Furthermore, if vapor phase growth is to be continued, a new wafer is taken out from the wafer cassette, placed on the mounting table 30, and inserted into the reaction chamber using the arm 32.

また、上記の実施例ではウェハ支持台19の第2の部材
19bは、表面及び周囲が反応ガスにさらされ、かつ温
度も高くなるため反応生成物が付着するが、これを除去
するため、第2の部材19bが反応室の外、即ち載置台
の位置にきたとき、別のものと交換し、洗浄することが
できる。
In addition, in the above embodiment, the surface and surroundings of the second member 19b of the wafer support 19 are exposed to the reaction gas, and the temperature also becomes high, so that reaction products adhere to the second member 19b. When the second member 19b comes to the outside of the reaction chamber, that is, to the position of the mounting table, it can be replaced with another one and cleaned.

なお、本実施例では、ウェハは反応室より直接大気中に
取り出したが、ゲートパルプをはさんで真空予備室を設
け、真空予備室内に載置台及びアームを取り付け、反応
室を大気に触れさせずにウェハの移載を行うことも可能
である。
In this example, the wafer was directly taken out from the reaction chamber into the atmosphere, but a vacuum preliminary chamber was provided with a gate pulp in between, and a mounting table and an arm were installed in the vacuum preliminary chamber to expose the reaction chamber to the atmosphere. It is also possible to transfer the wafers without having to do so.

また、本実施例では多結晶ンリコンの気相成長について
説明したが、他の酸化シリコン、窒化シリコン等の気相
成長膜に利用できるのは言うまでもない。
Further, in this embodiment, the vapor phase growth of polycrystalline silicon has been described, but it goes without saying that the present invention can be used for vapor phase growth of other silicon oxides, silicon nitrides, and the like.

発明の効果 以上のように本発明は、ウェハ支持台の中心部を赤外光
の吸収率の低い第1の部材で、その外周を赤外光の吸収
率の高い第2の部材で構成し、ウェハを載置した前記の
第2の部材を反応室外に移送する移送手段とを備えるこ
とにより、ウェハの移載機構が簡単で、しかも良質の膜
を均一性よく形成でき、その効果は犬なるものである。
Effects of the Invention As described above, in the present invention, the center of the wafer support is made up of a first member with a low absorption rate of infrared light, and the outer periphery is made up of a second member with a high absorption rate of infrared light. By providing a transfer means for transferring the second member on which the wafer is placed to the outside of the reaction chamber, the wafer transfer mechanism is simple, and a high-quality film can be formed with good uniformity, and the effect is outstanding. It is what it is.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例における気相成長装置の外観
図、第2図は同装置の反応室を示す断面図、第3図は本
発明の一実施例に用いたウェハ支持台の断面図、第4図
は従来の気相成長装置の反応室の断面図、第5図はウェ
ハの搬送手段を備えた従来の気相成長装置の一部を示す
概略斜視図である。 12・・・・・反応室、13・・・・・透明石英プレー
ト、17・・・・赤外線ランプ、19・・・・・ウェハ
支持台、23・・・・・・回転手段、28・・・・・・
ゲートパルプ、30・・・・・・載置台、31 ・・−
・・ウェハ、32・・・・・・アーム。 代理人の氏名 弁理士 中 尾 敏 男 はが1名!q
−−−ウェハ文Jでト台 23− 回転!X 28−−−デートlでルデ 第1図     30−籾1寸 52−m−アーム 第3図 第4図
Fig. 1 is an external view of a vapor phase growth apparatus according to an embodiment of the present invention, Fig. 2 is a sectional view showing a reaction chamber of the same apparatus, and Fig. 3 is a wafer support stand used in an embodiment of the present invention. 4 is a sectional view of a reaction chamber of a conventional vapor phase growth apparatus, and FIG. 5 is a schematic perspective view showing a part of a conventional vapor phase growth apparatus equipped with a wafer conveying means. 12...Reaction chamber, 13...Transparent quartz plate, 17...Infrared lamp, 19...Wafer support stand, 23...Rotating means, 28...・・・・・・
Gate pulp, 30...Placement stand, 31...-
...Wafer, 32...Arm. Name of agent: Patent attorney Toshio Nakao 1 person! q
---Wafer sentence J to table 23- Rotation! X 28--Date l and Rude Fig. 1 30-1 size of paddy 52-m-Arm Fig. 3 Fig. 4

Claims (3)

【特許請求の範囲】[Claims] (1)ガス供給口とガス排出口とウェハを出し入れする
ゲートバルブとを備えるとともに、壁面の一部が赤外光
を透過する材質でできた反応室と、前記反応室の外部に
あって内部に赤外光を照射する赤外線ランプと、前記反
応室の内部にあって前記赤外線ランプが発する赤外光に
略均一に照射される位置に配置され、中心部が赤外光の
吸収率の低い第1の部材からなり、前記第1の部材の側
面を囲む部分が赤外光の吸収率の高い第2の部材からな
るウェハ支持台と、前記第1の部材の中心部に連結され
前記ウェハ支持台を回転させる回転手段と、前記反応室
の外部にあって、前記ゲートバルブから取り出したウェ
ハおよび前記第2の部材を載置する載置台と、前記ウェ
ハ支持台から前記載置台へ、ウェハおよび前記第2の部
材を移送するための移送手段とからなる気相成長装置。
(1) A reaction chamber that is equipped with a gas supply port, a gas discharge port, and a gate valve for loading and unloading wafers, and a part of the wall surface is made of a material that transmits infrared light; an infrared lamp that irradiates infrared light to the reaction chamber; and an infrared lamp located inside the reaction chamber at a position where it is almost uniformly irradiated with the infrared light emitted by the infrared lamp, and whose center part has a low absorption rate of infrared light. a wafer support stand made of a first member, the part surrounding the side surface of the first member being made of a second member having a high absorption rate of infrared light; a rotating means for rotating the support table; a mounting table located outside the reaction chamber on which the wafer taken out from the gate valve and the second member are mounted; and a transfer means for transferring the second member.
(2)ウェハ支持台の第1の部材が石英からなり、第2
の部材がグラファイトからなる特許請求の範囲第1項記
載の気相成長装置。
(2) The first member of the wafer support is made of quartz, and the second member is made of quartz.
The vapor phase growth apparatus according to claim 1, wherein the member is made of graphite.
(3)ウェハ支持台の第2の部材の内径が処理するウェ
ハの径より小さく、反応室の外部に設けた載置台が上下
2段からなり、上部がウェハ支持台の第2部材の内径よ
り小さい径を有する略円筒状であることを特許請求の範
囲第一記載の気相成長装置。
(3) The inner diameter of the second member of the wafer support stand is smaller than the diameter of the wafer to be processed, and the mounting stand installed outside the reaction chamber consists of two stages, upper and lower, with the upper part being smaller than the inner diameter of the second member of the wafer support stand. The vapor phase growth apparatus according to claim 1, wherein the vapor phase growth apparatus has a substantially cylindrical shape having a small diameter.
JP23986385A 1985-10-25 1985-10-25 Vapor growth device Pending JPS6298718A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23986385A JPS6298718A (en) 1985-10-25 1985-10-25 Vapor growth device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23986385A JPS6298718A (en) 1985-10-25 1985-10-25 Vapor growth device

Publications (1)

Publication Number Publication Date
JPS6298718A true JPS6298718A (en) 1987-05-08

Family

ID=17051001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23986385A Pending JPS6298718A (en) 1985-10-25 1985-10-25 Vapor growth device

Country Status (1)

Country Link
JP (1) JPS6298718A (en)

Similar Documents

Publication Publication Date Title
JP2654996B2 (en) Vertical heat treatment equipment
US4926793A (en) Method of forming thin film and apparatus therefor
US5534072A (en) Integrated module multi-chamber CVD processing system and its method for processing subtrates
KR100319494B1 (en) Apparatus for Deposition of thin films on wafers through atomic layer epitaxial process
US6617247B2 (en) Method of processing a semiconductor wafer in a reaction chamber with a rotating component
JPH05243166A (en) Semiconductor substrate vapor growth device
US6262393B1 (en) Epitaxial growth furnace
JPS61191015A (en) Semiconductor vapor growth and equipment thereof
JP2004356624A (en) Mounting stand structure and heat treatment equipment
JP2004307939A (en) Heat treatment apparatus
JP2002155366A (en) Method and device of leaf type heat treatment
JP3215498B2 (en) Film forming equipment
JPS63150912A (en) Formation of thin film and apparatus therefor
JPS6298718A (en) Vapor growth device
JP3273247B2 (en) Epitaxial growth furnace
JPH0758016A (en) Film-forming processor
JPH0864544A (en) Vapor growing method
US6254687B1 (en) Chemical vapor deposition system with reduced material deposition on chamber wall surfaces
JPH08115883A (en) Film forming apparatus
JP2963145B2 (en) Method and apparatus for forming CVD film
JP2000049098A (en) Fpitaxial growth furnace
JPS60152675A (en) Vertical diffusion furnace type vapor growth device
JPH0530351Y2 (en)
JPS622614A (en) Infrared heating device
JPS60113921A (en) Method for vapor-phase reaction and device thereof