JPS61270813A - Molecular beam epitaxial growth equipment - Google Patents

Molecular beam epitaxial growth equipment

Info

Publication number
JPS61270813A
JPS61270813A JP11239885A JP11239885A JPS61270813A JP S61270813 A JPS61270813 A JP S61270813A JP 11239885 A JP11239885 A JP 11239885A JP 11239885 A JP11239885 A JP 11239885A JP S61270813 A JPS61270813 A JP S61270813A
Authority
JP
Japan
Prior art keywords
substrate
growth
molecular beam
growth chamber
state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11239885A
Other languages
Japanese (ja)
Inventor
Yuichi Matsui
松居 祐一
Kenji Fukuike
福池 健次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP11239885A priority Critical patent/JPS61270813A/en
Publication of JPS61270813A publication Critical patent/JPS61270813A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation

Abstract

PURPOSE:To change the state of growing a semiconductor thin film and the state of growing a hybrid film mixed with a molecular beam by preventing the mutual mixing of the molecular beams in the state of holding the vacuum of a growth chamber, by connecting to a rotary introduction part wherein a partition plate and a mask plate are attached to the outside of the growth chamber. CONSTITUTION:Cells 2, 3 which contain the first and the second materials 2a, 3a of the III group each are formed at a required position of the side wall of the growth chamber 1 of a molecular beam epitaxial growth equipment. A substrate 4 is held by a substrate holder 5 in a rotatable way at the position where the central axes of the cells 2, 3 are crossed. Further, a partition plate 6 which prevents the mutual mixing of the molecular beams of the III group in the growth chamber 1 and a mask plate 7 which limits the irradiation region with the molecular bean against the substrate 4 are integrally attached in a rotatable state. Further, a rotary introduction terminal 9 is attached to a flange 8 attached at the required position of the growth chamber 1 in a rotatable state and a supporter 10 in the growth chamber 1 is connected to the introduction terminal 9. So, the state of growing a semiconductor thin film and the state of growing a hybrid film mixed with the molecular beam are rapidly changed.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は分子線エピタキシャル成長装置に関し、さら
に詳細にいえば、基板上に厚さ並びに種類の異なる層を
交互に、周期的に積層して、マイクロ波素子、或は発光
・受光素子として使用する単結晶a膜周期構造を形成す
ることができる分子線エピタキシャル成長装置に関する
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a molecular beam epitaxial growth apparatus, and more specifically, the present invention relates to a molecular beam epitaxial growth apparatus, in which layers of different thicknesses and types are alternately and periodically stacked on a substrate. The present invention relates to a molecular beam epitaxial growth apparatus capable of forming a periodic structure of a single-crystal a film used as a microwave device or a light-emitting/light-receiving device.

〈従来の技術〉 従来から、化合物半導体デバイス、特に光デバイスの製
法として、薄い一様な層の成長、成分元素組成比の制御
の容易さからエピタキシャル成長方法が′一般的に利用
されている。なかでも、最近特に注目されている技術と
して、分子線エビタキシャル成長方法(以下、MBE成
長法と略称する)が知られており、例えばW、 T、 
Tsangにより日経エレクトロニクス陽3G8,16
3 (1983)において、MBE成長法並びに薄膜周
期構造を利用したデバイスが詳細に説明されている。
<Prior Art> Conventionally, epitaxial growth methods have been commonly used as a manufacturing method for compound semiconductor devices, especially optical devices, because of the ease of growing thin, uniform layers and controlling the composition ratio of component elements. Among them, the molecular beam epitaxial growth method (hereinafter abbreviated as MBE growth method) is known as a technique that has recently attracted particular attention.
Nikkei Electronics Yang 3G8,16 by Tsang
3 (1983), the MBE growth method and devices utilizing thin film periodic structures are described in detail.

