JPS6297319A - Molecular beam crystal growing apparatus - Google Patents

Molecular beam crystal growing apparatus

Info

Publication number
JPS6297319A
JPS6297319A JP23647685A JP23647685A JPS6297319A JP S6297319 A JPS6297319 A JP S6297319A JP 23647685 A JP23647685 A JP 23647685A JP 23647685 A JP23647685 A JP 23647685A JP S6297319 A JPS6297319 A JP S6297319A
Authority
JP
Japan
Prior art keywords
substrate
crystal growth
crystal
fixed
supporter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23647685A
Other languages
Japanese (ja)
Other versions
JPH022281B2 (en
Inventor
Akihiro Shibatomi
昭洋 柴富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP23647685A priority Critical patent/JPS6297319A/en
Publication of JPS6297319A publication Critical patent/JPS6297319A/en
Publication of JPH022281B2 publication Critical patent/JPH022281B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To enable the crystal growth of high throughput by observing and evaluating the crystal substrate mounted on a fixed substrate supporter during the crystal growth to enable the control of the crystal growth over the crystal substrates mounted on rotary substrate supporters, thereby maintaining the uniformity of crystal growth. CONSTITUTION:A fixed substrate supporter 9 is fixed, the teeth cut in the outer periphery thereof engage with the teeth cut in the outer peripheries of rotary substrate supporters 10-12, and the teeth cut in the outer peripheries of the rotary substrate supporters 10-12 respectively engaged with the teeth cut in the inner periphery of a substrate supporter 8, thereby rotating the substrate supporter 8. With this, the rotary substrate supporters 10-12 revolved both on their axis and round the fixed substrate supporter 9. That is, so-called planetary movement is performed. By radiating an electron beam from an electron gun 6 to the substrate mounted on the fixed substrate supporter 9, the oscillation of the diffraction signal of an reflected electron beam is observed. From this oscillation period, the growth rate of the atomic layer order is controlled.

Description

【発明の詳細な説明】 〔概要〕 分子線結晶成長(MBE)法を用いてデバイスの結晶材
料を作成する際、膜厚、結晶組成比等の制御のために結
晶成長中の同時観測が可能な構造の基板支持器を提起す
る。
[Detailed Description of the Invention] [Summary] When creating crystalline materials for devices using the molecular beam crystal growth (MBE) method, simultaneous observation during crystal growth is possible to control film thickness, crystal composition ratio, etc. A substrate support with a unique structure is proposed.

〔産業上の利用分野〕[Industrial application field]

本発明は分子線結晶成長装置に係り、特に結晶成長中の
同時観測により分子線結晶成長の精密制御を可能とした
基板支持器の構造に関する。
The present invention relates to a molecular beam crystal growth apparatus, and more particularly to a structure of a substrate support that enables precise control of molecular beam crystal growth through simultaneous observation during crystal growth.

MBE法は、ヘテロ接合を容易に形成できる、高均一に
成長できる、薄膜多層構造(超格子構造)が容易に成長
できる、原子層オーダの膜厚制御が可能である等多くの
特徴をもっている。
The MBE method has many features, such as the ability to easily form heterojunctions, the ability to grow highly uniformly, the ability to easily grow thin film multilayer structures (superlattice structures), and the ability to control film thickness on the order of atomic layers.

この特徴を生かして、MBE法は高電子移動度トランジ
スタ(HEMT) 、ヘテロバイポーラトランジスタ(
HBT)等の高速トランジスタ、単層、あるいは多重層
量子井戸(SQLor MQW)、超格子アバランシェ
フォトダイオード(APD)等の光デバイス用材料作成
に多用されている。
Taking advantage of this feature, the MBE method can be applied to high electron mobility transistors (HEMTs), hetero bipolar transistors (
It is widely used to create materials for optical devices such as high-speed transistors such as HBT), single-layer or multilayer quantum wells (SQLor MQW), and superlattice avalanche photodiodes (APD).

