JPS6297622A - Pressure swing adsorbing method - Google Patents

Pressure swing adsorbing method

Info

Publication number
JPS6297622A
JPS6297622A JP60237026A JP23702685A JPS6297622A JP S6297622 A JPS6297622 A JP S6297622A JP 60237026 A JP60237026 A JP 60237026A JP 23702685 A JP23702685 A JP 23702685A JP S6297622 A JPS6297622 A JP S6297622A
Authority
JP
Japan
Prior art keywords
gas
cleaning
adsorption
washing
tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60237026A
Other languages
Japanese (ja)
Inventor
Yuji Horii
堀井 雄二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP60237026A priority Critical patent/JPS6297622A/en
Publication of JPS6297622A publication Critical patent/JPS6297622A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Of Gases By Adsorption (AREA)

Abstract

PURPOSE:To conserve washing gas, by comparing the concn. of the specific component in washing gas introduced into a tower with that of the specific component in the washing waste gas passed through the tower and stopping washing when the ratio of both of them or the difference therebetween reached a tolerance value. CONSTITUTION:Stock gas is made to flow to adsorbing towers 3a, 3b to adsorb CO. Product CO-gas is introduced into the adsorbing towers 3a, 3b to perform the washing of both towers but, at this time, the concn. of CO in washing gas before introduced into the adsorbing towers is measured by an analyser 10a an the concn. of CO in washing waster gas passed through the adsorbing towers is measured by the analyser 21 provided between adsorbing tower connection pipes 8a, 8b. At the point of time when the concn. of CO obtained by the analysers 21, 10a became equal, a valve 11 or a valve 12 is closed through a control apparatus 31 to stop the supply of the washing gas. By this method, the washing gas is conserved and the recovery ratio of the product gas is en hanced.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、易吸着性成分を有用成分として濃縮回収する
圧力スイング吸着方法に関し、詳細には圧力スイング吸
着方法における洗浄工程を合理的に行ない、洗浄ガスを
節約して製品ガス回収率を高め、かつ前記有用成分の有
効吸着容量を増大させて効率的な製品回収を行なう圧力
スイング吸着方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a pressure swing adsorption method for concentrating and recovering easily adsorbable components as useful components, and in particular, a method for rationally performing the washing step in the pressure swing adsorption method. The present invention relates to a pressure swing adsorption method that saves cleaning gas, increases the product gas recovery rate, and increases the effective adsorption capacity of the useful components to efficiently recover the product.

[従来の技術] 1酸化炭素ガス(CO)や窒素ガス(N2)等を濃縮回
収する方法としては、工業的には深冷分離法が汎用され
ている。しかしこの分離法を実施しようとすれば設備的
に高価なものになってしまうので、設備が比較的簡単で
ある圧力スイング吸着法が利用される傾向にある。
[Prior Art] A cryogenic separation method is widely used industrially as a method for concentrating and recovering carbon monoxide gas (CO), nitrogen gas (N2), and the like. However, if this separation method were to be carried out, the equipment would be expensive, so there is a tendency to use the pressure swing adsorption method, which requires relatively simple equipment.

第2図は圧力スイング吸着装置(PSA装置)の代表的
な例を示す配管説明図である。今、2塔式の吸着塔を使
って転炉ガスからCOを濃縮回収する方法を代表的に取
り上げ、吸着塔3aの吸着・脱着パターンを中心にして
以下説明する。尚本例では吸着剤としてゼオライトを使
用する。前処理によってCo、N2 、N2の3成分混
合ガスに調整された原料ガスは、圧縮機2によってライ
ン1内を矢印方向に取り込まれ、該圧縮機2で加圧され
た後バルブ13を経由して(バルブ14は閉)吸着塔3
aへ供給される。Co、N2 、N2のうち前記吸着剤
に対してもっとも高い吸着性を有するcoは、該吸着剤
にもっとも多く吸着され、他方吸着性の低いN2及びN
2はバルブ19を通過して排ガス排気管7から排出され
る。上記吸着工程が続行され吸着塔3aにおけるco吸
着能が低下してくると、該吸着塔3aの出口におけるC
O濃度が上昇しはじめ、やがて人口側における濃度と同
じになる(吸着の破過点に達する)のでそれ以前に、吸
着塔3aへの原料供給を停止して吸着工程を終了する。
FIG. 2 is a piping explanatory diagram showing a typical example of a pressure swing adsorption device (PSA device). Now, a method of concentrating and recovering CO from converter gas using a two-column type adsorption tower will be taken up as a representative method, and will be explained below focusing on the adsorption/desorption pattern of the adsorption tower 3a. In this example, zeolite is used as the adsorbent. The raw material gas, which has been adjusted to a three-component mixed gas of Co, N2, and N2 through pretreatment, is taken into the line 1 by the compressor 2 in the direction of the arrow, and after being pressurized by the compressor 2, it passes through the valve 13. (valve 14 is closed) adsorption tower 3
supplied to a. Among Co, N2, and N2, Co, which has the highest adsorption to the adsorbent, is adsorbed to the adsorbent in the largest amount, while N2 and N, which have lower adsorption,
2 passes through the valve 19 and is discharged from the exhaust gas exhaust pipe 7. When the above adsorption step continues and the co adsorption capacity in the adsorption tower 3a decreases, the CO adsorption capacity at the outlet of the adsorption tower 3a decreases.
The O concentration begins to rise and eventually becomes the same as the concentration on the population side (reaching the breakthrough point of adsorption), so before that, the supply of raw material to the adsorption tower 3a is stopped and the adsorption process is completed.