このMBE成長法に従えば、発光部に厚さ数10A〜数
100A程度の種類の異なる超薄膜層をアロイ・クラス
タの形成なしに交互に、周期的に積層することにより、
第5図に示すような多重量子井戸型レーザを製造するこ
とが14能となる。尚、図において(A)はp型GaA
S、(B)はp型Ga  At  −As、(C)はノ
ンドープQax   (1x) Asウェル、(D)はノンドープGaxA1(1−x)
Asバリア、(E)はn型Qa  Al (1−x) 
As 1(F)はn型Qa ASである。
According to this MBE growth method, by alternately and periodically stacking different types of ultra-thin film layers with a thickness of several tens of amps to several hundreds of amps on the light emitting part without forming alloy clusters,
It is now possible to manufacture a multi-quantum well laser as shown in FIG. 5. In the figure, (A) is p-type GaA
S, (B) is p-type Ga At -As, (C) is non-doped Qax (1x) As well, (D) is non-doped GaxA1 (1-x)
As barrier, (E) is n-type Qa Al (1-x)
As 1 (F) is an n-type Qa AS.

従来の■−v族化合物半導体薄膜周期構造形成のための
MBE成長法においては、例えば第6図に示すように、
成長室(21)内において基板ホルダ(25)上に基板
を保持し、かつ保持位置が、両セル(22)(23)の
中心軸が交差する位置に設定されている。そして、両セ
ル(i2)(23)に収納されている原料(22a)(
23a)から蒸発した原料の分子線の、基板(20に対
する照射を制御するためのセルシャッタ(22b)(2
3b)が上記両セル(22)(23)に取付けられてお
り、セルシャッタ(22bH23b)を交互に所定の周
期で開閉することにより、選択的に一方の原料の分子線
を基板(24)に照射し、基板(24)上に種類が異な
る化合物半導体薄膜を交互に周期的に形成することがで
きる(特開昭57−47160号、および特開昭57−
11899号公報看照)。
In the conventional MBE growth method for forming a periodic structure of a ■-V group compound semiconductor thin film, for example, as shown in FIG.
A substrate is held on a substrate holder (25) in the growth chamber (21), and the holding position is set at a position where the central axes of both cells (22) and (23) intersect. Then, the raw materials (22a) (
A cell shutter (22b) (23a) for controlling the irradiation of the molecular beam of the raw material evaporated from the substrate (20)
3b) is attached to both cells (22) and (23), and by alternately opening and closing the cell shutters (22bH23b) at a predetermined period, the molecular beams of one of the raw materials are selectively applied to the substrate (24). It is possible to alternately and periodically form compound semiconductor thin films of different types on the substrate (24) by irradiating the substrate (24).
(See Publication No. 11899).

着発明が解決しようとする問題点〉 上記のMBE成長法では、一方のセルシャッタが開いて
いる間は、他方のセルシャッタが閏じられていることに
なるが、一般に■−v族化合物半導体をMBE成長させ
る場合、原料セル(22)(23)は通常700〜10
00℃の高温度に加熱されている。このため、セルシャ
ッタ(22b)(23b)が閉じられている間に原料が
加熱されて不純ガスを発生することになり、不純ガスが
成長している薄膜内に取込まれた場合には、amの電気
特性が著しく劣化することになる。さらに、上記不純ガ
スの発生の問題とは別に、セルシャッタ(22b)(2
3b)を閉じることによりセル温度自体が影響を受け、
その結果として再度セルシャッタ(22b) (23b
)を開いた際に原料分子線強度のオーバーシュートを引
起こし、化合物半導体薄膜の膜厚制御並びに混晶の場合
の膜組成の制御を困難にするので、薄膜周期構造を形成
する際の周期性が低下することになる。
Problems to be Solved by the Invention> In the above MBE growth method, while one cell shutter is open, the other cell shutter is occupied, but generally When growing by MBE, the raw material cells (22) (23) are usually 700 to 10
It is heated to a high temperature of 00°C. Therefore, while the cell shutters (22b) (23b) are closed, the raw material is heated and impure gas is generated, and if the impure gas is taken into the growing thin film, The electrical characteristics of am will be significantly deteriorated. Furthermore, apart from the above problem of impurity gas generation, the cell shutter (22b) (2
By closing 3b), the cell temperature itself is affected,
As a result, the cell shutter (22b) (23b
), it causes an overshoot in the intensity of the raw material molecular beam, making it difficult to control the film thickness of compound semiconductor thin films and the film composition in the case of mixed crystals. will decrease.