以上の諸デバイスを作成するため、精度よく膜厚を制御
する必要があり、そのため結晶成長中にモニタできる構
造の装置が望まれている。
In order to fabricate the above-mentioned devices, it is necessary to control the film thickness with high precision, and for this reason, an apparatus with a structure that allows monitoring during crystal growth is desired.

〔従来の技術〕[Conventional technology]

MBE法において、膜厚、結晶組成比等の制御のための
同時観測法としては分子ビーム強度をビームフラ・7ク
スモニタで評価する方法がある。
In the MBE method, as a simultaneous observation method for controlling film thickness, crystal composition ratio, etc., there is a method of evaluating molecular beam intensity with a beam flux monitor.

しかし、この方法では評価が間接的となり、結晶成長を
精度よく制御することはできない。
However, with this method, the evaluation is indirect, and crystal growth cannot be precisely controlled.

また、間接的な制御方法としては、結晶成長を行う前後
で、基板を装置より取り出してターリステップ等を用い
て厚さを測定する。この方法では事後観測になり、勿論
精密な制御は不可能である。
In addition, as an indirect control method, the substrate is taken out from the apparatus and the thickness is measured using a tarry step or the like before and after crystal growth. This method involves post-observation, and of course precise control is not possible.

さらに、同時観測の方法として反射型電子線回折(RH
I!HD)法を用いた場合は反射回折信号の周期(1周
期が1原子層に相当)より原子層オーダの制御が可能で
ある。しかしこの方法では電子線を照射して反射回折信
号を同時観測するときに、結晶成長中に基板を固定しな
ければならない。いま第2図によりこの方法を説明する
Furthermore, as a method for simultaneous observation, reflection electron diffraction (RH
I! When the HD) method is used, control on the order of atomic layers is possible based on the period of the reflected diffraction signal (one period corresponds to one atomic layer). However, with this method, the substrate must be fixed during crystal growth when electron beam irradiation and reflection diffraction signals are simultaneously observed. This method will now be explained with reference to FIG.

第2図は従来例による、RHEBDでモニタできる構造
のMBE装置の模式図である。
FIG. 2 is a schematic diagram of a conventional MBE device having a structure that can be monitored by RHEBD.

図において、1はMBE装置の炉体、2は基板支持器の
回転部分、3は基板支持器のヒータ部分、4は結晶基板
、5.5′は分子線源セル〔ガリウム (Ga)、砒素
(As)) 、6は電子銃、7はスクリーンである。
In the figure, 1 is the furnace body of the MBE apparatus, 2 is the rotating part of the substrate support, 3 is the heater part of the substrate support, 4 is the crystal substrate, and 5.5' is the molecular beam source cell [gallium (Ga), arsenic (As)), 6 is an electron gun, and 7 is a screen.

この装置による結晶成長は、まず結晶基板4を所望の温
度(550〜750℃)に上げる。つぎに分子線源セル
5.5′の温度を上げて、各分子を放射させる。RHE
EDを用いて同時観測する場合、結晶基板4の回転を止
めて、結晶基板4の中心部分に電子銃6より電子ビーム
を放射して、この回折像をスクリーン7上に写す。この
スクリーン上の信号の強弱、振動周期(1周期が1原子
層に相当)によって成長速度を知ることができる。
In crystal growth using this apparatus, first, the crystal substrate 4 is raised to a desired temperature (550 to 750°C). Next, the temperature of the molecular beam source cell 5.5' is raised to emit each molecule. RHE
When performing simultaneous observation using ED, the rotation of the crystal substrate 4 is stopped, an electron beam is emitted from the electron gun 6 to the center of the crystal substrate 4, and this diffraction image is transferred onto the screen 7. The growth rate can be determined by the strength of the signal on the screen and the vibration period (one period corresponds to one atomic layer).

