JPS6298237A - Method and device for measuring bulk density of porous glass sintered body - Google Patents
Method and device for measuring bulk density of porous glass sintered bodyInfo
- Publication number
- JPS6298237A JPS6298237A JP23757385A JP23757385A JPS6298237A JP S6298237 A JPS6298237 A JP S6298237A JP 23757385 A JP23757385 A JP 23757385A JP 23757385 A JP23757385 A JP 23757385A JP S6298237 A JPS6298237 A JP S6298237A
- Authority
- JP
- Japan
- Prior art keywords
- sintered body
- bulk density
- porous glass
- glass sintered
- measuring
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
のカサ密度
本発明は、多孔質ガラス焼結体全非接触で、△
精度良く測定するための方法及びその測定装置に関する
。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] Bulk Density The present invention relates to a method and apparatus for measuring the density of a porous glass sintered body completely in a non-contact manner with high accuracy.
従来、多孔質ガラス焼結体のカサ密度の測定方法として
は、(1)探針法、(2)重量・体積測定法等が知られ
ている。Conventionally, as methods for measuring bulk density of porous glass sintered bodies, (1) probe method, (2) gravimetric/volume measuring method, etc. are known.
しかしながら、(1)探針法の場合には試料に針を当て
るために、試料が傷付くほか、カサ密度だけでなく試料
の硬さによっても針の入ジ方がちがうため、測定精度上
問題があった。また、(2)重量・体積測定法の場合に
は多孔質ガラス体の重量と体積をそれぞれ測定し、カサ
密度(重量/体積:単体r f/cm” J )を算定
するものであるが、この場合通常試料は適切な形状に整
形され、原形は崩されるという間頑点がめった。However, (1) in the case of the probe method, the sample is damaged because the needle is applied to the sample, and the way the needle enters depends not only on the bulk density but also on the hardness of the sample, which causes problems in measurement accuracy. was there. In addition, in the case of (2) gravimetric/volume measurement method, the weight and volume of the porous glass body are measured respectively, and the bulk density (weight/volume: single body r f/cm” J ) is calculated. In this case, the sample was usually shaped into an appropriate shape, and the original shape was destroyed.
更に、この測定法の場合、試料内にカサ″8f度の分布
がある場合、精度の良い測定が難しいという問題点があ
った。Furthermore, in the case of this measurement method, there is a problem that accurate measurement is difficult when there is a distribution of 8 f degrees in bulk within the sample.
本発明は、上記の問題点全解決し、非接触、高精度で、
空間分解能の良い多孔質カラス焼結体のカサ密度測定方
法及び測定波vjiを提供することにある。The present invention solves all of the above problems, and provides non-contact, high-precision,
It is an object of the present invention to provide a method for measuring the bulk density of a porous glass sintered body with good spatial resolution and a measurement wave vji.
本発明全概説すれば、本発明の第1の発明は多孔質ガラ
ス焼結体のカサ密度測定方法に関する発明であって、多
孔質カラス焼結体に、元ビーム全照射し、かつ該元ビー
ムの透過光量全測定し、該多孔質ガラス焼結体のカサ密
度を算定することを特徴とする。To summarize the present invention, the first invention of the present invention relates to a method for measuring the bulk density of a porous glass sintered body, in which the entire original beam is irradiated onto the porous glass sintered body, and the original beam is The method is characterized in that the total amount of transmitted light is measured, and the bulk density of the porous glass sintered body is calculated.