該吸着塔3aが吸着工程を行なっている間吸着塔3bで
は、それ以前の工程で吸着剤に吸着されているcoを塔
3b内の減圧によって脱着する脱着工程が平行して行な
われている。吸着塔3aの吸着工程終了と吸着塔3bの
脱着工程終了はほぼ同期する様に進められ、両工程終了
後は吸着塔3a、3bを連結管8aによって直結し、吸
着塔3a内の高圧ガスを吸着塔3bへ移動させて均圧化
する。このとき吸着塔3a内に残存しているN2やN2
  (塔3aの空間内に非吸着状態で存在しているもの
及び吸着剤に吸着されているものを含む)は吸着塔3b
内へ8勅させられるが、一部のN2及びN2成分は吸着
塔3a中の吸着剤粒子間隙や配管内等に残存する。その
ためこのままで吸着塔3aの脱着工程を開始してCO回
収を行なうとすると、回収製品(CO)の濃度が低下し
てしまう。そこでこれを回避すべく製品COガスを製品
貯留槽5から吸着塔洗浄管10及びバルブ11を介して
吸着塔3a内へ導入することが行なわれている。導入さ
れた洗浄ガス(製品Co)は吸着塔3a内の残存不純成
分をパージして連結管8aから吸着塔3bへ送り込み、
洗浄廃ガス中のCOは再び吸着塔3bの吸着剤に吸着さ
れ、その他のN2やN2成分はバルブ20を通りガス廃
棄管7から排出される。
While the adsorption tower 3a is performing the adsorption step, the adsorption tower 3b is performing a desorption step in parallel, in which the co adsorbed by the adsorbent in the previous step is desorbed by reducing the pressure inside the tower 3b. The completion of the adsorption process in the adsorption tower 3a and the completion of the desorption process in the adsorption tower 3b proceed almost synchronously, and after the completion of both processes, the adsorption towers 3a and 3b are directly connected by the connecting pipe 8a, and the high pressure gas in the adsorption tower 3a is released. It is moved to the adsorption tower 3b and the pressure is equalized. At this time, the N2 and N2 remaining in the adsorption tower 3a
(including those existing in a non-adsorbed state in the space of the column 3a and those adsorbed by the adsorbent) are the adsorption column 3b.
However, some N2 and N2 components remain in gaps between adsorbent particles in the adsorption tower 3a, inside the pipes, etc. Therefore, if the desorption process of the adsorption tower 3a is started to recover CO, the concentration of the recovered product (CO) will decrease. Therefore, in order to avoid this, the product CO gas is introduced from the product storage tank 5 into the adsorption tower 3a via the adsorption tower cleaning pipe 10 and the valve 11. The introduced cleaning gas (product Co) is sent to the adsorption tower 3b through the connecting pipe 8a after purging the remaining impurity components in the adsorption tower 3a.
CO in the cleaning waste gas is adsorbed again by the adsorbent in the adsorption tower 3b, and other N2 and N2 components are discharged from the gas waste pipe 7 through the valve 20.