この場合は、前述のようにモニタ中は基板の回転を止め
るため、この基板をデバイス作成用基板として使用する
ことができない。
In this case, as described above, the rotation of the substrate is stopped during monitoring, so this substrate cannot be used as a device manufacturing substrate.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来例の装置による同時観測による結晶成長のモニタで
は、基板の回転を止める必要があり、結晶成長の精密制
御ができなかった。
Monitoring crystal growth through simultaneous observation using conventional equipment required the rotation of the substrate to be stopped, making it impossible to precisely control crystal growth.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点の解決は、分子ビームの中心部に設置された
固定基板支持器(9)と、該固定基板支持器(9)の周
囲に配置され、かつ自転および該固定基板支持器(9)
の周囲を公転することができる回転基板支持器(10)
、(11)、(12)とを有する基板支持器(8)を炉
体(1)内に設置し、結晶成長中に該固定基板支持器(
9)に載置された結晶基板を観測評価して、回転基板支
持器(10)、(11)、(12)上に載置された結晶
基板上への結晶成長の制御を可能とした本発明による分
子線結晶成長装置により達成される。
The solution to the above problem is to use a fixed substrate supporter (9) installed at the center of the molecular beam, a fixed substrate supporter (9) placed around the fixed substrate supporter (9), and a fixed substrate supporter (9) that rotates on its axis.
A rotating substrate support (10) that can revolve around the
, (11), and (12) is installed in the furnace body (1), and the fixed substrate support (8) is installed in the furnace body (1) during crystal growth.
A book that enables control of crystal growth on crystal substrates placed on rotating substrate supports (10), (11), and (12) by observing and evaluating crystal substrates placed on rotating substrate supports (10), (11), and (12). This is achieved by the molecular beam crystal growth apparatus according to the invention.

〔作用〕[Effect]

本発明は、基板支持器の中央部にモニタ基板用の固定し
た基板支持器と、その周囲に自転及び公転できる機構を
有する複数のデバイス基板用の回転基板支持器を設けた
MBE装置により、結晶成長中にデバイス基板の回転を
止めることなくモニタ観測を可能とし、結晶成長の精密
制御ができるようにしたものである。
The present invention utilizes an MBE apparatus that includes a fixed substrate support for a monitor substrate in the center of the substrate support, and a rotating substrate support for a plurality of device substrates having a mechanism capable of rotating and revolving around the substrate support. This enables monitoring and observation without stopping the rotation of the device substrate during growth, allowing precise control of crystal growth.

〔実施例〕〔Example〕

第1図は本発明による、RHEEDでモニタできる構造
のMBB装置の模式図である。
FIG. 1 is a schematic diagram of an MBB device having a structure that can be monitored by RHEED according to the present invention.

図は装置の要部を説明するために基板支持部を斜視図で
、装置全体は側断面図で示した。
In order to explain the main parts of the device, the figure shows a substrate support part in a perspective view, and the entire device is shown in a side sectional view.

図において、1はMBB装置の炉体、2は基板支持器の
回転部分、4は結晶基板、5.5′は分子線源セル(G
a 、As) 、6は電子銃、7はスクリーン、8は基
板支持器で、固定基板支持器9と回転基板支持器10.
11.12を有する。
In the figure, 1 is the furnace body of the MBB device, 2 is the rotating part of the substrate support, 4 is the crystal substrate, and 5.5' is the molecular beam source cell (G
a, As), 6 is an electron gun, 7 is a screen, 8 is a substrate supporter, a fixed substrate supporter 9 and a rotating substrate supporter 10.
11.12.