そして、本発明の第2の発明は多孔質ガラス焼結体のカ
サ密度測定装置に関する発明であって、多孔質ガラス焼
結体に元ビームを照射するための光源、該光源より射出
する元ビームを集束するための光操作設備、該元ビーム
の透過光’ffI 、r測定するための光検出設備、及
び該多孔質カラス焼結体を支持又は回転若しくは移動す
るための試料台全包含していることを特徴とする。A second invention of the present invention relates to a bulk density measuring device for a porous glass sintered body, and includes a light source for irradiating the porous glass sintered body with an original beam, and an original beam emitted from the light source. It includes a light operation equipment for focusing, a light detection equipment for measuring the transmitted light 'ffI and r of the original beam, and a sample stage for supporting, rotating or moving the porous glass sintered body. It is characterized by the presence of
本発明は、多孔質ガラス焼結体に、平行又は集束元ビー
ム全照射し、該光ビームの透過光量を測定し、該多孔質
カラス焼結体のカサ密度を算定することを最も主要な特
徴とするものであり、従来の技術が、試料の整形及び破
壊を伴つのに対し、本発明は、非接触でかつ高い空間分
解能で測定できる点が本質的に相異する。The most important feature of the present invention is that a porous glass sintered body is fully irradiated with a parallel or focused beam, the amount of transmitted light of the light beam is measured, and the bulk density of the porous glass sintered body is calculated. While conventional techniques involve shaping and destroying samples, the present invention is essentially different in that measurements can be made in a non-contact manner and with high spatial resolution.
本発明は、多孔質カラス焼結体のカサ密度と透過光強度
に関する第1因に示す特性に基づくものである。すなわ
ち、第1図は多孔質ガラス焼結体のカサ密度(f/儒3
、横軸)と透過光強度(任意スケール、縦軸ンの関係全
示すグラフである。所定の厚さを有する焼結体に光ビー
ム全照射した場合、該焼結体のカサ密度に依存して透過
光強度が異なり、第1図に示す特性となる。The present invention is based on the characteristics shown in the first factor regarding bulk density and transmitted light intensity of a porous glass sintered body. In other words, Figure 1 shows the bulk density (f/F3) of the porous glass sintered body.
, horizontal axis) and transmitted light intensity (arbitrary scale, vertical axis).When a sintered body with a predetermined thickness is irradiated with the entire light beam, the intensity depends on the bulk density of the sintered body. The intensity of the transmitted light differs between the two, resulting in the characteristics shown in FIG.
したがって、所定の厚みの焼結体に元ビームを照射し、
その透過光を測定すれば、該焼結体のカサ密度を算定で
きる。Therefore, by irradiating the original beam onto a sintered body with a predetermined thickness,
By measuring the transmitted light, the bulk density of the sintered body can be calculated.
なお、カサ密度1.017cm3f境にして、それ以下
と以上で、同じ透過光強度に対して、異なるカサ密度値
が対応するが、これは、反射光強度を測定することに二
って容易に判別できる。Note that with the bulk density at the boundary of 1.017 cm3f, different bulk density values correspond to the same transmitted light intensity under and above that, but this is easy to understand when measuring the reflected light intensity. Can be distinguished.
以下、本発明全実施例により更に具体的に説明するが、
本発明にこれら実施例に限定されない。Hereinafter, the present invention will be explained in more detail with reference to all examples,
The present invention is not limited to these examples.
実施例1 第2図は本発明の装置の1例の概要図である。Example 1 FIG. 2 is a schematic diagram of an example of the apparatus of the present invention.
第2図において符号1はレーザ光源、2は集束レンズ、
5は多孔質ガラス焼結体、4は受光素子、5は移動台、
6は計測器、7は元ビームである。In FIG. 2, numeral 1 is a laser light source, 2 is a focusing lens,
5 is a porous glass sintered body, 4 is a light receiving element, 5 is a moving table,
6 is a measuring instrument, and 7 is an original beam.
第2図で、レーザ光源1ニジ出射した元ビームZ金、2
のレンズで集束した後、多孔質カラス焼結体5に照射し
、透過した光強度を4の受光素子と6の計測器に工って
測定する。この測定結果と第1図の知見とから、該焼結
体6のカサ密度(厳密には元ビームを照射している部分
Jが算定できる。また、移動台5によって該焼結体6及
び受光素子4を移動し、該焼結体3の表面の各部に光ビ
ームを照射すれば、焼結体6内のカサ密度分布を測定で
きるものである。In Figure 2, the original beam Z gold emitted from the laser light source 1, 2
After focusing with a lens, the porous glass sintered body 5 is irradiated with the light, and the intensity of the transmitted light is measured using a light receiving element 4 and a measuring device 6. From this measurement result and the knowledge shown in FIG. By moving the element 4 and irradiating each part of the surface of the sintered body 3 with a light beam, the bulk density distribution within the sintered body 6 can be measured.