上記洗浄工程が終了すると吸着塔3aは真空ポンプ4に
よって減圧され、吸着されているcoの脱着回収を行な
う。そして回収されたCO製品ガスは製品ガス貯留槽5
へ集められ、前述の如くその一部が洗浄ガスとして各吸
着塔3a、3bの洗浄に使われる他は、製品回収用管6
から回収利用される。吸着塔3aでの脱着工程終了後は
再び吸着工程が繰返され、吸着・脱着のサイクルが連続
して繰返されることになる。一方吸着塔3bでも同様に
吸着・脱着のサイクルが繰返されるが、その工程は吸着
塔3aのサイクルを%サイクルずらしたものとなる。吸
着塔3a、3bのサイクル例を第1表に示す。
When the above washing step is completed, the adsorption tower 3a is depressurized by the vacuum pump 4, and the adsorbed co is desorbed and recovered. The recovered CO product gas is stored in a product gas storage tank 5.
As mentioned above, a part of the gas is used as a cleaning gas to clean each adsorption tower 3a, 3b, and a part of it is also used as a cleaning gas in the product recovery pipe 6.
will be collected and used from After the desorption process in the adsorption tower 3a is completed, the adsorption process is repeated again, and the cycle of adsorption and desorption is continuously repeated. On the other hand, the adsorption/desorption cycle is similarly repeated in the adsorption tower 3b, but the process is shifted by % cycles from the cycle in the adsorption tower 3a. Table 1 shows cycle examples of the adsorption towers 3a and 3b.

[発明が解決しようとする問題点] 前項で記載した様に、吸着工程の終了した吸着塔では、
吸着剤の粒子間隙等に存在する不純成分を除去するため
に、製品ガスによる洗浄が行なわれている。洗浄工程の
出来、不出来は回収製品ガス濃度に大きな影響を与え、
洗浄が不十分である場合には製品ガス濃度の低下をきた
すといった不都合を生じる。従って洗浄ガスの供給に当
たっては洗浄のための必要最低量よりも余裕をみてやや
多めに供給しなければならず、しかも洗浄に必要な最低
量は吸着温度や原料ガスの成分変動によっても異なるた
め、これらの各場合を見越す必要上、かなり多めの洗浄
ガスを使用するのが一般的になっている。第1表に示す
(均圧+洗浄)工程時間T2  (T4も同じ)は、こ
れらの余裕を考慮して設定されており、洗浄工程は該工
程時間(T2又はT4)を基準にして間歇的に行なわれ
る。
[Problems to be solved by the invention] As described in the previous section, in the adsorption tower after the adsorption process,
Cleaning with product gas is performed to remove impurity components present in the gaps between adsorbent particles. The success or failure of the cleaning process has a large impact on the recovered product gas concentration.
Insufficient cleaning may cause problems such as a decrease in product gas concentration. Therefore, when supplying cleaning gas, it is necessary to supply a little more than the minimum amount required for cleaning, and the minimum amount required for cleaning also varies depending on the adsorption temperature and fluctuations in the composition of the source gas. Because of the need to anticipate each of these cases, it has become common practice to use a significantly larger amount of cleaning gas. The (equal pressure + cleaning) process time T2 (same as T4) shown in Table 1 is set taking into consideration these margins, and the cleaning process is performed intermittently based on the process time (T2 or T4). It will be held in

また洗浄廃ガスをそのまま廃棄すると製品回収率が著し
く低下してしまうので、前記した様に洗浄廃ガスを他の
吸着塔にまわして再び吸着させるという手順で実施され
、製品ガスの廃棄を避ける様に構成されているが、洗浄
廃ガス量が余り多くなってしまうと他の吸着塔における
実質的な吸着量(原料ガス中からの吸着量)が減少して
しまう。即ち各吸着塔に供給される有用成分の総量は、
原料ガス中の有用成分、洗浄廃ガス中の有用成分及び洗
浄ガス中の有用成分の総和であり、該総量は吸着塔の有
効吸着量(吸着許容量から減圧脱着後の残存吸着量を差
し引いた正味の吸着量)を下回らない範囲で最少限に抑
えなければ、製品純度及び製品回収率を低下させてしま
う。従って洗浄ガス量が多くなり過ぎると有効吸着量を
上回って有用成分が吸着塔へ供給されてしまうことにな
るので、吸着塔から廃棄されるガス中に多くの有用成分
が含まれてしまい製品回収率が低下してしまうといった
不都合もある。
In addition, if the cleaning waste gas is disposed of as is, the product recovery rate will drop significantly, so as mentioned above, the cleaning waste gas is passed to another adsorption tower and adsorbed again. However, if the amount of cleaning waste gas becomes too large, the actual amount of adsorption (the amount of adsorption from the raw material gas) in other adsorption towers will decrease. That is, the total amount of useful components supplied to each adsorption tower is
It is the sum of the useful components in the raw material gas, the useful components in the cleaning waste gas, and the useful components in the cleaning gas. Unless it is kept to a minimum within a range that does not fall below the net adsorption amount, product purity and product recovery rate will decrease. Therefore, if the amount of cleaning gas is too large, useful components will be supplied to the adsorption tower in excess of the effective adsorption amount, and the gas discarded from the adsorption tower will contain many useful components, resulting in product recovery. There is also the inconvenience that the rate decreases.

