JPS6297912A - Porous polypropylene hollow fiber - Google Patents

Porous polypropylene hollow fiber

Info

Publication number
JPS6297912A
JPS6297912A JP23341785A JP23341785A JPS6297912A JP S6297912 A JPS6297912 A JP S6297912A JP 23341785 A JP23341785 A JP 23341785A JP 23341785 A JP23341785 A JP 23341785A JP S6297912 A JPS6297912 A JP S6297912A
Authority
JP
Japan
Prior art keywords
hollow fiber
moment
polypropylene hollow
porous polypropylene
average
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23341785A
Other languages
Japanese (ja)
Other versions
JPH0421527B2 (en
Inventor
Eiichi Kamei
亀井 衛一
Yasushi Shimomura
下村 泰志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP23341785A priority Critical patent/JPS6297912A/en
Publication of JPS6297912A publication Critical patent/JPS6297912A/en
Publication of JPH0421527B2 publication Critical patent/JPH0421527B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • External Artificial Organs (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Artificial Filaments (AREA)

Abstract

PURPOSE:Porous polypropylene hollow fiber that has pores of average diameter in a prescribed range with a narrow distribution, thus showing high separation efficiency and high flux and reduced hemolysis, because of its reduced activation of blood complement, when it is used as a membrane for treating blood. CONSTITUTION:The objective porous polypropylene hollow fiber has 2,500-15,000Angstrom of the primary average pore diameter of fine through-holes which are innumerably formed on the walls and 1-1.15 of the average ratio of the secondary moment average diameter to the primary moment diameter in the fine pores. The drawing is carried out at 110-145 deg.C and 10%/min drawing speed to give the objective porous polypropylene hollow fiber of narrow pore diameter.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ポリプロピレン中空糸を延伸して得られる多
孔性中空糸に関し、更に詳しくは分離効率、濾過性能に
優れ且つ血液の補体活性及び溶血性が少ないという優れ
た性能を有する微細透孔の孔径分布が狭い多孔性ポリプ
ロピレン中空糸に関するものである。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to porous hollow fibers obtained by drawing polypropylene hollow fibers, and more specifically, the present invention relates to porous hollow fibers that are obtained by drawing polypropylene hollow fibers, and more specifically, have excellent separation efficiency and filtration performance, and improve blood complement activity and This invention relates to a porous polypropylene hollow fiber with a narrow pore size distribution of fine pores, which has excellent performance in terms of low hemolysis.

〔従来の技術〕[Conventional technology]

高分子材料製中空糸の周壁部に多数の微細透孔が形成さ
れた構造の多孔性膜は、たとえば医療分野における血漿
分離膜や水浄化などの濾過膜あるいは分離膜などとして
各種分野で利用されている。
Porous membranes, which have a structure in which many fine pores are formed in the peripheral wall of hollow fibers made of polymeric materials, are used in various fields, such as plasma separation membranes in the medical field, filtration membranes for water purification, and separation membranes. ing.

ところで、このような分離膜の性能としては分離効率(
目的に応じた特定孔径以上の被分離物を分離する効率)
及び透過量(目的に応じた特定被透過物の量)が良好な
ものが望ましい。
By the way, the performance of such a separation membrane is the separation efficiency (
(Efficiency for separating substances with a specific pore size or larger depending on the purpose)
It is desirable that the amount of permeation (the amount of a specific substance to be permeated depending on the purpose) is good.

また、医療分野における血液処理膜として用いられる場
合、血液の補体活性を起させるような影響が小さいもの
や赤血球の破壊、即ち溶血性が少ない膜が望ましい。
Furthermore, when used as a blood processing membrane in the medical field, it is desirable to have a membrane that has little influence on blood complement activity and has little destruction of red blood cells, ie, less hemolysis.

1来、多孔性中空糸の製造法として、高分子膜素材を溶
媒、および膨潤剤または非溶媒の混合溶媒系に溶解して
均一溶液としたものを原液とし、この原液を膜状にキャ
ストし揮発性溶媒を一部あるいは完全に蒸発させた後、
凝固浴中に浸漬して溶媒を抽出除去し、多孔性膜とする
等の相転換による方法や、高分子膜素材に被溶出物資を
混合して成膜した後、膜中から被溶出物資を溶出させて
多孔性膜とする抽出による方法、さらには未延伸の中空
糸を紡糸した後、特定条件及び/又は特定媒体中で延伸
することにより多孔化する方法等が知られている。
1. As a manufacturing method for porous hollow fibers, a polymer membrane material is dissolved in a mixed solvent system of a solvent and a swelling agent or a non-solvent to form a homogeneous solution, which is then used as a stock solution, and this stock solution is cast into a film shape. After partially or completely evaporating the volatile solvent,
Phase transformation methods such as immersion in a coagulation bath to extract and remove the solvent to form a porous membrane, or methods such as forming a film by mixing the substance to be eluted with the polymer membrane material and then removing the substance to be eluted from the membrane. There are known methods such as an extraction method in which a porous membrane is obtained by elution, and a method in which unstretched hollow fibers are spun and then stretched under specific conditions and/or in a specific medium to make them porous.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、相転換による方法や抽出による方法にあ
っては、前記した分離膜として良好な性能を達成すると
ともに血液処理膜としての望ましい性能を有する多孔性
膜を得ることは掻めて困難である上、製造工程自体も複
雑なものであった。
However, with the phase inversion method and the extraction method, it is extremely difficult to obtain a porous membrane that not only achieves good performance as a separation membrane but also has desirable performance as a blood treatment membrane. However, the manufacturing process itself was complicated.

また、これらの方法では、溶媒を使用するので、膜に残
留する溶媒の後処理が面倒であるという問題もあった。
Furthermore, since these methods use a solvent, there is also the problem that post-treatment of the solvent remaining in the membrane is troublesome.

一方延伸による方法は、残留溶媒の問題はないが、やは
り前記した望ましい性能を有する多孔性膜を得ることは
、極めて困難であった。
On the other hand, although the stretching method does not have the problem of residual solvent, it is still extremely difficult to obtain a porous membrane having the desired performance described above.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは、上記のような従来の多孔性膜の改良を目
的として鋭意研究を行った結果、微細透孔の孔径の分布
が狭い多孔性ポリプロピレン中空糸膜が、分離効率、透
過量ともに優れたものであり、また医療分野において血
漿分離膜として使用した場合、分離効率、透過量が優れ
ているとともに、血液の補体の活性化が少なく、溶血も
少ないという優れたものが得られることを見出し、本発
明に到達したのである。
As a result of intensive research aimed at improving the conventional porous membranes mentioned above, the present inventors found that a porous polypropylene hollow fiber membrane with a narrow distribution of micropore diameters has improved both separation efficiency and permeation amount. It is an excellent product, and when used as a plasma separation membrane in the medical field, it has excellent separation efficiency and permeation amount, as well as low activation of blood complement and low hemolysis. They discovered this and arrived at the present invention.

すなわち、本発明によれば、周壁部に多数の微細透孔が
形成されてなる多孔性ポリプロピレン中空糸において、
該微細透孔の一部モーメント平均孔径が2.500〜1
5.000人の範囲にあると共に、該微細透孔の一部モ
ーメント平均半径(W n )に対する二次モーメント
平均半径(Rw)の比率(Rw/πn)が1.1.15
の範囲にある多孔性ポリプロピレン中空糸が提供される
。多孔性膜の孔径分布を測定する代表的なものに水銀圧
入法がある。これは、試料孔径の大きさく半径(R))
と、水銀がその孔径部へ流入する圧力(P)とに、次式
の関係R=−2δcosθ/P があることを利用して孔径(R)を測定するものであり
、水銀の流入量が、その孔径の存在量を表すことになり
、従って圧力(P)を変化させ、その水銀の試料内への
流入量を測定することにより、孔径分布を測定すること
ができる。なおここで、θは水銀の接触角、δは水銀の
表面張力である。
That is, according to the present invention, in a porous polypropylene hollow fiber in which a large number of fine pores are formed in the peripheral wall part,
The moment average pore diameter of some of the fine pores is 2.500 to 1.
5,000 people, and the ratio (Rw/πn) of the second moment average radius (Rw) to the partial moment average radius (W n ) of the fine through hole is 1.1.15.
A porous polypropylene hollow fiber is provided within the range of . Mercury intrusion method is a typical method for measuring the pore size distribution of porous membranes. This is the radius (R) of the sample hole diameter.
The pore diameter (R) is measured by using the following relationship R = -2δcosθ/P between , represents the amount of pore size present, and therefore, by changing the pressure (P) and measuring the amount of mercury flowing into the sample, the pore size distribution can be measured. Note that here, θ is the contact angle of mercury, and δ is the surface tension of mercury.

ところで、平均孔径(半径)は、 Wn=ΣR1Ni/ΣNiで表される平均半径(−次モ
ーメント又は長さ平均半径) π−=ΣRi”Ni /ΣR1Niで表される平均半径
(二次モーメント又は面積長さ平均半径)π2=ΣR4
’Ni /ΣRi”Nj で表される平均半径(三次モ
ーメント又は体面積平均半径)π2=ΣR4’Ni /
ΣR4’Ni で表される平均半径(四次モーメント又
は重量平均半径) 等いろいろな測定基準分布からの平均半径で表される。
By the way, the average pore diameter (radius) is: Wn = ΣR1Ni / ΣNi Average radius (-moment or length average radius) π- = ΣRi"Ni / ΣR1Ni Average radius (secondary moment or area) length average radius) π2=ΣR4
'Ni /ΣRi''Nj Average radius (third moment or body area average radius) π2=ΣR4'Ni /
The average radius (fourth moment or weighted average radius) is expressed as ΣR4'Ni, and the average radius from various metric distributions.

ここでπn −Ww 、π2.πyは、それぞれの測定
基準分布からの平均半径を示し、Ri、 Niは孔径分
布におけるRiの半径をもつ孔径の数がNiであること
を示している。
Here, πn −Ww, π2. πy indicates the average radius from each measurement standard distribution, and Ri and Ni indicate that the number of pore diameters with a radius of Ri in the pore diameter distribution is Ni.

水銀圧入法においては、Niは半径Riを持つ孔の容積
に相当する水銀の容積と全孔の総容積との百分率と定義
する。
In the mercury intrusion method, Ni is defined as the percentage of the volume of mercury corresponding to the volume of the hole with radius Ri and the total volume of all the holes.

一方、−次モーメントと二次モーメントの比、−次モー
メントと三次モーメントの比及び−次モーメントと四次
モーメントとの比は、それぞれ分布の広狭を示すもので
ある。つまりπ−/Un、π2/πn、Wy/πnが1
に近い程分布は狭(、大きい比率になる程分布は広いも
のになる。
On the other hand, the ratio of the -th moment to the second moment, the ratio of the -th moment to the third moment, and the ratio of the -th moment to the fourth moment each indicate the breadth or narrowness of the distribution. In other words, π-/Un, π2/πn, Wy/πn are 1
The closer the ratio is to the narrower the distribution (the larger the ratio, the wider the distribution).

本発明においては、二次モーメント平均半径π−と一部
モーメント平均半径πnの比率(W’w/in)が1〜
1.15、好ましくは、l −含、10の範囲にある、
孔径分布の狭い多孔性膜であることが必要である。比率
(Rw/ W n )が1.15を越えると分離効率、
透過量が劣るほか、血液処理膜としての性能も劣ること
になる。本発明では、さらに、微細透孔の平均孔径(直
径)が2,500〜15,000人好ましくは3,00
0〜10,000人の範囲にあることも必要である。こ
の範囲外の平均孔径では、前記した本発明の目的を達成
することができない。
In the present invention, the ratio (W'w/in) of the average radius of second order moment π- and the average partial moment radius πn is 1 to
1.15, preferably l-containing, in the range of 10,
It is necessary to use a porous membrane with a narrow pore size distribution. When the ratio (Rw/W n ) exceeds 1.15, the separation efficiency decreases;
Not only will the amount of permeation be inferior, but the performance as a blood processing membrane will also be inferior. In the present invention, the average pore size (diameter) of the microscopic pores is preferably 2,500 to 15,000, preferably 3,000 to 3,000.
It also needs to be in the range of 0 to 10,000 people. If the average pore diameter is outside this range, the object of the present invention described above cannot be achieved.

本発明の多孔性ポリプロピレン中空糸は、例えば、次の
ように製造される。
The porous polypropylene hollow fiber of the present invention is produced, for example, as follows.

ポリプロピレン中空糸を延伸して中空糸周壁部に多数の
微細透孔を形成するに当たり、延伸工程を110°C乃
至145℃の温度範囲、延伸歪速度10%/分未満で行
うことにより孔径分布の狭い多孔性ポリプロピレン中空
糸を得ることができる。
When drawing a polypropylene hollow fiber to form a large number of fine pores in the hollow fiber peripheral wall, the drawing process is carried out at a temperature range of 110°C to 145°C and at a drawing strain rate of less than 10%/min, thereby improving the pore size distribution. Narrow porosity polypropylene hollow fibers can be obtained.

また、本発明の多孔性ポリプロピレン中空糸は、延伸工
程を窒素、酸素、アルゴン、−酸化炭素、メタンおよび
エタンからなる群より選ばれた媒体中で、かつその延伸
温度が、−100℃以下の温度であって、該媒体の凝固
点から該媒体の沸点より50°C高い温度以下の範囲に
て行うことにより、さらには、該延伸工程の後に中空糸
をポリプロピレンの融解温度より90〜5℃低い温度の
範囲内で、熱延伸することにより得ることができる。
Further, the porous polypropylene hollow fiber of the present invention can be drawn in a medium selected from the group consisting of nitrogen, oxygen, argon, -carbon oxide, methane, and ethane, and at a drawing temperature of -100°C or lower. By carrying out the drawing process at a temperature that is between the freezing point of the medium and 50°C higher than the boiling point of the medium, and furthermore, after the drawing process, the hollow fibers are drawn at a temperature that is 90 to 5°C lower than the melting temperature of polypropylene. It can be obtained by hot stretching within a temperature range.

〔実施例〕〔Example〕

以下、本発明を実施例により、さらに具体的に説明する
EXAMPLES Hereinafter, the present invention will be explained in more detail with reference to Examples.