例えば、元ビーム7としてHe −Neレーザ元(5m
wJk、多孔質ガラス焼結体3として、火炎加水分解法
で製造した多孔質カラス焼結体(2−厚、20冒φ)を
、また、受光素子4として、s1太陽電池全それぞれ使
用して、透過光強度を測定した。この結果、該多孔質ガ
ラス焼結体の中心部のカサ密度は(L 8 S’ 7c
m”であった。For example, as the source beam 7, a He-Ne laser source (5m
wJk, as the porous glass sintered body 3, a porous glass sintered body (2-thickness, 20 mm diameter) manufactured by the flame hydrolysis method was used, and as the light receiving element 4, the entire s1 solar cell was used. , the transmitted light intensity was measured. As a result, the bulk density at the center of the porous glass sintered body is (L 8 S' 7c
It was "m".
また、5の移動台によって、直線的に移動させてカサ密
度分布を測定した結果、(lL8〜[15f 10n”
の範囲で、周辺部はど小さなカサ密度であることが測定
できた。In addition, as a result of measuring the bulk density distribution by moving linearly with the moving table 5, (lL8 ~ [15f 10n"
Within this range, we were able to measure that the peripheral area had a very small bulk density.
実施例2 第3図は本発明の装置の1例の概要図である。Example 2 FIG. 3 is a schematic diagram of an example of the apparatus of the present invention.
第5図において、符号8はレーザ光源、9は元ビーム、
1oはハーフミラ−111は分割後の光ビーム、12は
標準試料(多孔質カラス焼結体j、16は全反射ミラー
、14は分割後の元ビーム、15は測定試料、16及び
17は受光素子、18は移動台、19は出力計測器であ
る。実施例2の場合には、元ビーム9をハーフミラ−1
0によって2つに分割し、元ビーム11は標準試料12
に照射し、光ビーム14は測定試料15に照射し、それ
ぞれの透過光強度を受光素子16及び17によって測定
した後、19の出力計測器内で出力を比較し、測定状゛
料15のカサ密度を算定するものである。この場合、実
施例1の方法に比べて、測定精度全向上しやすく、α0
5 ? /cm3程度の精度が可能である。In FIG. 5, numeral 8 is a laser light source, 9 is an original beam,
1o is a half mirror, 111 is a light beam after splitting, 12 is a standard sample (porous glass sintered body j, 16 is a total reflection mirror, 14 is the original beam after splitting, 15 is a measurement sample, 16 and 17 are light receiving elements , 18 is a moving table, and 19 is an output measuring device.In the case of the second embodiment, the original beam 9 is transferred to a half mirror 1.
The original beam 11 is divided into two by 0, and the original beam 11 is the standard sample 12.
The light beam 14 is irradiated onto the measurement sample 15, and the transmitted light intensity of each is measured by the light receiving elements 16 and 17.The outputs are compared in the output measuring device 19, and the bulk of the measurement sample 15 is measured. This is to calculate the density. In this case, compared to the method of Example 1, it is easy to improve the measurement accuracy completely, and α0
5? Accuracy on the order of /cm3 is possible.
また、実施例1.2共に移動台をX、Y軸で移動させれ
ば、2次元的なカサ密度の測定が可能であり、試料全体
のカサ密度分布が測定できる。Furthermore, in both Examples 1 and 2, if the moving stage is moved in the X and Y axes, it is possible to measure the bulk density two-dimensionally, and the bulk density distribution of the entire sample can be measured.