また、通常の成長速度で単原子層或は2原子層といった
極めて薄い半導体層を成長させるためには、セルシャッ
タ(22b) (23b)の開放時間を著しく短くする
必要があるが、セルシャッタ(22b)(23b)の機
械的精度を考慮すると、開放時間誤差が大きくなり、一
定周期の薄膜を成長させることは困難になる。
In addition, in order to grow an extremely thin semiconductor layer such as a monoatomic layer or a diatomic layer at a normal growth rate, it is necessary to significantly shorten the opening time of the cell shutters (22b) (23b). Considering the mechanical precision of 22b) and 23b, the open time error becomes large, making it difficult to grow a thin film with a constant period.

このような問題点を解消するために、セルシャッタを省
略、して、原料の飛行線を分離するための仕切り板、お
よびマスク板を不動状に取付けるこ。
In order to solve this problem, the cell shutter is omitted and a partition plate for separating the flight line of the raw material and a mask plate are fixedly attached.

とにより、成長室内を複数の隔室に画成することが考え
られるが、各隔室においては、互に異なる原料からの分
子線が照射されるのみであり、超格子構造のみしか成長
させることができず、混晶結晶は全く成長させることが
できない。
Therefore, it is possible to divide the growth chamber into multiple compartments, but each compartment is only irradiated with molecular beams from different raw materials, and only the superlattice structure can be grown. Therefore, mixed crystals cannot be grown at all.

したがって、例えば、第6図に示すように、InPから
なる基板上に直接1nAsとGaASの超格子構造を成
長させようとすれば、InP基板表面の凹凸の影響によ
り、第7図に示すように、In As −Ga AS超
格子のX線回°折半値幅が広く(〜1GGG”) 、結
晶性が悪いものしか得られないという不都合が発生する
ことになる。
Therefore, for example, if you try to grow a superlattice structure of 1nAs and GaAS directly on a substrate made of InP, as shown in FIG. 6, due to the unevenness of the surface of the InP substrate, as shown in FIG. , the X-ray diffraction half-width of the InAs-Ga AS superlattice is wide (~1GGG''), resulting in the disadvantage that only products with poor crystallinity can be obtained.

この発明は上記の問題点に鑑みてなされたものであり、
セルシャッタの開閉に伴なって生ずる不都合を解消でき
るとともに、化合物半導体4wJ膜の成長、および混晶
膜の成長を簡単に、かつ迅速に切替えることができる分
子線エピタキシャル成長装置を提供することを目的とし
ている。
This invention was made in view of the above problems,
The purpose of the present invention is to provide a molecular beam epitaxial growth apparatus that can eliminate the inconvenience caused by opening and closing a cell shutter, and can easily and quickly switch between the growth of a compound semiconductor 4wJ film and the growth of a mixed crystal film. There is.

く問題点を解決するための手段〉 上記の目的を達成するための、この発明の分子線エピタ
キシャル成長装置は、各原料の基板に対する飛行軌跡を
分離する仕切り板と、所定位置に基板まで到達する原料
の飛行を許容するスリットを形成したマスクとを、上記
成長室外部に取付けられた回転導入部に連結している。
Means for Solving the Problems> In order to achieve the above object, the molecular beam epitaxial growth apparatus of the present invention includes a partition plate that separates the flight trajectory of each raw material with respect to the substrate, and a partition plate that separates the flight trajectory of each raw material with respect to the substrate. A mask in which a slit is formed to allow the flight of the growth chamber is connected to a rotating introduction section installed outside the growth chamber.

但し、上記仕切り板、およびマスクとしては、基板中央
部に対応する位置と、基板から全く離隔した位置とのI
Nを移動可能に回転導入部と接続されていることが好ま
しく、また、上記基板としては、基板の表面と垂直な軸
を中心として回転可能に支持されていることが好ましい
However, as for the above-mentioned partition plate and mask, the I
It is preferable that N is movably connected to the rotation introduction part, and the substrate is preferably supported rotatably about an axis perpendicular to the surface of the substrate.

