JPS6296798A - Adjusting device for displacement of fluid machine - Google Patents

Adjusting device for displacement of fluid machine

Info

Publication number
JPS6296798A
JPS6296798A JP23517385A JP23517385A JPS6296798A JP S6296798 A JPS6296798 A JP S6296798A JP 23517385 A JP23517385 A JP 23517385A JP 23517385 A JP23517385 A JP 23517385A JP S6296798 A JPS6296798 A JP S6296798A
Authority
JP
Japan
Prior art keywords
flow rate
flow amount
vane
vane angle
guide vane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23517385A
Other languages
Japanese (ja)
Other versions
JPH0788829B2 (en
Inventor
Haruo Miura
治雄 三浦
Yoshiaki Abe
阿部 嘉明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP23517385A priority Critical patent/JPH0788829B2/en
Publication of JPS6296798A publication Critical patent/JPS6296798A/en
Publication of JPH0788829B2 publication Critical patent/JPH0788829B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To control a change of flow amount to a fixed value over the whole flow amount regions, by changing the method, which calculates a vane angle change amount corresponding to a deviation of flow amount from the target flow amount, in a large flow amount region to be different from that in a small flow amount region. CONSTITUTION:An adjusting device 10 stores in memory a relation of a vane angle to a flow amount and a critical angle thetac in an optional temperature T. The relation between the vane angle and the flow amount is corrected by an inlet temperature To fetched by a detector 15. An inlet guide vane 2, being driven by a driving gear 3, is controlled in accordance with a turning amount of the vane. Consequently, a change of flow amount can be controlled to almost a fixed value over the whole region of the flow amount by enabling a change rate of the vane angle to the flow amount, corresponding to an operative condition, to be accurately calculated.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は流体機械の容量調節装置に係り、特に電動機駆
動の遠心型圧縮機に好適な容量調節装置を提供する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a capacity adjustment device for a fluid machine, and particularly provides a capacity adjustment device suitable for an electric motor-driven centrifugal compressor.

〔発明の背景〕[Background of the invention]

従来の流体機械の容量調節装置を遠心型空気圧縮機を例
に挙げ、第3図を用いて説明する。第3図は入口にガイ
ドベーン2を有する遠心圧縮機1の容量調節装置の系統
図を示す。入口のガイドベーンは駆動装置3によって開
閉操作される。このベーン駆動装置3は調節装置10か
らのベーン開度指令信号を、ベーンを回動するための機
械的な力に変換するものである。取扱ガスは入口ガイド
ベーン2によって調節され圧縮機1を通って吐出される
。圧縮機1の流量は吐出ラインのオリフィス流量計8で
計測される。オリフィス差圧、オリフィス全圧、金塩は
それぞれ変換器5〜7によって電気信号に変換され、演
算器8にて流量信号に変換される。この流量信号9は調
節装[10に)イードバックされる。
A conventional capacity adjustment device for a fluid machine will be described using a centrifugal air compressor as an example with reference to FIG. FIG. 3 shows a system diagram of a capacity adjustment device for a centrifugal compressor 1 having a guide vane 2 at the inlet. The guide vanes at the entrance are opened and closed by a drive device 3. The vane drive device 3 converts a vane opening command signal from the adjustment device 10 into mechanical force for rotating the vane. The treated gas is regulated by an inlet guide vane 2 and discharged through a compressor 1. The flow rate of the compressor 1 is measured by an orifice flow meter 8 in the discharge line. The orifice differential pressure, orifice total pressure, and gold salt are each converted into electrical signals by converters 5 to 7, and converted into flow signals by a computing unit 8. This flow rate signal 9 is fed back to the regulator [10].

圧縮機の目標流量信号11が調節器に指示され前記フィ
ードバック信号との流量との偏差分に対応してベーン開
度指令信号12が、調節装置10からベーン駆動装置3
に指示される。
A compressor target flow rate signal 11 is instructed to the regulator, and a vane opening command signal 12 is sent from the regulator 10 to the vane driving device 3 in response to the deviation between the feedback signal and the flow rate.
be instructed.

以上のようにして圧縮機の容量調節がなされている。The capacity of the compressor is adjusted as described above.

ところで近年の世界的な省資源、省エネ等で流体機械の
設計点効率もさることながら部分負荷運転効率の向上が
非常に重要視される。上述の従来例もこのような観点か
らみると次のような欠点がある。
By the way, in recent years, with global resource and energy conservation, etc., not only the design point efficiency of fluid machinery but also the improvement of partial load operation efficiency has become very important. When viewed from this perspective, the above-mentioned conventional example also has the following drawbacks.

第4図はガイドベーン角度と圧縮機流量の関係を示した
ものである。ガイドベーン角度と流量は直線関係ではな
く、ベーン角度が小さい範囲では流量変化が大きく、ベ
ーン角度が大きい範囲では流量変化が少い。またこの関
係は圧縮機入口濃度の影響により変化する。従来例では
このような流量特性を考慮していなかったので流量調節
域によって制御速度のバックき、精度を悪くし、ひいて
は部分負荷運転効率に影響を与えていた。
FIG. 4 shows the relationship between the guide vane angle and the compressor flow rate. The guide vane angle and the flow rate are not in a linear relationship; the flow rate change is large in the range where the vane angle is small, and the flow rate change is small in the range where the vane angle is large. Moreover, this relationship changes depending on the influence of the compressor inlet concentration. In the conventional example, such flow rate characteristics were not taken into account, so the control speed was backed up depending on the flow rate adjustment range, resulting in poor accuracy and, in turn, affecting part-load operation efficiency.

また、酸素分離プラントではプラントの追ずい能力から
急激な流量度化は好ましくないが従来方式では、この制
御が困難なため目標流量を手動で小刻みに変化させるし
かなかった。
Further, in an oxygen separation plant, it is not desirable to rapidly increase the flow rate due to the plant's follow-up ability, but in the conventional system, this control is difficult, so the target flow rate has to be changed manually in small increments.

尚、この種の装置に関連するものに特公昭56−501
19号がある。
In addition, related to this type of equipment is the Special Publication No. 56-501.
There is No. 19.

〔発明の目的〕[Purpose of the invention]

本発明の目的はベーン開度調節による流体機械の容量調
節において流量域が変っても同じ調節速度、精度が得ら
れる調節装置を提供することにある。
An object of the present invention is to provide an adjustment device that can provide the same adjustment speed and accuracy even if the flow rate range changes when adjusting the capacity of a fluid machine by adjusting the vane opening.

〔発明の概要〕[Summary of the invention]

本発明はベーン角度と流量の関係が大別して、ベーン角
度が小さいときと大きいときの流量特性が異なることに
着目し、目標流量との流量偏差に対応するベーン角度変
化量の演算方法を大流量域と少流量域で異なるものにし
たもので、ガイドベーン角度と流量の関係を調節装置に
記憶し、大流量域ではガイドベーン角度に対する流量変
化の傾きを、小流量域では流量に対するガイドベーン角
度変化の傾きを使用して目標流量偏差に対応するガイド
ベーン動作指示するようにしたものである。
The present invention focuses on the fact that the relationship between vane angle and flow rate is roughly divided, and the flow characteristics are different when the vane angle is small and large. The relationship between the guide vane angle and flow rate is stored in the adjustment device, and the slope of the flow rate change with respect to the guide vane angle is determined in the high flow rate area, and the slope of the flow rate change with respect to the guide vane angle is determined in the low flow rate area. The slope of the change is used to instruct the guide vane operation corresponding to the target flow rate deviation.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第1図、第2図を用いて説明
する。
An embodiment of the present invention will be described below with reference to FIGS. 1 and 2.

第1図は本発明の入口にガイドベーンを有する遠心圧縮
域の角度調節による容量調節装置の系統図を示す。入口
ガイドベーン2は駆動装置3によって駆動する。駆動装
置3は開度指令信号12をベーンを回転するための機械
的な力に変換するものである。圧縮機の流量検出方法は
従来方法と同じであるが、入口ベーン角度を検出器13
によって、入口温度を検出器15によって検出し、調節
装置10へ取り込んでいる。
FIG. 1 shows a system diagram of a capacity adjustment device by angular adjustment of a centrifugal compression zone having a guide vane at the inlet according to the invention. The inlet guide vane 2 is driven by a drive device 3. The drive device 3 converts the opening command signal 12 into mechanical force for rotating the vane. The compressor flow rate detection method is the same as the conventional method, but the inlet vane angle is detected by the detector 13.
Accordingly, the inlet temperature is detected by the detector 15 and taken into the regulating device 10.

次に本発明の動作について説明する。第1図は入口ベー
ン角度と流量との関係を示し、ある任意の角度Ocによ
り流量特性を大流量域と小流量域に区分する。
Next, the operation of the present invention will be explained. FIG. 1 shows the relationship between the inlet vane angle and the flow rate, and the flow characteristics are divided into a large flow rate region and a small flow rate region according to a certain arbitrary angle Oc.

今、目標流量との偏差流量をΔθとし、それに見合うベ
ーン角回動量をΔθとする。回動前の流量、ベーン角度
の状ffjA量をそれぞれθ0.θ。とする。ある任意
温度T傘におけるベーン角度と流量の関係及び限界角θ
。は調節装置10に記憶する。
Now, let Δθ be the deviation flow rate from the target flow rate, and let Δθ be the corresponding amount of vane angle rotation. The flow rate and vane angle state ffjA amount before rotation are each θ0. θ. shall be. Relationship between vane angle and flow rate and limit angle θ at a certain arbitrary temperature T
. is stored in the regulating device 10.

検出器13より取込んだθ0をθCと比較し、θ0〉θ
Cが成立する運転状態では、θ0に対応する点のベーン
角度と流量の変化率から偏差流量Δθに相当するベーン
回動量Δθを得る。
θ0 taken from the detector 13 is compared with θC, and θ0>θ
In the operating state where C holds true, the vane rotation amount Δθ corresponding to the deviation flow rate Δθ is obtained from the vane angle at the point corresponding to θ0 and the rate of change of the flow rate.

従って、目標ベーン角度は θ′=00+Δθ         ・・・(2)検出
器13より取込んだθ0とθCを比較し。
Therefore, the target vane angle is θ'=00+Δθ (2) Compare θ0 and θC taken from the detector 13.

θ0がθCより小さい場合には、θ0に対応する点の流
量とベーン角度の変化率から偏差流量Δθに相当するベ
ーン回動量Δθを得る。
When θ0 is smaller than θC, the vane rotation amount Δθ corresponding to the deviation flow rate Δθ is obtained from the flow rate at the point corresponding to θ0 and the rate of change of the vane angle.

さらに上述の回動量演算の前段階で検出器15より取込
んだ入口温度Toにより、調節装置1−○に記憶してい
るベーン角度と流量との関係を補正する。例えばベーン
角度を固定して流量を補正する場合には(4)式で補正
する。任意角θ傘に対応する流量θ−に対応する流量θ
傘の補正は。
Furthermore, the relationship between the vane angle and the flow rate stored in the adjustment device 1-◯ is corrected using the inlet temperature To taken in from the detector 15 at the stage before the rotation amount calculation described above. For example, when correcting the flow rate by fixing the vane angle, the correction is performed using equation (4). Flow rate θ corresponding to flow rate θ− corresponding to arbitrary angle θ umbrella
Umbrella correction.

O ここで、θ拳′;任意角θ申に対応する補正後の流量 θ傘 ;          補正前 の流量 T拳 ;記憶しているθ・、θ・の関 係温度条件 To  +、容最調節を行うときの入口検出温度 この補正を行うことにより、常に実際に近いベーン角度
と流量の特性を使ってベーン回動量を決ることができ、
制御精度の向上、また制御速度の調節を容易に行うこと
ができる。
O Here, θ'; the corrected flow rate θ corresponding to the arbitrary angle θ; the flow rate before correction T; the memorized relational temperature condition of θ・, θ・ To +, perform the capacity adjustment. By performing this correction, the amount of vane rotation can be determined using the characteristics of the vane angle and flow rate that are close to the actual values.
Control accuracy can be improved and control speed can be easily adjusted.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、任意点の運転状態に対応するベーン角
度と流量との度化率を精度よく、しかも簡単に演算でき
るので、精度のよい、しかも流量変化を流量の全域に負
ってほぼ一定にコントロールすることができるので信頼
性の高い容量調節ができる。
According to the present invention, the degree ratio between the vane angle and the flow rate corresponding to the operating condition at any point can be calculated accurately and easily, so that the change in flow rate is accurate and almost constant over the entire flow rate. This allows highly reliable capacity adjustment.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の流体機械の容量調節系統の一例、第2
図は本発明の動作説明図、第3図は従来の流体機械の容
量調節系統の一例、第4図は遠心圧縮機の入口ベーン角
度と流量特性。 1・・・遠心圧縮機、2・・・入口ベーン、3・・・ベ
ーン駆動装置、4・・・オリフィス、5〜7・・・オリ
フィス差圧、全圧、金塩、8・・・流量計、9・・・流
量信号、10・・・調節装置、11・・・目標流量、1
2・・・ベーン角度指令信号、13,14・・・ベーン
角度検出器、信号、15〜16・・・入口温度検出器、
信号。
FIG. 1 is an example of the capacity adjustment system of the fluid machine of the present invention, and FIG.
The figure is an explanatory diagram of the operation of the present invention, Figure 3 is an example of a capacity adjustment system of a conventional fluid machine, and Figure 4 is an inlet vane angle and flow rate characteristics of a centrifugal compressor. DESCRIPTION OF SYMBOLS 1... Centrifugal compressor, 2... Inlet vane, 3... Vane drive device, 4... Orifice, 5-7... Orifice differential pressure, total pressure, gold salt, 8... Flow rate Meter, 9...Flow rate signal, 10...Adjusting device, 11...Target flow rate, 1
2... Vane angle command signal, 13, 14... Vane angle detector, signal, 15-16... Inlet temperature detector,
signal.

Claims (1)

【特許請求の範囲】 1、入口に可変ガイドベーンおよび流量検出装置を有し
、目標流量に対する偏差が許容値以上であれば該可変ガ
イドベーンに動作指令を出力する調節装置を有する流体
機械において、ガイドベーン角度と流量の関係を調節装
置に記憶し、大流量域ではガイドベーン角度に対する流
量変化の傾きを、小流量域では流量に対するガイドベー
ン角度変化の傾きを使用しても目標流量偏差に対応する
ガイドベーン動作指示することを特徴とする容量調節装
置。 2、特許請求の範囲第1項記載の調節装置を有する流体
機械において、ガイドベーン角度と流量の関係を流体機
械の入口温度比により流量を補正することを特徴とする
容量調節装置。 3、特許請求の範囲第2項記載の調節装置を有する流体
機械において、ガイドベーン角度を補正することを特徴
とする容量調節装置。
[Claims] 1. A fluid machine that has a variable guide vane and a flow rate detection device at its inlet, and has an adjustment device that outputs an operation command to the variable guide vane if the deviation from the target flow rate is greater than or equal to an allowable value, The relationship between the guide vane angle and flow rate is stored in the adjustment device, and the target flow deviation can be adjusted by using the slope of the flow rate change with respect to the guide vane angle in large flow areas and the slope of the guide vane angle change with respect to flow rate in small flow areas. A capacity adjustment device characterized by instructing a guide vane operation. 2. A capacity adjustment device in a fluid machine having the adjustment device according to claim 1, wherein the relationship between the guide vane angle and the flow rate is corrected based on the inlet temperature ratio of the fluid machine. 3. A capacity adjustment device for correcting the guide vane angle in a fluid machine having the adjustment device according to claim 2.
JP23517385A 1985-10-23 1985-10-23 Capacity control device for flow machine Expired - Lifetime JPH0788829B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23517385A JPH0788829B2 (en) 1985-10-23 1985-10-23 Capacity control device for flow machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23517385A JPH0788829B2 (en) 1985-10-23 1985-10-23 Capacity control device for flow machine

Publications (2)

Publication Number Publication Date
JPS6296798A true JPS6296798A (en) 1987-05-06
JPH0788829B2 JPH0788829B2 (en) 1995-09-27

Family

ID=16982144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23517385A Expired - Lifetime JPH0788829B2 (en) 1985-10-23 1985-10-23 Capacity control device for flow machine

Country Status (1)

Country Link
JP (1) JPH0788829B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7210895B2 (en) 2002-08-12 2007-05-01 Hitachi Industries Co., Ltd. Turbo compressor and method of operating the turbo compressor
JP2009156086A (en) * 2007-12-25 2009-07-16 Toyota Motor Corp Device for controlling gas turbine engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7210895B2 (en) 2002-08-12 2007-05-01 Hitachi Industries Co., Ltd. Turbo compressor and method of operating the turbo compressor
JP2009156086A (en) * 2007-12-25 2009-07-16 Toyota Motor Corp Device for controlling gas turbine engine

Also Published As

Publication number Publication date
JPH0788829B2 (en) 1995-09-27

Similar Documents

Publication Publication Date Title
US4586870A (en) Method and apparatus for regulating power consumption while controlling surge in a centrifugal compressor
KR970016145A (en) Fluid machines with variable guides
US4104876A (en) Fan R. P. M. control loop stabilization using high rotor speed
US5851103A (en) Turbomachinery with variable angle fluid guiding devices
JPS6296798A (en) Adjusting device for displacement of fluid machine
RU2252329C1 (en) Method of and system for regulating gas-turbine drive
JPS6363733B2 (en)
EP1312765B1 (en) Method and apparatus for steam turbine speed control
US5699267A (en) Hot gas expander power recovery and control
SU870764A1 (en) Method of automatic controlling of pressure at the output of two-stage compressor unit
JPH0217386A (en) Vacuum degree control device for condenser
SU877138A1 (en) Centrifugal compressor control method
JPS5965319A (en) Control method for fluid pressure
SU1067229A1 (en) Method of controlling guide case of turbo-machine
JPH0229922B2 (en)
SU689725A1 (en) Method of regulating the milling process in closed-cycle ventilated mill
JP2668143B2 (en) Steam turbine control device and control method therefor
JPH0531223Y2 (en)
JP2521042B2 (en) Speed control system
JPH0556529B2 (en)
JPH0979181A (en) Fluid machine having variable guide vane
JPH11311590A (en) Exhaust gas pressure adjusting device
SU1132031A1 (en) Method of regulating steam turbine
JPS58180798A (en) Surge prevention control method for compressor
JP2680009B2 (en) Variable speed generator