また、光ビームの集束度全向上し、より小さなビーム径
を実現すれば空間的な分解能もより向上できるものであ
る。Furthermore, if the convergence of the light beam is completely improved and a smaller beam diameter is achieved, the spatial resolution can also be further improved.
以上説明したように、本発明では、光ビームの透過特性
によって、カサ密度全測定する次め、非接触、非破壊で
測定できるほか、元ビームを集束することにエリ空間分
解能を容易に向上できる利点がある。また高N度の測定
も可能である。As explained above, in the present invention, depending on the transmission characteristics of the light beam, it is possible to measure the bulk density in a non-contact, non-destructive manner after the total bulk density measurement, and it is also possible to easily improve the spatial resolution by focusing the original beam. There are advantages. It is also possible to measure high N degrees.
更に、本発明方法によって、カサ密度を精度良く測定す
ることにLジ、多孔質ガラス焼結体中への岳加物の童の
調整が容易になるほか、良質な光フアイバ母材が得やす
くなるという利点がある。Furthermore, the method of the present invention not only makes it easy to measure the bulk density with high precision, but also makes it easy to adjust the bulk density into the porous glass sintered body, and also makes it easy to obtain a high-quality optical fiber base material. It has the advantage of being
第1図は多孔質ガラス焼結体のカサ密度と透過光強度の
関係全示すグラフ、第2図及び第5図に本発明の装置の
1例の概要図である。
1及び8・・・レーザ光源、2・・・集束レンズ、3・
・・多孔質カラス焼結体、4.16及び17・・・受光
素子、5及び18・・・移動台、6・・・計測器、7及
び?・・・元ビーム、10・・・ノ1−フミラー、11
及び14・・・分割後の元ビーム、12・・・標準試料
、13・・・全反射ミラー、15・・・測定試料、19
・・・出力計測器第1図
第 2 図FIG. 1 is a graph showing the entire relationship between the bulk density of a porous glass sintered body and the transmitted light intensity, and FIGS. 2 and 5 are schematic diagrams of an example of the apparatus of the present invention. 1 and 8...Laser light source, 2...Focusing lens, 3.
... Porous glass sintered body, 4.16 and 17... Light receiving element, 5 and 18... Moving table, 6... Measuring instrument, 7 and ? ...original beam, 10...no 1-fu mirror, 11
and 14... Original beam after division, 12... Standard sample, 13... Total reflection mirror, 15... Measurement sample, 19
...Output measuring device Figure 1 Figure 2
Claims (1)
光ビームの透過光量を測定し、該多孔質ガラス焼結体の
カサ密度を算定することを特徴とする多孔質ガラス焼結
体のカサ密度測定方法。 2、多孔質ガラス焼結体に光ビームを照射するための光
源、該光源より射出する光ビームを集束するための光操
作設備、該光ビームの透過光量を測定するための光検出
設備、及び該多孔質ガラス焼結体を支持又は回転若しく
は移動するための試料台を包含していることを特徴とす
る多孔質ガラス焼結体のカサ密度測定装置。[Claims] 1. A method comprising: irradiating a porous glass sintered body with a light beam, measuring the amount of transmitted light of the light beam, and calculating the bulk density of the porous glass sintered body. A method for measuring the bulk density of porous glass sintered bodies. 2. A light source for irradiating the porous glass sintered body with a light beam, a light manipulation facility for focusing the light beam emitted from the light source, a light detection facility for measuring the amount of transmitted light of the light beam, and An apparatus for measuring bulk density of a porous glass sintered body, comprising a sample stage for supporting, rotating, or moving the porous glass sintered body.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60237573A JPH0695067B2 (en) | 1985-10-25 | 1985-10-25 | Measuring method and measuring apparatus for bulk density of porous glass sintered body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60237573A JPH0695067B2 (en) | 1985-10-25 | 1985-10-25 | Measuring method and measuring apparatus for bulk density of porous glass sintered body |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6298237A true JPS6298237A (en) | 1987-05-07 |
JPH0695067B2 JPH0695067B2 (en) | 1994-11-24 |
Family
ID=17017317
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60237573A Expired - Lifetime JPH0695067B2 (en) | 1985-10-25 | 1985-10-25 | Measuring method and measuring apparatus for bulk density of porous glass sintered body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0695067B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010089872A1 (en) * | 2009-02-05 | 2010-08-12 | 国立大学法人 新潟大学 | Alcohol concentration sensor |