そこで本発明者は、製品純度を高水準に維持しつつ、洗
浄工程における製品ガスの過剰供給を抑制して製品回収
率を高める方法について種々工夫研究を積み重ねた結果
、本発明を完成するに至った。
Therefore, the inventor of the present invention has completed the present invention as a result of repeated research into various ways to increase the product recovery rate by suppressing the excessive supply of product gas in the cleaning process while maintaining a high level of product purity. Ta.

[問題点を解決するための手段] 吸着塔洗浄工程における゛洗浄ガスの過剰な供給を抑制
する本発明方法とは、塔内へ導入する洗浄ガス中の特定
成分濃度及び塔内を通過した洗浄廃ガス中の特定成分濃
度を比較し、両者の比又は差が許容される比又は差とな
ったときに洗浄ガスの供給を停止する方法である点を要
旨とするものである。
[Means for solving the problem] The method of the present invention for suppressing excessive supply of cleaning gas in the adsorption tower cleaning process is based on the concentration of specific components in the cleaning gas introduced into the tower and the cleaning gas that has passed through the tower. The gist of this method is to compare the concentrations of specific components in the waste gas, and to stop the supply of cleaning gas when the ratio or difference between the two reaches an allowable ratio or difference.

[作用] 洗浄工程とは、回収された有用成分を吸着工程の完了し
た吸着塔へ洗浄ガスとして供給し、吸着剤粒子間隙等に
残存している不純成分を除去する工程である。
[Operation] The cleaning step is a step in which the recovered useful components are supplied as a cleaning gas to the adsorption tower where the adsorption step has been completed, and impurity components remaining in the gaps between the adsorbent particles are removed.

従って洗浄初期には洗浄ガスの組成と洗浄廃ガスの組成
は大巾に異なり、洗浄後期には上記両者の組成は近似し
たものになる。
Therefore, in the early stages of cleaning, the composition of the cleaning gas and the composition of the cleaning waste gas differ widely, but in the later stages of cleaning, the compositions of the two become similar.

この様な観点から、洗浄ガスの過供給を防止する方法と
し°C1洗浄廃ガス中の特定成分(製品ガス、不純ガス
等)の濃度を測定しておき、一定濃度に至ったときに洗
浄ガスの供給を停止するということも考えられるが、こ
の方法は製品ガス貯留槽内の製品ガス濃度が常に一定で
あり、又吸着濃度も一定である等、諸条件を一定にした
上ではじめて成立する方法であり、これらの条件が変動
している様な状況下、例えば運転初期は製品ガス貯留槽
5中の製品ガス濃度が低いので、前記特定成分として製
品ガスを選んだ場合には洗浄ガスの供給停止を判定する
ことすらできない。また洗浄に要する時間が長くなって
製品ガスの損失を招くといった問題もある。
From this point of view, as a method to prevent oversupply of cleaning gas, the concentration of specific components (product gas, impure gas, etc.) in °C1 cleaning waste gas is measured, and when the concentration reaches a certain level, the cleaning gas is It is also possible to stop the supply of product gas, but this method will only work if various conditions are kept constant, such as the product gas concentration in the product gas storage tank being always constant and the adsorption concentration also being constant. Under circumstances where these conditions are fluctuating, for example, the concentration of product gas in the product gas storage tank 5 is low at the beginning of operation, so if product gas is selected as the specific component, the cleaning gas It is not even possible to determine whether the supply has been interrupted. Another problem is that the time required for cleaning becomes long, leading to loss of product gas.

それに比べて本発明の如く、洗浄ガス中の特定成分濃度
と洗浄廃ガス中の特定成分濃度を比較して両者の比又は
差を求め、これらが予め設定された許容値に達した時に
洗浄ガス供給を停止するという方法であれば、洗浄ガス
供給停止に至る時間は運転のいずれの時期においても正
確に制御することができ、洗浄ガスが無駄に供給される
といった不都合が防止できる。
In contrast, according to the present invention, the concentration of a specific component in the cleaning gas and the concentration of a specific component in the cleaning waste gas are compared to determine the ratio or difference between the two, and when these reach a preset tolerance value, the cleaning gas If the supply is stopped, the time until the supply of cleaning gas is stopped can be accurately controlled at any time during operation, and problems such as wasted supply of cleaning gas can be prevented.

