JPH02199818A - Molecular beam crystal growth apparatus - Google Patents

Molecular beam crystal growth apparatus

Info

Publication number
JPH02199818A
JPH02199818A JP1836589A JP1836589A JPH02199818A JP H02199818 A JPH02199818 A JP H02199818A JP 1836589 A JP1836589 A JP 1836589A JP 1836589 A JP1836589 A JP 1836589A JP H02199818 A JPH02199818 A JP H02199818A
Authority
JP
Japan
Prior art keywords
growth
molecular beam
semiconductor substrate
electron diffraction
reflection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1836589A
Other languages
Japanese (ja)
Inventor
Mitsutaka Tsubokura
光隆 坪倉
Shigenori Takagishi
成典 高岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP1836589A priority Critical patent/JPH02199818A/en
Publication of JPH02199818A publication Critical patent/JPH02199818A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

PURPOSE:To always observe a reflection electron diffraction image during a growth operation by a method wherein a bellows is installed between a growth-chamber upper part in which a manipulator and a reflection high-energy electron diffraction apparatus have been installed and a growth-chamber lower part in which a molecular-beam source has been installed and the growth-chamber upper part and the growth-chamber lower part are constituted so as to be movable independently of each other. CONSTITUTION:A growth-chamber upper part 10 in which a manipulator 1, a reflection high- energy electron diffraction apparatus 3 and a fluorescent screen 4 have been installed is connected, via a bellows 12, to a growth-chamber lower part 11 in which a molecular-beam source 6 has been installed. When the bellows 12 is expanded and contracted, it is possible to change a distance between a semiconductor substrate 2 and the molecular-beam source 6 and their angle. During this process, since both the semiconductor substrate 2 and the reflection high-energy electron diffraction apparatus 3 are installed in the growth-chamber upper part 10, a positional relationship among the semiconductor substrate 2, the reflection high-energy electron diffraction apparatus 3 and the fluorescent screen 4 is not changed even when the semiconductor substrate 2 is moved with reference to the molecular-beam source 6. Thereby, when a graded mixed crystal is grown by changing the angle of the substrate, it is possible to observe a reflection electron diffraction image during this growth operation.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は半導体基板上に化合物半導体の薄膜結晶を成長
させる分子線結晶成長装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a molecular beam crystal growth apparatus for growing thin film crystals of compound semiconductors on semiconductor substrates.

(従来の技術及び解決しようとする課題)CaAs等の
半導体基板上にGaAs1ムJGaAs等の化合物半導
体の薄膜結晶をエピタキシャル成長させる技術の1つに
分子線結晶成長法(XBE法)がある。
(Prior Art and Problems to be Solved) One of the techniques for epitaxially growing a thin film crystal of a compound semiconductor such as GaAs or JGaAs on a semiconductor substrate such as CaAs is the molecular beam crystal growth method (XBE method).

このIBE法は10−”〜10″”丁orrという超高
真空状態に到達できる成長室内に、液体窒素で冷却され
たシュラウドを設け、シ・エラウド中央部にマニピュレ
ータにより把持された半導体基板を配置し、この半導体
基板に対向して、エピタキシャル成長させようとする半
導体結晶の構成元素やドーパントのソース物質をルツボ
内に充填した分子線源を設置する。分子線源で加熱され
、分子線となったソース物質が、適温に加熱された半導
体基板上に照射されエピタキシャル成長する。
In this IBE method, a shroud cooled with liquid nitrogen is installed in a growth chamber that can reach an ultra-high vacuum state of 10 to 10 inches, and a semiconductor substrate held by a manipulator is placed in the center of the shroud. Then, facing this semiconductor substrate, a molecular beam source is installed in which a crucible is filled with the constituent elements and dopant source materials of the semiconductor crystal to be epitaxially grown.The molecules are heated by the molecular beam source and turned into molecular beams. A source material is irradiated onto a semiconductor substrate heated to an appropriate temperature to grow epitaxially.

このようなIBE法は極めて制御性が良いため、各種半
導体デバイスのエピタキシャル成長技術として広く利用
されている。
Since such an IBE method has extremely good controllability, it is widely used as an epitaxial growth technique for various semiconductor devices.