JP2014199245A (en) * | 2013-03-14 | 2014-10-23 | 湘南Corun Energy株式会社 | Method, device and program for measuring weight of porous body |
KR20220000816A (en) | 2020-06-26 | 2022-01-04 | 가부시키가이샤 에바라 세이사꾸쇼 | Resin mold rotor, canned motor, canned motor pump, fan scrubber and vacuum pump device |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5681436A (en) * | 1979-10-13 | 1981-07-03 | Hauni Werke Koerber & Co Kg | Device for detecting density of tobacco continuous body |
-
1985
- 1985-10-25 JP JP60237573A patent/JPH0695067B2/en not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5681436A (en) * | 1979-10-13 | 1981-07-03 | Hauni Werke Koerber & Co Kg | Device for detecting density of tobacco continuous body |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010089872A1 (en) * | 2009-02-05 | 2010-08-12 | 国立大学法人 新潟大学 | Alcohol concentration sensor |
JP2014199245A (en) * | 2013-03-14 | 2014-10-23 | 湘南Corun Energy株式会社 | Method, device and program for measuring weight of porous body |
KR20220000816A (en) | 2020-06-26 | 2022-01-04 | 가부시키가이샤 에바라 세이사꾸쇼 | Resin mold rotor, canned motor, canned motor pump, fan scrubber and vacuum pump device |
Also Published As
Publication number | Publication date |
---|---|
JPH0695067B2 (en) | 1994-11-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107121095A (en) | A kind of method and device of accurate measurement super-large curvature radius | |
CA2146300A1 (en) | Refractive Index Measurement of Spectacle Lenses | |
JPH01196502A (en) | Non-contact inspection method and apparatus for geometric contour | |
CN203745385U (en) | Laser ultrasonic optical interference detection device | |
CN111288902B (en) | Double-field-of-view optical coherence tomography imaging system and material thickness detection method | |
CN110736721B (en) | Glass plate refractive index uniformity detection device and detection method based on diffraction grating | |
Meyer et al. | Optical fiber refractometer | |
ATE41055T1 (en) | APPARATUS FOR MEASURING A THICKNESS. | |
CN112485805A (en) | Laser triangular displacement sensor and measuring method thereof | |
Lu et al. | Self-calibrated absolute thickness measurement of opaque specimen based on differential white light interferometry | |
CN113624683B (en) | Oblique incidence type confocal Brillouin spectrum measurement system and method | |
JPS6298237A (en) | Method and device for measuring bulk density of porous glass sintered body | |
JPS57104803A (en) | Displacement measuring apparatus | |
JPS5796203A (en) | Contactless displacement detector employing optical fiber | |
CN112285059A (en) | Device for measuring liquid refractive index based on CCD method | |
JPH10132523A (en) | Measuring device of object surface height | |
CN205679527U (en) | A kind of material reflectance dynamic measurement system varied with temperature | |
CN110702018A (en) | Device and method for measuring thickness of sample in diamond anvil cell | |
JPS6475902A (en) | Method for measuring refractive index and film thickness | |
SU664496A1 (en) | Interference method of measuring taper of transparent plates | |
JPS6166150A (en) | Immunoreaction measuring method | |
Fawcett et al. | Use of a fiber optic displacement probe as a surface finish sensor | |
Ueda et al. | Light attenuation in a semitransparent foam sheet—Thickness measurement for industrial use | |
TWI239385B (en) | A kind of apparatus using transmission grating to measure rotation axis errors | |
RU2146355C1 (en) | Method measuring thickness of sheet glass and device for its realization |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |