JPH0788829B2 - Capacity control device for flow machine - Google Patents

Capacity control device for flow machine

Info

Publication number
JPH0788829B2
JPH0788829B2 JP23517385A JP23517385A JPH0788829B2 JP H0788829 B2 JPH0788829 B2 JP H0788829B2 JP 23517385 A JP23517385 A JP 23517385A JP 23517385 A JP23517385 A JP 23517385A JP H0788829 B2 JPH0788829 B2 JP H0788829B2
Authority
JP
Japan
Prior art keywords
flow rate
guide vane
vane angle
vane
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP23517385A
Other languages
Japanese (ja)
Other versions
JPS6296798A (en
Inventor
治雄 三浦
嘉明 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP23517385A priority Critical patent/JPH0788829B2/en
Publication of JPS6296798A publication Critical patent/JPS6296798A/en
Publication of JPH0788829B2 publication Critical patent/JPH0788829B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Control Of Positive-Displacement Air Blowers (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は流体機械の容量調節装置に係り、特に電動機駆
動の遠心型圧縮機に好適な容量調節装置に関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a capacity adjusting device for a fluid machine, and more particularly to a capacity adjusting device suitable for an electric motor driven centrifugal compressor.

〔従来の技術〕[Conventional technology]

従来の流体機械の容量調節装置を遠心型空気圧縮機を例
に挙げ、第3図を用いて説明する。第3図は入口にガイ
ドベーン2を有する遠心圧縮機1の容量調節装置の系統
図である。入口のガイドベーンは駆動装置3によって開
閉操作される。このベーン駆動装置3は調節装置10から
のベーン開度指令信号を、ベーンを回動するための機械
的な力に変換するものである。取扱ガスは入口ガイドベ
ーン2によって調節され圧縮機1を通って吐出される。
圧縮機1の流量は吐出ラインのオリフィス流量計4で計
測される。そして、オリフィス板前後の圧力差,オリフ
ィス板上流の流れの全圧および全温度はそれぞれ変換器
5〜7によって電気信号に変換され、演算器8にて流量
信号に変換される。この流量信号9は調節装置10にフィ
ードバックされる。
A conventional capacity adjusting device for a fluid machine will be described with reference to FIG. 3 by taking a centrifugal air compressor as an example. FIG. 3 is a system diagram of the capacity adjusting device of the centrifugal compressor 1 having the guide vane 2 at the inlet. The guide vane at the inlet is opened and closed by the drive device 3. The vane drive device 3 converts a vane opening command signal from the adjusting device 10 into a mechanical force for rotating the vane. The handling gas is regulated by the inlet guide vanes 2 and discharged through the compressor 1.
The flow rate of the compressor 1 is measured by the orifice flow meter 4 on the discharge line. The pressure difference before and after the orifice plate, the total pressure and the total temperature of the flow upstream of the orifice plate are converted into electric signals by the converters 5 to 7, respectively, and converted into a flow rate signal by the calculator 8. This flow signal 9 is fed back to the adjusting device 10.

圧縮機の目標流量信号11が調節装置10に指示され前記フ
ィードバック信号との流量との偏差分に対応してベーン
開度指令信号12が、調節装置10からベーン駆動装置3に
指示される。
The target flow rate signal 11 of the compressor is instructed to the adjusting device 10, and the vane opening command signal 12 is instructed from the adjusting device 10 to the vane drive device 3 in accordance with the deviation from the flow rate with the feedback signal.

以上のようにして圧縮機の容量調節がなされている。The capacity of the compressor is adjusted as described above.

尚、この種の装置に関連するものに特公昭56−50119号
がある。
Note that Japanese Patent Publication No. 56-50119 is related to this type of device.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

ところで近年の世界的な省資源,省エネ等で流体機械の
設計点効率もさることながら部分負荷運転効率の向上が
非常に重要視される。上述の従来例もこのような観点か
らみると、以下の点に対する配慮が不十分である。
By the way, it is very important to improve the partial load operation efficiency as well as the design point efficiency of fluid machinery due to the recent global resource saving and energy saving. From the viewpoint as described above, the above-mentioned conventional example also does not sufficiently consider the following points.

第4図はガイドベーン角度と圧縮機流量の関係を示した
ものである。ガイドベーン角度と流量は直線関係ではな
く、ベーン角度が小さい範囲では流量変化が大きく、ベ
ーン角度が大きい範囲では流量変化が少ない。またこの
関係は圧縮機入口温度の影響により変化する。従来例で
はこのような流量特性を考慮していなかったので流量調
節域によって制御速度のバラツキ,精度を悪くし、ひい
ては部分負荷運転効率に影響を与えていた。
FIG. 4 shows the relationship between the guide vane angle and the compressor flow rate. The guide vane angle and the flow rate are not in a linear relationship, and the flow rate change is large in the range where the vane angle is small, and the flow rate change is small in the range where the vane angle is large. Also, this relationship changes due to the influence of the compressor inlet temperature. In the conventional example, since such a flow rate characteristic was not taken into consideration, the flow rate control region caused variations in control speed and accuracy, which in turn affected the partial load operating efficiency.

また、酸素分離プラントではプラントの追随能力から急
激な流量変化は好ましくないが従来方式では、この制御
が困難なため目標流量を手動で小刻みに変化させるしか
なかった。
Further, in the oxygen separation plant, a rapid flow rate change is not preferable due to the ability of the plant to follow, but in the conventional method, since this control is difficult, the target flow rate must be manually changed in small steps.

本発明の目的はベーン開度調節により容量調節を行う流
体機械において、流量域が変っても高精度な調節精度が
得られる流体機械の容量調節装置を提供することにあ
る。
It is an object of the present invention to provide a capacity adjusting device for a fluid machine that adjusts the capacity by adjusting the vane opening degree and that can obtain highly accurate adjustment accuracy even if the flow rate range changes.