固定基板支持器9は固定され、その外周に切られた歯と
、回転基板支持器1o、11.12の外周に切られた歯
は噛み合い、回転基板支持器1o、11.12の外周に
切られた歯はそれぞれ基板支持器8の内周に切られた歯
と噛み合い、基板支持器8を回転することにより、回転
基板支持器10.11.12が自転しながら固定基板支
持器9の回りを公転する、いわゆる遊星運動ができるよ
うになっている。
The fixed substrate support 9 is fixed, and the teeth cut on its outer periphery mesh with the teeth cut on the outer periphery of the rotating substrate supports 1o, 11.12. The teeth cut into the inner circumference of the substrate support 8 mesh with the teeth cut on the inner circumference of the substrate support 8, and by rotating the substrate support 8, the rotating substrate supports 10, 11, and 12 rotate around the fixed substrate support 9. It is now possible to perform so-called planetary motion, revolving around the Earth.

この例では1パッチ3枚成長可能な基板支持器8を有し
、固定基板支持器9の回りを3枚のデバイス用基板支持
器が遊星運動をしている。
This example has a substrate support 8 capable of growing three substrates in one patch, and three device substrate supports move planetarily around a fixed substrate support 9.

モニタ用の固定基板支持器9は固定されているため、結
晶成長中も同時観測測定が可能である。
Since the fixed substrate support 9 for monitoring is fixed, simultaneous observation and measurement is possible even during crystal growth.

固定基板支持器9に載置された基板に電子銃6より電子
ビームを放射することにより、反射電子線回折信号の振
動を観測できる。この振動周期より原子層オーダの成長
速度を制御できる。
By emitting an electron beam from the electron gun 6 to the substrate placed on the fixed substrate supporter 9, the vibration of the reflected electron beam diffraction signal can be observed. The growth rate on the order of atomic layers can be controlled by this vibration period.

この結果、膜厚、結晶組成比を成長を行いながら瞬時に
知ることができ、精密制御が可能となった。
As a result, the film thickness and crystal composition ratio can be instantly known during growth, making precise control possible.

本発明の実施例では、評価法としてRHEEDを用いた
が、エリプソメトリ等の光学的な評価法にも適用可能で
ある。
In the examples of the present invention, RHEED was used as the evaluation method, but it is also applicable to optical evaluation methods such as ellipsometry.

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明したように本発明によれば、モニタ中で
もデバイス用基板は回転運動を連続しているため結晶成
長の均一性を維持できる。さらに従来例のようにモニタ
成長がなく、成長中に即時に観測データを成長制御系に
帰還できるため、高度に制御された、高スループツトの
結晶成長が可能となった。
As described in detail above, according to the present invention, the device substrate continues to rotate even during monitoring, so that the uniformity of crystal growth can be maintained. Furthermore, unlike conventional methods, there is no monitor growth, and observation data can be immediately fed back to the growth control system during growth, making highly controlled, high-throughput crystal growth possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による、R)IEEDでモニタできる構
造のMBE装置の模式図、 第2図は従来例による、RHEEDでモニタできる構造
のMBI’装置の模式図である。 図において、 1はMIE装置の炉体、 2は基板支持器の回転部分、 3は基板支持器のヒータ部分、 4は結晶基板、 5.5′は分子線源セル(Ga % As)6は電子銃
、 7はスクリーン、 8は基板支持器、 9は固定基板支持器、 10.11.12は回転基板支持器 である。 特許出頭人工、2技i付院長等々力達 木g:四〇師E策り 茅1 圃
FIG. 1 is a schematic diagram of an MBE device according to the present invention having a structure that can be monitored by R)IEED, and FIG. 2 is a schematic diagram of a conventional MBI' device having a structure that can be monitored by RHEED. In the figure, 1 is the furnace body of the MIE apparatus, 2 is the rotating part of the substrate supporter, 3 is the heater part of the substrate supporter, 4 is the crystal substrate, 5.5' is the molecular beam source cell (Ga % As) 6 is the 7 is a screen, 8 is a substrate supporter, 9 is a fixed substrate supporter, and 10.11.12 is a rotating substrate supporter. Patent appearance artificial, 2 technique i director Tatsuki Todoroki g: 40 masters E trick grass 1 field

Claims (1)