〔実施例1〕 多孔性ポリプロピレン中空糸であって、水銀圧入法(測
定は、カルロエルバ(CARLOERBA)社(イタリ
ア)製のボロシメトロシリーズ(PORO3IMETR
O3ERIES )1500を使用して行った。以下同
じ)で測定した一部モーメント平均半径が5.190オ
ングストロームで百−/πnの比が1.05である(そ
の孔径分布を図面の曲線Aとして示す。)外径400ミ
クロン、内径300ミクロン、空孔率が72%の多孔性
中空糸を用いて、0.0047 mの膜面積をもつモジ
ュールを製作し0.109ミクロンのスチレンラテック
ス(ダウ・ケミカル社製)の0.1%水溶液を用いて、
剪断速度800C11−、’で初期20m1での分離効
率を、光散乱装置(フィー力(FICA)社(仏)製モ
デル42000 M )により測定したところ、スチレ
ンラテックスの漏洩は認められなかった。また0、1ミ
クロンの示標菌であるマイコプラズマを用いて、分離効
率を測定したところ全く菌の漏洩が認められなかった。
[Example 1] Porous polypropylene hollow fibers were prepared by mercury intrusion method (measurement was carried out using PORO3IMETR series manufactured by CARLOERBA (Italy)).
The test was carried out using O3ERIES) 1500. (The same applies hereafter) The partial moment average radius is 5.190 angstroms, and the ratio of 10-/πn is 1.05 (the pore size distribution is shown as curve A in the drawing).Outer diameter is 400 microns, inner diameter is 300 microns. A module with a membrane area of 0.0047 m was fabricated using porous hollow fibers with a porosity of 72%, and a 0.1% aqueous solution of 0.109 micron styrene latex (manufactured by Dow Chemical Company) was fabricated. make use of,
When the separation efficiency at an initial volume of 20 ml was measured at a shear rate of 800C11-,' using a light scattering device (Model 42000 M manufactured by FICA (France)), no leakage of styrene latex was observed. Furthermore, when the separation efficiency was measured using Mycoplasma, which is an indicator bacteria of 0.1 micron, no leakage of bacteria was observed.

またこの膜の透水量は、471/分・m′・kg/、d
であった。
Also, the water permeability of this membrane is 471/min・m′・kg/, d
Met.

〔比較例1〕 多孔性ポリプロピレン中空糸であって、水銀圧入法で測
定した一部モーメント平均半径が、3.490オングス
トロームでW w /πnの比が1.22であり(その
孔径分布を図面の曲線Bとして示す)、外径520ミク
ロン、内径320ミクロン、空孔率が64.2%の多孔
性中空糸を用いて、0.0047mの膜面積をもつモジ
ュールを製作し0.109ミクロンのスチレンラテック
スの0.1%水溶液を用いて、実施例1と同様に分離効
率を光散乱装置により、測定したところ、96.4%の
スチレンラテックスの漏洩があり、また、マイコプラズ
マの漏洩が認められた。 また、この膜の透水量は、4
6i/分・M・kg/n(であった。
[Comparative Example 1] A porous polypropylene hollow fiber, the partial moment average radius measured by mercury intrusion method was 3.490 angstroms, and the ratio of W w /πn was 1.22 (the pore size distribution is shown in the drawing). (shown as curve B), a module with a membrane area of 0.0047 m was fabricated using porous hollow fibers with an outer diameter of 520 microns, an inner diameter of 320 microns, and a porosity of 64.2%. Using a 0.1% aqueous solution of styrene latex, the separation efficiency was measured using a light scattering device in the same manner as in Example 1. As a result, 96.4% of styrene latex leaked, and leakage of mycoplasma was observed. Ta. In addition, the water permeability of this membrane is 4
6i/min・M・kg/n (was.

比較例2は実施例1と比較して一部モーメント平均半径
が、小さいにもかかわらず、その孔径分布が広いため、
分離効率としては劣ったものになっている。
Although Comparative Example 2 has a smaller moment average radius than Example 1, its pore size distribution is wider;
The separation efficiency is poor.

C実施例2〕 実施例1の多孔性ポリプロピレン中空糸膜を用い、膜面
積0.4Mの血漿分離器(モジュール)(有効長さく1
9cm))を製作し、10〜13kgの雑種成人を用い
、頚部動脈より 100m1/minで脱唾、試験用モ
ジュールを通り、大気開放にて血漿を分離再生し、再び
、頚部静脈に返血した。
C Example 2] Using the porous polypropylene hollow fiber membrane of Example 1, a plasma separator (module) with a membrane area of 0.4 M (effective length 1
Using a 10-13 kg mongrel adult, the blood was removed from the carotid artery at a rate of 100 m1/min, passed through a test module, separated and regenerated in the atmosphere, and then returned to the carotid vein. .