[実施例] 第1図に本願発明の実施に使用される圧力スイング吸着
装置を示す。東2図で示した装置と異なる点は、吸着塔
連結管8a、8bに分析装置21を設けた点にある。C
o、N2 、N2ガスから構成される転炉ガスを原料と
してCOを濃縮回収すめ場合を例示して以下説明する。
[Example] Fig. 1 shows a pressure swing adsorption device used for carrying out the present invention. The difference from the apparatus shown in Fig. 2 is that an analyzer 21 is provided in the adsorption tower connecting pipes 8a and 8b. C
A case will be described below by way of example in which CO is concentrated and recovered using a converter gas composed of o, N2, and N2 gas as a raw material.

各吸着塔3a。Each adsorption tower 3a.

3bにおける吸着・脱着パターンは前記従来例の項で説
明したのとほぼ同一であるが、従来例では洗浄ガスの供
給を設定工程時間(洗浄の為の設定時間)の間ずっと継
続し続けなければならないのに対し、本発明では分析装
置21及び吸着塔洗浄管10に設けられた分析装置10
aの各測定結果を比較することによって洗浄ガスの供給
を停止させる時期を的確に判断する。この実施例では分
析装置21,10aにCO濃度分析計を設け、吸着塔内
に導入される前の洗浄ガス中のCO濃度を分析装置10
aで測定し、吸着塔を通過した洗浄廃ガス中のCO濃度
を吸着塔連結管8a、8bに設けた分析装置21で測定
する。例えば2つの分析装置21,10aで得たco;
1度が等しくなった時点は洗浄が最大成行なわれたこと
を意味するのでこの時点で直ちに制御装置31を介して
弁11又は12の閉鎖を行ない、洗浄ガスの供給を停止
させる。上記例では洗浄ガス中のc o ?IA度と洗
浄廃ガス中のCOf14度が等しくなったときに、洗浄
ガスの供給停止を行なう方法を示しているが、この実施
例に限定されずに両者の比又は差が設定された許容値に
達したときに洗浄ガスの供給を停止するという方法であ
っても構わない。また測定されるガス成分は有用成分で
あるCOでも良いし、或は不純成分であるN2やN2で
あっても構わない。さらに上記したCOの濃縮回収法に
限らず、空気中からN2を分離回収する場合等にも利用
することができ、ガス分離の適応対象については全く限
定されない。
The adsorption/desorption pattern in 3b is almost the same as that explained in the conventional example section, but in the conventional example, the supply of cleaning gas must be continued for the entire set process time (set time for cleaning). In contrast, in the present invention, the analyzer 21 and the analyzer 10 installed in the adsorption tower cleaning pipe 10
By comparing the measurement results of a, it is possible to accurately determine when to stop the supply of cleaning gas. In this embodiment, a CO concentration analyzer is provided in the analyzers 21 and 10a, and the CO concentration in the cleaning gas before being introduced into the adsorption tower is measured by the analyzer 10a.
The CO concentration in the cleaning waste gas that has passed through the adsorption tower is measured using an analyzer 21 installed in the adsorption tower connection pipes 8a and 8b. For example, co obtained with two analyzers 21 and 10a;
When the degrees become equal, it means that the cleaning has been performed to the maximum, so at this point, the valve 11 or 12 is immediately closed via the control device 31 to stop the supply of cleaning gas. In the above example, co? in the cleaning gas? A method is shown in which the cleaning gas supply is stopped when the IA degree and the COf14 degree in the cleaning waste gas become equal, but the ratio or difference between the two is not limited to this example. Alternatively, the supply of the cleaning gas may be stopped when the cleaning gas reaches the maximum temperature. Further, the gas component to be measured may be CO, which is a useful component, or may be N2 or N2, which is an impure component. Furthermore, it can be used not only for the above-mentioned CO concentration and recovery method, but also for separating and recovering N2 from the air, and there are no limitations on the application of gas separation.

第3図は分析装置21の一例についてその詳細を示す説
明図である。吸着塔連結管8a、8bから自動開閉弁2
2.23,24.25を介して分析計29.圧縮機30
.制御弁26〜28等が配設され、吸着塔連結管8a中
のガスをサンプリングするときには弁22.24を開放
し、連結管8b中のガスをサンプリングするときには弁
23.25を開放する。分析計29としては非分散式赤
外線分析計等の様にサンプリングガス量が少ない場合で
あっても応答性及び精度の高いものが好ましい。符号2
6は2次圧制御弁であり、また27は流量制御弁を示し
、これらは分析計29にサンプリングガスを定圧定量的
に送るために設けられ、さらに圧縮機30は分析計29
を通過したガスが連結管8a、8bの圧力より低下する
のを防止するために設けられる。尚圧縮機30を稼動し
た場合に分析計29内の圧力変動を防止する目的で1次
圧制御井28を配設することもある。
FIG. 3 is an explanatory diagram showing details of an example of the analyzer 21. Automatic opening/closing valve 2 from adsorption tower connecting pipes 8a and 8b
2.23, 24.25 via analyzer 29. Compressor 30
.. Control valves 26 to 28 are provided, and valves 22.24 are opened when sampling the gas in the adsorption tower connecting pipe 8a, and valves 23.25 are opened when sampling the gas in the connecting pipe 8b. The analyzer 29 is preferably a non-dispersive infrared analyzer that has high responsiveness and accuracy even when the amount of sampling gas is small. code 2
6 is a secondary pressure control valve, and 27 is a flow control valve, these are provided to quantitatively send the sampling gas to the analyzer 29 at a constant pressure, and the compressor 30 is connected to the analyzer 29.
These are provided to prevent the pressure of the gas that has passed through the connecting pipes 8a and 8b from dropping below that of the connecting pipes 8a and 8b. Note that a primary pressure control well 28 may be provided in order to prevent pressure fluctuations within the analyzer 29 when the compressor 30 is operated.

洗浄工程が開始されると弁22.24又は弁23.25
のいずれかの組が開放され、連結管8a、8bのいずれ
かを流れる洗浄廃ガスをサンプリングして分析計29に
て濃度を測定する。分析計29は破線で示す線に沿って
制御装置(図示せず)に接続されており、分析計29の
測定値が洗浄ガス分析装置10aでの測定値に対して許
容設定値に達したときに、洗浄目的ははy達成されたと
判断されて弁it、12のいずれかが閉鎖され、洗浄ガ
スの供給が停止される。尚このとき連結管8a、8bに
設けられた弁15.16のいずれかについても上記弁操
作に合わせて閉鎖される。
When the cleaning process is started, valve 22.24 or valve 23.25
Either set is opened, and the cleaning waste gas flowing through either the connecting pipes 8a or 8b is sampled and its concentration is measured by the analyzer 29. The analyzer 29 is connected to a control device (not shown) along the dashed line, and when the measured value of the analyzer 29 reaches a permissible set value with respect to the measured value of the cleaning gas analyzer 10a. Then, it is determined that the cleaning purpose has been achieved and one of the valves 12 is closed and the supply of cleaning gas is stopped. At this time, either of the valves 15 and 16 provided in the connecting pipes 8a and 8b is also closed in accordance with the above-mentioned valve operation.

(実施例1) 第1図に示した圧力スイング吸着装置を使用してCoと
N2から構成される原料ガスからCOを゛濃縮回収する
実験を以下の条件によって行なった。
(Example 1) An experiment was conducted to concentrate and recover CO from a raw material gas composed of Co and N2 using the pressure swing adsorption apparatus shown in FIG. 1 under the following conditions.

(a)原料ガス構成:CO80%、N220%(b)吸
着剤=5A型合成ゼオライト(2〜3mm球状品) (c)吸着剤充填量:φ3.9cm x 200cm、
 2塔式(d)吸着及び脱着圧カニ 1.8kg/cm
2G、150Torr(e)吸着温度:25℃ (f)工程設定時間:第1表における工程T1=T2 
=73 =74 =3分、 (g)洗浄ガス流量: 6N 111分、(h)分析計
29は非分散式赤外線分析計を使用し、ガスクロマトグ
ラフで82 Co両酸成分測定して求めた。
(a) Raw material gas composition: CO80%, N20% (b) Adsorbent = 5A type synthetic zeolite (2-3 mm spherical product) (c) Adsorbent filling amount: φ3.9cm x 200cm,
Two-column type (d) Adsorption and desorption pressure crab 1.8kg/cm
2G, 150Torr (e) Adsorption temperature: 25°C (f) Process setting time: Process T1 = T2 in Table 1
=73 =74 =3 minutes (g) Cleaning gas flow rate: 6N 111 minutes (h) A non-dispersive infrared analyzer was used as the analyzer 29, and the 82 Co amphoteric acid component was measured using a gas chromatograph.