く作用〉 上記の構成の分子線エピタキシャル成長装置であれば、
回転導入部により仕切り板、およびマスクを回転させる
ことにより、その回転位置に対応させて、仕切り板によ
り各原料からの分子線を確実に分離して、マスクのスリ
ットを通して分子線を基板に照射することにより化合物
半導体iWwAの成長を行なわせることができる状態と
、各原料からの分子線を分離することなく基板に照射す
ることにより混晶膜の成長を行なわせることができる状
態とを選択することができる。そして、この選択は、回
転導入部により仕切り板、およびマスクを回転させるの
みで行なうことができ、成長室内部を高真空に保持した
ままで、短時間で選択を完了することができる。
Effect〉 If the molecular beam epitaxial growth apparatus has the above configuration,
By rotating the partition plate and the mask using the rotating introduction section, the molecular beams from each raw material are reliably separated by the partition plate in accordance with the rotational position, and the molecular beams are irradiated onto the substrate through the slits of the mask. Selecting a state in which the compound semiconductor iWwA can be grown by irradiating the substrate with molecular beams from each raw material without separating them, and a state in which the mixed crystal film can be grown by irradiating the substrate with molecular beams from each raw material without separating them. Can be done. This selection can be made by simply rotating the partition plate and the mask using the rotation introduction section, and the selection can be completed in a short time while maintaining the inside of the growth chamber at a high vacuum.

特に、上記仕切り板、およびマスクを、基板中央部に対
応する位置と、基板から全く離隔した位置との間を移動
可能に回転導入部と接続した場合には、上記化合物半導
体薄膜の成長、および混晶膜の成長の選択を確実に行な
わせることができて好ましく、また、上記基板を、基板
の表面と垂直な軸を中心として回転可能に支持した場合
には、化合物半導体薄膜、および混晶の膜を極めて一様
に基板上に形成することができ、膜厚を薄くした場合で
も上記一様性は何ら阻害されないという利点を有するこ
とになる。
In particular, when the partition plate and the mask are connected to the rotation introduction part so as to be movable between a position corresponding to the center of the substrate and a position completely separated from the substrate, the growth of the compound semiconductor thin film, and It is preferable because the growth of the mixed crystal film can be selected reliably, and when the substrate is supported rotatably around an axis perpendicular to the surface of the substrate, the growth of the compound semiconductor thin film and the mixed crystal film can be controlled. This film has the advantage that it is possible to form a film extremely uniformly on a substrate, and that even if the film thickness is reduced, the above-mentioned uniformity is not impaired in any way.

〈実施例〉 以下、実施例を示す添付図面によって詳細に説明する。<Example> Hereinafter, embodiments will be described in detail with reference to the accompanying drawings showing examples.

第1図はMBE成長装置の内部を上から見た概略図、第
2図はMBE成長装置の内部機構を示す概略斜視図であ
り、成長室(1)の側壁所定位置にそれぞれ■族第1原
料(2a)、■族第2原料(3a)を格納するセル(2
1(3]を形成しているとともに、両セル(2) +3
)の中心軸が交差する位置に、基板ホルダ(5)により
基板(4)を回転可能に保持し、さらに成長室(1)の
内部における■族分子線相互の混合を防止するための仕
切り板(6)、および基板(4)に対する分子線の照射
領域を規制するマスク板(力を、一体内に回動可能に取
付けている。
Fig. 1 is a schematic view of the inside of the MBE growth apparatus viewed from above, and Fig. 2 is a schematic perspective view showing the internal mechanism of the MBE growth apparatus. A cell (2) that stores the raw material (2a) and the second group raw material (3a)
1 (3) and both cells (2) +3
), the substrate (4) is rotatably held by a substrate holder (5) at a position where the central axes of (6), and a mask plate (force) that regulates the irradiation area of the molecular beam on the substrate (4) is rotatably attached within the unit.

さらに詳細に説明すると、成長室(1)の所定位置に取
付けたフランジ(8)に対して回転可能に回転導入端子
(9)を取付けているとともに・、成長室(1)の内部
に位置する支持棒□□□を、上記フランジ(8)を気密
的に貫通させて回転導入端子(9)に連結している。
To explain in more detail, a rotation introduction terminal (9) is rotatably attached to a flange (8) attached to a predetermined position of the growth chamber (1), and a rotation introduction terminal (9) is installed inside the growth chamber (1). The support rod □□□ passes through the flange (8) in an airtight manner and is connected to the rotation introduction terminal (9).

上記支持棒■は、先端寄り部がほぼ弧状に湾曲形成され
たものであり、弧状湾曲部に、成長室(1)の側壁に向
かって延びる仕切り板(6)、および基板(4)と正対
し得るマスク板(′7)を一体内に取付けている。
The support rod (2) has a substantially arc-shaped curved portion near the tip, and a partition plate (6) extending toward the side wall of the growth chamber (1) and a substrate (4) are attached to the arc-shaped curved portion. A mask plate ('7) which can be used as a mask is attached inside the body.

そして、上記マスク板(7)には、仕切り板(6)を挟
んで各セル(2) +31の中心軸と正対する位置に、
基板(4)を所定の中心角度で扇状に露呈させることが
できるスリット(γa)(γb)を形成している。この
スリット(7a)(7b)は、開口面積が固定されたも
のとして示されているが、マスク板(7)を2枚重ねた
構成とすることにより、開口面積を変化させることがで
きるものとすることもできる。また、上記基板(4)と
マスク板(刀との間隔は2RIQ1以内に設定されてい
る。
Then, on the mask plate (7), at a position directly facing the central axis of each cell (2) +31 with the partition plate (6) in between,
Slits (γa) (γb) are formed that allow the substrate (4) to be exposed in a fan shape at a predetermined central angle. Although the slits (7a) and (7b) are shown as having fixed opening areas, the opening areas can be changed by stacking two mask plates (7). You can also. Further, the distance between the substrate (4) and the mask plate (sword) is set within 2RIQ1.

以上の構成であれば、回転導入端子(9)を介して支持
棒□□□とともに仕切り板(6)、およびマスク板(刀
を回動させることにより、仕切り板(6)、およびマス
ク板(力を基板(4)から全く離隔した状態とすれば、
セル+2) (3)に格納された■族第1原料(2a)
、■族第2原料(3a)からの分子線が同時に基板(4
)に照射されて、混晶の結晶の成長を行なうことができ
る。
With the above configuration, by rotating the partition plate (6) and the mask plate (sword) together with the support rod □□□ via the rotation introduction terminal (9), the partition plate (6) and the mask plate ( If the force is completely separated from the substrate (4),
Group 1 raw material (2a) stored in cell +2) (3)
, the molecular beam from the group II second raw material (3a) is simultaneously applied to the substrate (4).
), it is possible to grow mixed crystals.

また、仕切り板(6)、およびマスク板(7)を基板(
4)の中央部に対応する状態とすれば、セル(2) (
3]に格納された■族第1原料(2a)、■族第2原料
(3a)からの分子線が、互に分離された状態で基板(
4)に照射されて、超格子構造の半導体薄膜の成長を行
なうことができる。
In addition, the partition plate (6) and the mask plate (7) are connected to the substrate (
If the state corresponds to the center of cell (2) (
Molecular beams from the group ■ first raw material (2a) and the group ■ second raw material (3a) stored in the substrate (3) are separated from each other and transferred to the substrate (
4), a semiconductor thin film having a superlattice structure can be grown.

そして、上記の各成長動作の切替は、成長室(1)内の
高真空状態を保持させたままで行なうことができ、実質
的に瞬時に切替が行なえることになる。
The above-mentioned growth operations can be switched while maintaining the high vacuum state in the growth chamber (1), and the switching can be done virtually instantaneously.

したがって、例えば、lnP基板上にin AS−Ga
 AS超格子を成長させる場合には、先ず、仕切り板(
6)、およびマスク板(7)を基板(4)から全く離隔
した状態とすることにより、セル(2) [31に格納
された■液筒1原料(2a)、■液筒2原料(3a)か
らの分子線を同時にInPの基板(4)に照射して、I
n  Ga  −ASの混晶の成長を行ない(セx  
 (1x) ル(2) +3)に格納する原料を適宜選択することに
より、A I   I n (1−x) As等の混晶
を成長させてもよい)、次いで仕切り板(6)、および
マスク板(7)を基板(4)の中央部に対応する状態と
することにより、セル(21(31に格納された■液筒
1原料(2a)、■液筒2原料(3a)からの分子線を
、互に分離された状態で基板(4)に照射して、上記混
晶膜(11)の上にInAS −Ga As超格子構造
の半導体薄膜(12)の成長を行なうことができる(第
3図参照)。
Thus, for example, in AS-Ga on an lnP substrate
When growing an AS superlattice, first, a partition plate (
6) and the mask plate (7) are completely separated from the substrate (4). ) is simultaneously irradiated onto the InP substrate (4), and the I
nGa-AS mixed crystal growth (se x
(1x) A mixed crystal such as A I I n (1-x) As may be grown by appropriately selecting the raw materials stored in the (2) +3), then the partition plate (6), and By placing the mask plate (7) in a state corresponding to the center of the substrate (4), the liquid from the liquid cylinder 1 raw material (2a) and ■liquid cylinder 2 raw material (3a) stored in the cell (21 (31) A semiconductor thin film (12) having an InAS-GaAs superlattice structure can be grown on the mixed crystal film (11) by irradiating the substrate (4) with molecular beams while being separated from each other. (See Figure 3).

このようにして得られた超格子構造の半導体薄膜(12
)のX線回折半値幅は狭く(〜40”)  (第4図参
照)、周期性、および結晶性が、基板(4)の上に直接
超格子構造の半導体薄膜を成長させた場合と比較して、
著しく向上した。これは、InPの基板(4)の表面の
凹凸が、混晶膜(11)を形成することにより平滑化さ
れ、この平滑面の上にIn As−Qa AS超格子が
形成されたことに基いている。
The semiconductor thin film (12
) has a narrow X-ray diffraction half-width (~40") (see Figure 4), and its periodicity and crystallinity are comparable to those in the case where a semiconductor thin film with a superlattice structure is grown directly on the substrate (4). do,
Significantly improved. This is because the irregularities on the surface of the InP substrate (4) are smoothed by forming the mixed crystal film (11), and an In As-Qa AS superlattice is formed on this smooth surface. I'm there.

尚、この発明は上記の実施例に限定されるものではなく
、例えば、薄膜周期構造の形成に必要なセルの数に対応
させて2個以上の仕切り板(6)を回動可能に取付ける
ことが可能である他、仕切り板(6)を基板(4)の中
央部に対応する位置に回動させた状態で、2種類の半導
体層を形成させるために必要な■族、およびV族原料を
備えた複数のセルをそれぞれ仕切り板(6)の両側に取
付けることにより種々の半導体薄膜周期構造を形成する
ことが可能であり、その他、この発明の要旨を変更しな
し・範     1囲内において種々の設計変更を施す
ことが可能である。
Note that the present invention is not limited to the above-described embodiments; for example, two or more partition plates (6) may be rotatably attached in accordance with the number of cells required to form a thin film periodic structure. In addition, when the partition plate (6) is rotated to a position corresponding to the center of the substrate (4), the Group II and Group V raw materials necessary for forming two types of semiconductor layers can be used. It is possible to form various semiconductor thin film periodic structures by attaching a plurality of cells each equipped with a partition plate (6) on both sides of the partition plate (6).Other than that, the gist of the present invention remains unchanged. It is possible to make design changes.

〈発明の効果〉 以上のようにこの発明は、仕切り板とマスク板とを成長
室外部に取付け゛た回転導入部と連結しているので、成
長室内部における高真空を保持させたままで、分子線相
互の混合を防止して化合物半導体薄膜を成長させる状態
と、分子線を混合さぽて混晶膜を成長させる状態とを、
成長室内部の高真空を保持させた状態で、簡単に、かつ
迅速に切替えることができるという特有の効果を奏する
<Effects of the Invention> As described above, in this invention, the partition plate and the mask plate are connected to the rotation introduction section installed outside the growth chamber, so that molecular beams can be generated while maintaining the high vacuum inside the growth chamber. A state in which a compound semiconductor thin film is grown by preventing mutual mixing, and a state in which a mixed crystal film is grown by mixing molecular beams.
This has the unique effect of being able to be switched easily and quickly while maintaining a high vacuum inside the growth chamber.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はM8E成長装置の内部を上から見た概略図、 第2図はMBE成長装置の内部機構を示す概略斜視図、 第3図は基板上の混晶膜、および半導体薄膜を形成した
状態を示す縦断面図、 第4図は第3図の素子のX線回折データを示す図、 第5図は多重量子井戸型レーザを示す概略図、第6図は
従来のMBE成長装置を示す概略図、第7図は基板上に
直接超格子構造を成長させた状態を示す縦断面図、 第8図は第7図の素子のX線回折データを示す図。 (1)−・・成長室、(2) (3)・・・セル、(2
a)・・・■液筒1原料、(3a)・・・■液筒2原料
、(4)・・・基板、(6)・・・仕切り板、(力・・
・マス°り板、(7a)(7b)・・・スリット、(9
)・・・回転導入端子特許出願人  住友電気工業株式
会社 第5図 第7図 第6図 第8図 回折角
Figure 1 is a schematic diagram of the inside of the M8E growth apparatus viewed from above, Figure 2 is a schematic perspective view showing the internal mechanism of the MBE growth apparatus, and Figure 3 is a diagram showing the formation of a mixed crystal film and a semiconductor thin film on a substrate. Fig. 4 is a diagram showing X-ray diffraction data of the device in Fig. 3, Fig. 5 is a schematic diagram showing a multi-quantum well laser, and Fig. 6 is a conventional MBE growth apparatus. A schematic view, FIG. 7 is a vertical cross-sectional view showing a superlattice structure grown directly on a substrate, and FIG. 8 is a diagram showing X-ray diffraction data of the device shown in FIG. 7. (1) - Growth chamber, (2) (3) Cell, (2
a)...■Liquid cylinder 1 raw material, (3a)...■Liquid cylinder 2 raw material, (4)...Substrate, (6)...Partition plate, (force...
・Mass cutting board, (7a) (7b)...slit, (9
)...Rotating introduction terminal Patent applicant: Sumitomo Electric Industries, Ltd. Figure 5 Figure 7 Figure 6 Figure 8 Diffraction angle

Claims (1)

【特許請求の範囲】 1、高真空下に維持された成長室内でセル 内に収納された複数種類の原料を所定方 向に飛行させ、上記成長室内に支持され た基板表面に上記原料を付着させ、成長 させる分子線エピタキシャル成長装置で あって、各原料の基板に対する飛行軌跡 を分離する仕切り板と、所定位置に基板 まで到達する原料の飛行を許容するスリ ットを形成したマスクとを、上記成長室 外部に取付けられた回転導入部に連結し たことを特徴とする分子線エピタキシャ ル成長装置。 2、仕切り板、およびマスクが、基板中央 部に対応する位置と、基板から全く離隔 した位置との間を移動可能に回転導入部 と連結されたものである上記特許請求の 範囲第1項記載の分子線エピタキシャル 成長装置。 3、基板が、基板の表面と垂直な軸を中心 として回転可能に支持されている上記特 許請求の範囲第1項記載の分子線エピタ キシャル成長装置。[Claims] 1. Cells in a growth chamber maintained under high vacuum The multiple types of raw materials stored in the It was flown in the direction and supported in the above growth chamber. The above raw materials are attached to the surface of the substrate, and the growth With molecular beam epitaxial growth equipment Therefore, the flight trajectory of each raw material relative to the substrate With a partition plate to separate the board and the board in place A pickpocket that allows the flight of raw materials to reach The mask with the cut formed thereon is placed in the above growth chamber. Connects to an externally mounted rotating introduction part. Molecular beam epitaxy characterized by le growth equipment. 2. The partition plate and mask are located at the center of the board. The location corresponds to the part and is completely separated from the board. Rotating introduction part that can be moved between positions of the above patent claims concatenated with Molecular beam epitaxial treatment as described in Range 1 growth equipment. 3. The substrate is centered on the axis perpendicular to the surface of the substrate. The above feature is rotatably supported as Molecular beam epitaxy according to claim 1 Kishal growth device.
JP11239885A 1985-05-24 1985-05-24 Molecular beam epitaxial growth equipment Pending JPS61270813A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11239885A JPS61270813A (en) 1985-05-24 1985-05-24 Molecular beam epitaxial growth equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11239885A JPS61270813A (en) 1985-05-24 1985-05-24 Molecular beam epitaxial growth equipment