3時間後のUFR(限外濾過量率)は、6600 mZ
/hr−n(、総タンパクのSC(篩係数)は、0.9
8、T−グロブリンのSCは0.96であり、また補体
活性を示す血液中の白血球の変化は試験時間(3時間)
中度化は少なかった。また溶血性の示標である血液中の
ヘモグロビンの量は、試験時間中IO!If/d1以下
であった。
UFR (ultrafiltration rate) after 3 hours is 6600 mZ
/hr-n (, SC (sieving coefficient) of total protein is 0.9
8. The SC of T-globulin is 0.96, and changes in white blood cells in the blood that indicate complement activity are observed over the test time (3 hours).
There was little moderation. In addition, the amount of hemoglobin in the blood, which is an indicator of hemolysis, was measured at IO! If/d1 or less.

〔比較例2〕 比較例1の多孔性ポリプロピレン中空糸膜を用い、実施
例2と同様に血漿分離器を製作し、実施例2と同様に血
漿分離の試験を行った。
[Comparative Example 2] A plasma separator was manufactured in the same manner as in Example 2 using the porous polypropylene hollow fiber membrane of Comparative Example 1, and a plasma separation test was conducted in the same manner as in Example 2.

3時間後のUFRは、5800 d / hr−cd 
S総タンパクのSCは、0.99、γ−グロブリンのS
Cは0.96であり、また補体活性を示す血液中の白血
球の変化は試験時間(3時間)中の変化は少なかった。
UFR after 3 hours is 5800 d/hr-cd
The SC of S total protein is 0.99, and the SC of γ-globulin is 0.99.
C was 0.96, and changes in white blood cells in the blood indicating complement activity showed little change during the test period (3 hours).

しかし、溶血性の示標である血液中のヘモグロビンの量
は、試験時間30分で20■/d1.3時間後には、4
0■/d1となった。
However, the amount of hemoglobin in the blood, which is an indicator of hemolysis, was 20 μ/d after 1.3 hours with a test time of 30 minutes.
It became 0■/d1.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明の多孔性ポリプロピレン中
空糸は、所定範囲の平均孔径を有するとともに、微細透
孔の孔径分布が狭いので、分離効率、i3過量が優れて
いるばかりでなく、血液処理膜として使用する場合、血
液の補体の活性化が少なく、溶血性も少ないという優れ
た性能を示す。
As explained above, the porous polypropylene hollow fiber of the present invention has an average pore size within a predetermined range and has a narrow pore size distribution of fine pores, so it not only has excellent separation efficiency and i3 excess, but also has excellent properties for blood treatment. When used as a membrane, it exhibits excellent performance with less activation of blood complement and less hemolysis.

【図面の簡単な説明】[Brief explanation of drawings]

図面は、実施例1と比較例1でそれぞれ用いた多孔性ボ
リブ、ロビレン中空糸の孔径分布を示すグラフである。
The drawings are graphs showing the pore size distributions of porous Bolib and Robylene hollow fibers used in Example 1 and Comparative Example 1, respectively.

Claims (3)