(i)洗浄ガスの供給は洗浄廃ガス及び洗浄廃ガスのC
O濃度が等しくなったときに停止した。
(i) Cleaning gas supply is cleaning waste gas and cleaning waste gas C
It was stopped when the O concentrations were equal.

その結果運転開始から約180分後に製品c。As a result, product c was produced approximately 180 minutes after the start of operation.

濃度が99.9%以上に達し、洗浄工程においては2分
27秒〜2分32秒の間で洗浄ガスの供給停止が行なわ
れた。このとき製品回収率は81.7%となり、本発明
を採用しないで3分間ずっと洗浄ガスを供給したととの
回収率は74,4%となり、本発明方法では約10%回
収率が向上した。
When the concentration reached 99.9% or more, the supply of cleaning gas was stopped between 2 minutes 27 seconds and 2 minutes 32 seconds in the cleaning process. At this time, the product recovery rate was 81.7%, and the recovery rate when the present invention was not adopted and the cleaning gas was supplied for 3 minutes was 74.4%, and the method of the present invention improved the recovery rate by about 10%. .

(実施例2) 実施例1と同一条件で(a)の原料ガス構成を80%か
ら90%に高めて従来方法と本発明方法を比較した。
(Example 2) Under the same conditions as in Example 1, the raw material gas composition in (a) was increased from 80% to 90%, and the conventional method and the method of the present invention were compared.

この結果吸着工程終了時に吸着塔内に残留するN2量は
実施例1よりは減少するはずであったが、従来方法では
洗浄ガス量の制御を行なわないので回収率は69.7%
と低くなった。−力木発明方法では洗浄ガスの停止が2
分12秒から2分19秒の間で実行され、製品純度99
.9%を保持しっつ、回収率は76.3%となり、従来
方法より優れていることを実証した。
As a result, the amount of N2 remaining in the adsorption tower at the end of the adsorption process should have been smaller than in Example 1, but since the amount of cleaning gas is not controlled in the conventional method, the recovery rate was 69.7%.
It became low. - In the power wood invention method, the cleaning gas is stopped 2 times.
Runs between minutes 12 seconds and 2 minutes 19 seconds, product purity 99
.. While maintaining 9%, the recovery rate was 76.3%, demonstrating that it is superior to the conventional method.

[発明の効果コ 本発明方法により、回収目的の有用成分の純度を低下さ
せることなく、有用成分の回収率を向上させることに成
功した。また有効吸着容量を増大することができるよう
になり原料ガスの効率的な   ゛処理が可能となった
[Effects of the Invention] The method of the present invention succeeded in improving the recovery rate of useful components without reducing the purity of the useful components to be recovered. It has also become possible to increase the effective adsorption capacity, making it possible to efficiently process the raw material gas.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に用いる圧力スイング吸着装置を示す説
明図、第2図は従来方法に使用される圧力スイング吸着
装置を示す説明図、第3図は第1図に示した分析装置2
1の詳細を示す説明図である。 1・・・原料ガス供給管 2・・・原料ガス圧縮機3a
、3b・・・吸着塔 4・・・製品ガス回収用ポンプ 5・・・製品ガス貯留槽 6・・・製品ガス供給管7・
・・廃ガス廃棄管  8a、8b・・・吸着塔連結管9
・・・製品ガス取り出し管
FIG. 1 is an explanatory diagram showing the pressure swing adsorption device used in the present invention, FIG. 2 is an explanatory diagram showing the pressure swing adsorption device used in the conventional method, and FIG. 3 is an explanatory diagram showing the analyzer 2 shown in FIG. 1.
FIG. 1 is an explanatory diagram showing details of FIG. 1... Raw material gas supply pipe 2... Raw material gas compressor 3a
, 3b...Adsorption tower 4...Pump for product gas recovery 5...Product gas storage tank 6...Product gas supply pipe 7.
...Waste gas disposal pipes 8a, 8b...Adsorption tower connection pipe 9
・・・Product gas extraction pipe

Claims (1)