高速デバイスや発光デバイスでは、膜厚方向に組成分布
を持ったエピタキシャル膜を用いるものがある。
Some high-speed devices and light-emitting devices use epitaxial films that have a composition distribution in the film thickness direction.

IBH法により、このような構造を持ったエピタキシャ
ル膜を成長する方法として、成長中に基板を操作するこ
とにより、基板とそれぞれの分子線源の角度を変える方
法がある。
As a method for growing an epitaxial film having such a structure using the IBH method, there is a method in which the angle between the substrate and each molecular beam source is changed by manipulating the substrate during growth.

このように膜厚方向に組成分布を持った膜を成長する場
合、時間の経過とともに成長表面での組成が変化するた
め、成長中に反射電子線回折像を観察することにより、
成長に関する宵月な情報を得ることが期待される。
When growing a film with a compositional distribution in the film thickness direction, the composition on the growth surface changes over time, so by observing the backscattered electron diffraction image during growth,
It is expected that we will receive detailed information regarding growth.

しかし、このような装置は、基板が操作可動であるのに
対して、反射高速電子線回折装置が分子線結晶成長装置
の成長室に固定された構造となっているため、成長中に
基板を操作する場合、基板と反射高速電子線回折装置と
は一体となって移動せず、その結果、成長中に常時、反
射電子線回折像を観察することができないという問題点
があった。
However, in such devices, while the substrate is movable, the reflection high-speed electron diffraction device is fixed in the growth chamber of the molecular beam crystal growth device, so the substrate cannot be moved during growth. During operation, the substrate and the high-speed reflection electron diffraction device do not move together, resulting in a problem that the reflection electron diffraction image cannot be observed at all times during growth.

(課題を解決するための手段) 本発明は上述の問題点を解消し、成長中、常時反射電子
線回折の観察を可能とした分子線結晶成長装置を提供す
るもので、その特徴は、マニピユレータ及び反射高速電
子線回折装置を設置した成長室上部と分子線源を設置し
た成長室下部との間にベローズを設け、成長室上部と成
長室下部がそれぞれ独立に可動できるよう構成したこと
にある。
(Means for Solving the Problems) The present invention solves the above-mentioned problems and provides a molecular beam crystal growth apparatus that allows reflection electron beam diffraction to be observed at all times during growth. A bellows is provided between the upper part of the growth chamber where the reflection high-speed electron diffraction device is installed and the lower part of the growth chamber where the molecular beam source is installed, so that the upper part of the growth chamber and the lower part of the growth chamber can be moved independently. .

第1図は本発明の分子線結晶装置における成長室の具体
例の断面図である。
FIG. 1 is a sectional view of a specific example of a growth chamber in the molecular beam crystallization apparatus of the present invention.

図面に示すように、成長室上部(10)の中央には半導
体基板(2)を適温に加熱し、回転し、保持するマニピ
ュレータ(1)が設置されており、その1側部には反射
高速電子線回折装置t (3)が、又これに対向する他
側部には蛍光スクリーン(4)が設置されている。又成
長室下部(11)には前記マニピユレータ(1)に対向
する位置に、半導体構成元素である例えばGa1ム8.
 Ajをそれぞれ充填したルツボ(HA)(8B)(B
G)を具えた分子線源(6)が設置されている。そして
、前記成長室上部(10)と成長室下部(11)の間に
はベローズ(12)が設けられていて両者を連結してい
る。なお、図面において、(5)は成長室内に配置した
液体窒素シュラウドである。
As shown in the drawing, a manipulator (1) that heats, rotates, and holds a semiconductor substrate (2) to an appropriate temperature is installed in the center of the upper part (10) of the growth chamber, and a high-speed reflection An electron beam diffraction device t (3) is installed, and a fluorescent screen (4) is installed on the other side opposite to this. Further, in the lower part (11) of the growth chamber, a semiconductor constituent element such as Ga1 is placed at a position facing the manipulator (1).
Crucibles (HA) (8B) (B
A molecular beam source (6) equipped with G) is installed. A bellows (12) is provided between the growth chamber upper part (10) and the growth chamber lower part (11) to connect them. In the drawings, (5) is a liquid nitrogen shroud placed inside the growth chamber.

(作用) 上述した本発明の分子線結晶成長装置に詔いては、マニ
ピユレータ(1)及び反射高速電子線回折装置(3)、
蛍光スクリーン(4)を設置した成長室上部(10)と
、分子線[(8)を設置した成長室下flB(11)が
ベローズ(12)を介して連結されているため、ベロー
ズ(!2)の伸縮により、半導体基板(2)と分子線源
(8)の距離及び角度を変化させることができる。この
際、半導体基板(2)と反射高速電子線回折間[(3)
は、いずれも成長室上部(10)に設置されているため
、半導体基板(2)が分子線源(B)に対して移動して
も、第2図のように、半導体基板(2)と反射高速電子
線回折装置(3)及び蛍光スクリーン(4)の位置関係
は変ることがなく、常に反射電子線回折像を観察するこ
とが可能となる。
(Function) The above-described molecular beam crystal growth apparatus of the present invention includes a manipulator (1), a reflection high-speed electron beam diffraction apparatus (3),
The upper part of the growth chamber (10) where the fluorescent screen (4) is installed and the lower flB (11) of the growth chamber where the molecular beam [(8) is installed are connected via the bellows (12). ) can change the distance and angle between the semiconductor substrate (2) and the molecular beam source (8). At this time, between the semiconductor substrate (2) and the reflected high-speed electron diffraction [(3)
are both installed in the upper part of the growth chamber (10), so even if the semiconductor substrate (2) moves relative to the molecular beam source (B), the semiconductor substrate (2) and The positional relationship between the reflection high-speed electron diffraction device (3) and the fluorescent screen (4) does not change, making it possible to always observe the reflection electron diffraction image.

(実施例) 第1図に示す構造の成長室により実験を行なうた。ム1
xGa1− xAg傾斜混晶の成長を例にとり説明する
(Example) Experiments were conducted using a growth chamber having the structure shown in FIG. M1
The growth of xGa1-xAg graded mixed crystal will be explained as an example.

第2図に示すように、成長室上部を分子線源に対して距
離を変えることなく、角度mのみ変える条件で動かした
As shown in FIG. 2, the upper part of the growth chamber was moved with respect to the molecular beam source without changing the distance, only the angle m was changed.

成長条件 θ =06〜3G” ルツボと半導体基板間の距離: 250璽■As分子線
強度: 3 X 1G−’Torr以上の条件で成長を
行なったところ、成長開始(θ=−15”)から成長終
了(θ=15°)まで、半導体基板の分子線源に対する
角度を変えていったにもかかわらず、常に反射電子線回
折像の観察が可能であった。
Growth conditions θ = 06 to 3 G" Distance between crucible and semiconductor substrate: 250 cm As molecular beam intensity: 3 Even though the angle of the semiconductor substrate with respect to the molecular beam source was changed until the growth was completed (θ=15°), the reflection electron beam diffraction image could always be observed.

(発明の効果) 以上説明したように、本発明の分子線結晶成長装置によ
れば、分子線源に対する半導体基板の位置を変化させて
も、半導体基板に対する反射高速電子線回折装置の位置
関係が変ることがない。従って、基板角度を変化させて
傾斜混晶を成長させる場1合、成長中、常時反射電子線
回折の観察を行なうことができる。
(Effects of the Invention) As explained above, according to the molecular beam crystal growth apparatus of the present invention, even if the position of the semiconductor substrate with respect to the molecular beam source is changed, the positional relationship of the reflection high-speed electron beam diffraction apparatus with respect to the semiconductor substrate is maintained. It never changes. Therefore, when growing a tilted mixed crystal by changing the substrate angle, reflection electron beam diffraction can be observed at all times during the growth.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の分子線結晶成長装置における成長室の
具体例の断面図ある。 第2図は本発明の詳細な説明図である。 +1・・・マニピユレータ、2・・・半導体基板、3・
・・反射高速電子線回折装置、4・・・蛍光スクリーン
、5・・・液体窒素シュラウド、6・・・分子線源、1
0・・・成長室上部、11・・・成長室下部、12・・
・ベローズ。
FIG. 1 is a sectional view of a specific example of a growth chamber in the molecular beam crystal growth apparatus of the present invention. FIG. 2 is a detailed explanatory diagram of the present invention. +1...manipulator, 2...semiconductor substrate, 3.
... Reflection high-speed electron diffraction device, 4... Fluorescent screen, 5... Liquid nitrogen shroud, 6... Molecular beam source, 1
0... Upper part of the growth chamber, 11... Lower part of the growth chamber, 12...
・Bellows.

Claims (1)

【特許請求の範囲】[Claims] (1)超高真空中で半導体基板を適温に加熱し、回転し
、保持するマニピュレータ、反射電子線回折を観察する
反射高速電子線回折装置、及び上記マニピュレータに対
向してエピタキシャル成長しようとする半導体の構成元
素の分子線源を具えた分子線結晶装置の成長室において
、上記マニピュレータ及び反射高速電子線回折装置を設
置した成長室上部と分子線源を設置した成長室下部との
間にベローズを設け、成長室上部と成長室下部がそれぞ
れ独立に可動できるよう構成したことを特徴とする分子
線結晶成長装置。
(1) A manipulator that heats, rotates, and holds a semiconductor substrate to an appropriate temperature in an ultra-high vacuum, a reflection high-speed electron diffraction device that observes reflection electron beam diffraction, and a semiconductor substrate that is to be epitaxially grown facing the manipulator. In a growth chamber of a molecular beam crystallization device equipped with a molecular beam source for constituent elements, a bellows is provided between the upper part of the growth chamber where the manipulator and the reflection high-speed electron diffraction device are installed and the lower part of the growth chamber where the molecular beam source is installed. , a molecular beam crystal growth apparatus characterized in that the upper part of the growth chamber and the lower part of the growth chamber are configured to be movable independently.
JP1836589A 1989-01-28 1989-01-28 Molecular beam crystal growth apparatus Pending JPH02199818A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1836589A JPH02199818A (en) 1989-01-28 1989-01-28 Molecular beam crystal growth apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1836589A JPH02199818A (en) 1989-01-28 1989-01-28 Molecular beam crystal growth apparatus

Publications (1)

Publication Number Publication Date
JPH02199818A true JPH02199818A (en) 1990-08-08

Family

ID=11969674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1836589A Pending JPH02199818A (en) 1989-01-28 1989-01-28 Molecular beam crystal growth apparatus

Country Status (1)

Country Link
JP (1) JPH02199818A (en)

Similar Documents

Publication Publication Date Title
Sposili et al. Sequential lateral solidification of thin silicon films on SiO2
JPH02199818A (en) Molecular beam crystal growth apparatus
Bialas et al. Heteroepitaxy of copper on sapphire under uhv conditions
Smathers et al. Enabling in situ atomic-scale characterization of epitaxial surfaces and interfaces
JPH0359036A (en) Preparation of organic single crystal membrane
Azuma et al. A simple approach to determine preferential growth orientation using multiple seed crystals with random orientations and its utilization for seed optimization to restrain polycrystallization of SiGe bulk crystal
JP3536915B2 (en) Method for producing composite oxide single crystal thin film
JPH02129094A (en) Growth of graded layer by molecular beam epitaxial method
JP2772533B2 (en) Thin film growth method
SU1633032A1 (en) Method of producing semiconductor hetero-structures
JPS59152296A (en) Intensity controller for molecular rays in epitaxial growth with molecular rays
KR920007338B1 (en) Molecular beam epitaxy apparatus containing dual molecular beam cell and forming method of dual-epitaxial layer
JPS6348703Y2 (en)
JPS61101488A (en) Molecular beam crystal growth apparatus
JPS61186284A (en) Apparatus for molecular beam epitaxy
JPH01305889A (en) Molecular beam cell
Miotkowska et al. Twinned structures in hot-wall grown Cd1− xMnxTe films with x⩽ 0.02
Braunstein et al. MOVING MASK GROWTH OF SINGLE‐CRYSTAL SILICON FILMS ON AMORPHOUS QUARTZ SUBSTRATES
JPS61190920A (en) Molecular beam crystal growth device
JPS62224017A (en) Molecular beam epitaxial grouth device
JPH0352434B2 (en)
JPH0474794A (en) Substrate holder and method for mounting substrate
JPH0478144A (en) Manufacture of compound semiconductor crystal
JPH03208886A (en) Molecular beam crystal growing device
JPS63200522A (en) Semiconductor crystal growth device