【特許請求の範囲】[Claims] (1)周壁部に多数の微細透孔が形成されてなる多孔性
ポリプロピレン中空糸において、該微細透孔の一次モー
メント平均孔径が2,500〜15,000人の範囲に
あると共に、該微細透孔の一次モーメント平均半径(@
R@_n)に対する二次モーメント平均半径(@R@_
w)の比率(@R@_w/@R@_n)が1〜1.15
の範囲にあることを特徴とする多孔性ポリプロピレン中
空糸。
(1) In a porous polypropylene hollow fiber in which a large number of fine pores are formed in the peripheral wall, the first moment average pore diameter of the fine pores is in the range of 2,500 to 15,000, and the fine pores have a Average radius of first moment of hole (@
Second moment average radius (@R@_n)
w) ratio (@R@_w/@R@_n) is 1 to 1.15
A porous polypropylene hollow fiber characterized by being in the range of.
(2)微細透孔の一次モーメント平均孔径が3,000
〜12,000人の範囲にある特許請求の範囲第1項記
載の多孔性ポリプロピレン中空糸。
(2) The first moment average pore diameter of microscopic pores is 3,000
12,000 porous polypropylene hollow fibers according to claim 1.
(3)微細透孔の一次モーメント平均半径(@R@_n
)に対する二次モーメント平均半径(@R@_w)の比
率(@R@_w/@R@_n)が1〜1.10の範囲に
ある特許請求の範囲第1項記載の多孔性ポリプロピレン
中空糸。
(3) Average radius of first moment of fine holes (@R@_n
) The porous polypropylene hollow fiber according to claim 1, wherein the ratio (@R@_w/@R@_n) of the average radius of second moment (@R@_w) to ) is in the range of 1 to 1.10. .
JP23341785A 1985-10-21 1985-10-21 Porous polypropylene hollow fiber Granted JPS6297912A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23341785A JPS6297912A (en) 1985-10-21 1985-10-21 Porous polypropylene hollow fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23341785A JPS6297912A (en) 1985-10-21 1985-10-21 Porous polypropylene hollow fiber

Publications (2)

Publication Number Publication Date
JPS6297912A true JPS6297912A (en) 1987-05-07
JPH0421527B2 JPH0421527B2 (en) 1992-04-10

Family

ID=16954734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23341785A Granted JPS6297912A (en) 1985-10-21 1985-10-21 Porous polypropylene hollow fiber

Country Status (1)

Country Link
JP (1) JPS6297912A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60139808A (en) * 1983-12-28 1985-07-24 Ube Ind Ltd Production of porous hollow fiber of polypropylene

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60139808A (en) * 1983-12-28 1985-07-24 Ube Ind Ltd Production of porous hollow fiber of polypropylene

Also Published As

Publication number Publication date
JPH0421527B2 (en) 1992-04-10

Similar Documents

Publication Publication Date Title
US4439322A (en) Polymethyl methacrylate membrane
JP2566973B2 (en) Method for forming hollow fiber irregular gas separation membrane
Wang et al. Relationship between mass ratio of nonsolvent-additive to solvent in membrane casting solution and its coagulation value
WO1990006169A2 (en) Defect-free ultrahigh flux asymmetric membranes
JPWO2002009857A1 (en) Modified hollow fiber membrane
TW201622805A (en) Microporous polyvinylidene fluoride flat membrane
JPS5891732A (en) Porous polyvinylidene fluoride resin membrane and preparation thereof
JPH06114249A (en) Asymmetrical semi-permeable membrane for dialysis and ultrafiltration and its production
CN109689190B (en) Acrylonitrile-based membranes with low thrombosis
JP5909766B2 (en) High throughput membrane with channels
JPS588517A (en) Preparation of composite film with selective permeability for gas
JPH05317664A (en) Porous hollow fiber membrane
JPS6297912A (en) Porous polypropylene hollow fiber
US4283359A (en) Process for producing polyacrylonitrile reverse osmotic membranes
JP2688882B2 (en) Method for producing composite membrane for gas separation
JPH10180058A (en) Hollow fiber membrane
EP0092587B1 (en) Polymethyl methacrylate hollow yarn ultra-filtration membrane and process for its production
JPS6339602A (en) Fine porous polyethylene membrane and its production
JPS61408A (en) Hollow yarn composite membrane
JP3464000B1 (en) Manufacturing method of high performance hollow fiber microfiltration membrane
CN114749035B (en) Low-pressure large-flux hollow fiber nanofiltration membrane, and preparation method and application thereof
JP2553248B2 (en) Method for producing porous hollow fiber membrane
JPS6287204A (en) Polyvinyl chloride hollow yarn filter and its production
JPH02273522A (en) Polyacrylonitrile group hollow yarn film and its manufacture
JPS60209205A (en) Preparation of hollow yarn porous membrane comprising polyvinylidene fluoride

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term