【特許請求の範囲】[Claims] 分子ビームの中心部に設置された固定基板支持器(9)
と、該固定基板支持器(9)の周囲に配置され、かつ自
転および該固定基板支持器(9)の周囲を公転すること
ができる回転基板支持器(10)、(11)、(12)
とを有する基板支持器(8)を炉体(1)内に設置し、
結晶成長中に該固定基板支持器(9)に載置された結晶
基板を観測評価して、回転基板支持器(10)、(11
)、(12)に載置された結晶基板上への結晶成長の制
御を可能としたことを特徴とする分子線結晶成長装置。
Fixed substrate support (9) installed at the center of the molecular beam
and rotating substrate supports (10), (11), (12) arranged around the fixed substrate support (9) and capable of rotating and revolving around the fixed substrate support (9).
A substrate supporter (8) having a substrate support (8) is installed in the furnace body (1),
During crystal growth, the crystal substrate placed on the fixed substrate support (9) is observed and evaluated, and the rotating substrate support (10), (11)
), (12) A molecular beam crystal growth apparatus characterized in that it is possible to control crystal growth on a crystal substrate placed on the crystal substrate.
JP23647685A 1985-10-24 1985-10-24 Molecular beam crystal growing apparatus Granted JPS6297319A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23647685A JPS6297319A (en) 1985-10-24 1985-10-24 Molecular beam crystal growing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23647685A JPS6297319A (en) 1985-10-24 1985-10-24 Molecular beam crystal growing apparatus

Publications (2)

Publication Number Publication Date
JPS6297319A true JPS6297319A (en) 1987-05-06
JPH022281B2 JPH022281B2 (en) 1990-01-17

Family

ID=17001302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23647685A Granted JPS6297319A (en) 1985-10-24 1985-10-24 Molecular beam crystal growing apparatus

Country Status (1)

Country Link
JP (1) JPS6297319A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008509354A (en) * 2004-08-04 2008-03-27 グナイト・コーポレーション Seal for bearing assembly

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008509354A (en) * 2004-08-04 2008-03-27 グナイト・コーポレーション Seal for bearing assembly

Also Published As

Publication number Publication date
JPH022281B2 (en) 1990-01-17

Similar Documents

Publication Publication Date Title
US6306668B1 (en) Control method and system for use when growing thin-films on semiconductor-based materials
JPS6297319A (en) Molecular beam crystal growing apparatus
JP2003224311A (en) High performance step-edge superconducting quantum interference device on sapphire substrate and method of manufacturing the same
Li et al. New design for multi-crystal data collection at SSRF
JPS61270813A (en) Molecular beam epitaxial growth equipment
JPS59152296A (en) Intensity controller for molecular rays in epitaxial growth with molecular rays
JPH02248391A (en) Molecular-beam crystal growth device
Hopkins et al. A RHEED study of the growth of antimony on tungsten (110)
JPS60145998A (en) Mbe growth method
JPH01278496A (en) Thin film production method
JPH05326404A (en) Molecular-beam epitaxial crystal growth apparatus
JPS60100422A (en) Mbe growing process for forming single crystal thin film cyclic structure
JPH0525618A (en) Thin film forming device and thin film forming method by using this device
JPH057253Y2 (en)
JPH01320291A (en) Production of single crystal thin film
JPS61288414A (en) Molecular beam epitaxial growing device
JPH01235233A (en) Molecular beam epitaxial growth method
JPS61223689A (en) Semiconductor detector of radiation position
JPS61190920A (en) Molecular beam crystal growth device
JPH02192488A (en) Molecular-beam apparatus for growing crystal
JPS61271817A (en) Molecular beam epitaxy apparatus
JPH06275526A (en) Manufacturing method of electronic part
JPS63120413A (en) Molecular beam cell
JPH01294595A (en) Molecular beam crystal growing unit
JPH02199818A (en) Molecular beam crystal growth apparatus

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term