Publications (1)

Publication Number Publication Date
JPS61270813A true JPS61270813A (en) 1986-12-01

Family

ID=14585659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11239885A Pending JPS61270813A (en) 1985-05-24 1985-05-24 Molecular beam epitaxial growth equipment

Country Status (1)

Country Link
JP (1) JPS61270813A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63224321A (en) * 1987-03-13 1988-09-19 Seiko Instr & Electronics Ltd Molecular beam epitaxy system
JPS63224319A (en) * 1987-03-13 1988-09-19 Seiko Instr & Electronics Ltd Molecular beam epitaxy system
JP2011032511A (en) * 2009-07-31 2011-02-17 Hitachi Zosen Corp Method and apparatus for forming thin film

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56107550A (en) * 1980-01-30 1981-08-26 Fujitsu Ltd Molecular beam crystal growing process
JPS5844776A (en) * 1981-09-11 1983-03-15 Konishiroku Photo Ind Co Ltd Manufacturing device for amorphous silicon solar cell
JPS58197272A (en) * 1982-05-12 1983-11-16 Toshiba Corp Sputtering device
JPS60152022A (en) * 1984-01-20 1985-08-10 Agency Of Ind Science & Technol Molecular beam epitaxial growth device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56107550A (en) * 1980-01-30 1981-08-26 Fujitsu Ltd Molecular beam crystal growing process
JPS5844776A (en) * 1981-09-11 1983-03-15 Konishiroku Photo Ind Co Ltd Manufacturing device for amorphous silicon solar cell
JPS58197272A (en) * 1982-05-12 1983-11-16 Toshiba Corp Sputtering device
JPS60152022A (en) * 1984-01-20 1985-08-10 Agency Of Ind Science & Technol Molecular beam epitaxial growth device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63224321A (en) * 1987-03-13 1988-09-19 Seiko Instr & Electronics Ltd Molecular beam epitaxy system
JPS63224319A (en) * 1987-03-13 1988-09-19 Seiko Instr & Electronics Ltd Molecular beam epitaxy system
JP2011032511A (en) * 2009-07-31 2011-02-17 Hitachi Zosen Corp Method and apparatus for forming thin film

Similar Documents

Publication Publication Date Title
KR900002687B1 (en) Method of growing quaternary or pertanary alloy semiconduct or by mbe lattice-matched to substrate
US3336159A (en) Method for growing single thin film crystals
JPS61270813A (en) Molecular beam epitaxial growth equipment
JPH0647515B2 (en) Compound semiconductor epitaxial growth method
JPH0831741A (en) K cell type evaporation source
JPH09118590A (en) Molecular beam epitaxial growth method and apparatus therefor
JPS6247840B2 (en)
JPS6247839B2 (en)
JPS61288414A (en) Molecular beam epitaxial growing device
JPH01235233A (en) Molecular beam epitaxial growth method
JPS63120412A (en) Apparatus for manufacturing compound semiconductor crystal
JPS63137415A (en) Method for forming single crystal thin film
JPH01235234A (en) Molecular beam epitaxial growth equipment
JP2612467B2 (en) Heterogeneous structure thin film simultaneous growth equipment
JPH06326295A (en) Beam intensity changeable shutter, manufacture of supper lattice using the same, and doping method
JPH0144680B2 (en)
JPH0264093A (en) Molecular beam epitaxial growth
JPS60161392A (en) Molecular beam epitaxial deposition device for forming single crystal thin film
JPH0264092A (en) Molecular beam epitaxial growth
JPH04216616A (en) Controlling method for conductivity type of thin film crystal formed by molecular beam epitaxial growth, and molecular beam epitaxial device using the controlling method
KR100466825B1 (en) Fabricating Technology for Thin Film Deposition system using pulsed Laser
JPS60152022A (en) Molecular beam epitaxial growth device
JPS59152296A (en) Intensity controller for molecular rays in epitaxial growth with molecular rays
JPS62265714A (en) Molecular beam epitaxially growing apparatus
JPS60100422A (en) Mbe growing process for forming single crystal thin film cyclic structure