【特許請求の範囲】[Claims] 圧力スイング吸着塔によって易吸着性成分を濃縮回収す
るに際し、回収した易吸着性成分の一部を吸着工程の終
了した吸着塔へ導入して塔内を洗浄するに当たり、塔内
へ導入する洗浄ガス中の特定成分濃度及び塔内を通過し
た洗浄廃ガス中の特定成分濃度を比較し、両者の比又は
差が許容される比又は差となったときに洗浄ガスの供給
を停止することを特徴とする圧力スイング吸着方法。
When concentrating and recovering easily adsorbable components using a pressure swing adsorption tower, a part of the recovered easily adsorbable components is introduced into the adsorption tower after the adsorption process has been completed, and the inside of the tower is cleaned.Cleaning gas introduced into the tower The cleaning gas supply is stopped when the ratio or difference between the two reaches an allowable ratio or difference by comparing the concentration of a specific component in the column and the concentration of a specific component in the cleaning waste gas that has passed through the tower. Pressure swing adsorption method.
JP60237026A 1985-10-23 1985-10-23 Pressure swing adsorbing method Pending JPS6297622A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60237026A JPS6297622A (en) 1985-10-23 1985-10-23 Pressure swing adsorbing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60237026A JPS6297622A (en) 1985-10-23 1985-10-23 Pressure swing adsorbing method

Publications (1)

Publication Number Publication Date
JPS6297622A true JPS6297622A (en) 1987-05-07

Family

ID=17009289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60237026A Pending JPS6297622A (en) 1985-10-23 1985-10-23 Pressure swing adsorbing method

Country Status (1)

Country Link
JP (1) JPS6297622A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0609620A1 (en) * 1993-01-30 1994-08-10 The BOC Group plc Gas separation
US5529607A (en) * 1995-03-15 1996-06-25 The Boc Group, Inc. PSA process with dynamic purge control
JPH0947624A (en) * 1995-08-04 1997-02-18 Mitsubishi Heavy Ind Ltd Method for adsorption and separation of gas
US6162281A (en) * 1998-12-23 2000-12-19 Drager Sicherheitstechnik Gmbh Device and process for displaying the exhaustion of a gas filter
JP2018043906A (en) * 2016-09-14 2018-03-22 株式会社クラレ Nitrogen gas separation method, and nitrogen gas separation apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0609620A1 (en) * 1993-01-30 1994-08-10 The BOC Group plc Gas separation
JPH07745A (en) * 1993-01-30 1995-01-06 Boc Group Plc:The Gas separation
US5529607A (en) * 1995-03-15 1996-06-25 The Boc Group, Inc. PSA process with dynamic purge control
JPH0947624A (en) * 1995-08-04 1997-02-18 Mitsubishi Heavy Ind Ltd Method for adsorption and separation of gas
US6162281A (en) * 1998-12-23 2000-12-19 Drager Sicherheitstechnik Gmbh Device and process for displaying the exhaustion of a gas filter
JP2018043906A (en) * 2016-09-14 2018-03-22 株式会社クラレ Nitrogen gas separation method, and nitrogen gas separation apparatus

Similar Documents

Publication Publication Date Title
KR950006631B1 (en) Method and apparatus for concentrating chlorine gas
EP0458350B1 (en) Improved control of pressure swing adsorption operations
JPH0359727B2 (en)
KR101686085B1 (en) Recovery of NF3 from Adsorption Operation
JP5647388B2 (en) Blast furnace gas separation method and blast furnace gas separation apparatus
JPH0372566B2 (en)
JPS6297622A (en) Pressure swing adsorbing method
JP3570732B2 (en) Method and apparatus for concentrating chlorine gas
JPS61230715A (en) Method for concentrating and recovering gas by using psa apparatus
JPH0230607A (en) Production of highly pure nitrogen
JPH03242313A (en) Purification of carbon monoxide
JPS61136419A (en) Selective desorption in pressure swing adsorption
JP2529928B2 (en) Method for separating and recovering carbon monoxide gas
JPH0264004A (en) Pressure swing adsorption type production of high-purity nitrogen and apparatus therefor
JPS624421A (en) Pressure swing adsorption method
JPH0423564B2 (en)
JPS6410443B2 (en)
JPS60122025A (en) Method for operating adsorption type gas separating apparatus
JPH01203018A (en) Pressure swing adsorption process
JPH0687935B2 (en) Pressure swing adsorption device
JP2909254B2 (en) How to concentrate chlorine gas
JPS62227419A (en) Pressure swing adsorption method
JPH026815A (en) Pressure-swinging adsorber
JPS5826515B2 (en) How to start up and operate an air separation device
JPH0583286B2 (en)