〔課題を解決するための手段〕[Means for Solving the Problems]

上記目的を達成するために、流量検出装置と、圧縮機の
入口側に配置した可変ガイドベーンとを有し、目標流量
に対する偏差が許容値以上であればこの可変ガイドベー
ンに動作指令を出力する指示手段を備えた調節装置とを
有する流体機械において、ガイドベーン角度と流量の関
係を記憶する記憶手段を前記調節装置に設けるととも
に、この記憶手段に記憶したガイドベーン角度と流量の
関係を流体機械の入口温度に基づいて補正演算し、大流
量域ではガイドベーン角度に対する流量変化の傾きを、
小流量域では流量に対するガイドベーン角度変化の傾き
を演算する演算手段を設け、前記指示手段はこの演算手
段の出力に基づいて目標流量偏差に対応するガイドベー
ンの動作指示を行うようにしたものである。
In order to achieve the above object, it has a flow rate detecting device and a variable guide vane arranged on the inlet side of the compressor, and outputs an operation command to this variable guide vane if the deviation with respect to the target flow rate is equal to or more than an allowable value. In a fluid machine having an adjusting device provided with an indicating means, the adjusting device is provided with a storage means for storing the relationship between the guide vane angle and the flow rate, and the fluid machine stores the relationship between the guide vane angle and the flow rate stored in the storing means. A correction calculation is performed based on the inlet temperature of, and in the large flow rate range, the slope of the flow rate change with respect to the guide vane angle,
In the small flow rate range, a calculating means for calculating the inclination of the change in the guide vane angle with respect to the flow rate is provided, and the instructing means gives an operation instruction of the guide vane corresponding to the target flow rate deviation based on the output of this calculating means. is there.

〔作用〕[Action]

本発明はベーン角度と流量の関係が、ベーン角度が小さ
いときと大きいときに2大別されることに着目してなさ
れたものである。すなわち、ベーン角度が小さいとき
は、ベーン角度の少しの変化で流量が大きく変化するの
に対し、ベーン角度が大きいときには、ベーン角度が大
きく変化しても流量が変化しない。逆に流量に着目すれ
ば、流量が少ないときはベーン角度の変化は僅かであ
り、流量が多いときはベーン角度は大幅に変化する。
The present invention was made by paying attention to the fact that the relationship between the vane angle and the flow rate is roughly classified into two when the vane angle is small and when the vane angle is large. That is, when the vane angle is small, the flow rate changes greatly with a slight change in the vane angle, whereas when the vane angle is large, the flow rate does not change even if the vane angle changes greatly. Conversely, focusing on the flow rate, the vane angle changes little when the flow rate is low, and the vane angle changes significantly when the flow rate is high.

したがって、目標流量との流量偏差が所定範囲を超えた
ときにガイドベーン角度を変化させて流量を適正にする
流体機械においては、低流量側では流量に対するガイド
ベーン角度の変化率を演算する。一方、大流量側ではガ
イドベーン角度に対する流量の変化率を演算する。これ
らの変化率は非常に小さい値ではないので、演算におい
ては桁落ち等は生ぜず、容易に高精度で計算可能とな
る。また、このベーン角度と流量の関係は調節装置に設
けた記憶手段に記憶されており、ベーン角度の回動量の
演算においては流体機械の入口流体温度により補正して
使用される。したがって、季節ごとに変動する入口温度
によりガスの比重が変化しても、圧縮機等の流体機械を
流通するガスの流量に厳密に対応したベーン角度を決定
できるので制御精度が向上する。
Therefore, in the fluid machine that changes the guide vane angle to optimize the flow rate when the flow rate deviation from the target flow rate exceeds a predetermined range, the rate of change of the guide vane angle with respect to the flow rate is calculated on the low flow rate side. On the other hand, on the large flow rate side, the rate of change of the flow rate with respect to the guide vane angle is calculated. Since these change rates are not very small values, no digit cancellation occurs in the calculation, and the calculation can be easily performed with high accuracy. The relationship between the vane angle and the flow rate is stored in the storage means provided in the adjusting device, and is used after being corrected by the inlet fluid temperature of the fluid machine in the calculation of the rotation amount of the vane angle. Therefore, even if the specific gravity of the gas changes due to the inlet temperature that changes seasonally, the vane angle can be determined precisely corresponding to the flow rate of the gas flowing through the fluid machine such as the compressor, so that the control accuracy is improved.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図,第2図を用いて説明
する。
An embodiment of the present invention will be described below with reference to FIGS. 1 and 2.

第1図は入口にガイドベーンを有する遠心圧縮機の系統
図であり、角度調節により容量調節を行う容量調節装置
の詳細を示す図である。入口ガイドベーン2を駆動装置
3によって駆動される。駆動装置3は開度指定信号12を
ベーンを回転するための機械的な力に変換する。圧縮機
の流量検出方法は従来方法と同じであるが、入口ベーン
角度を検出器13によって、入口温度を検出器15によって
それぞれ検出し、調節装置10へ取り込んでいる。
FIG. 1 is a system diagram of a centrifugal compressor having a guide vane at the inlet, and is a diagram showing details of a capacity adjusting device that adjusts the capacity by adjusting an angle. The inlet guide vane 2 is driven by the drive device 3. The drive device 3 converts the opening degree designation signal 12 into a mechanical force for rotating the vane. The method of detecting the flow rate of the compressor is the same as the conventional method, but the inlet vane angle is detected by the detector 13 and the inlet temperature is detected by the detector 15, and the result is taken into the adjusting device 10.

次に本発明の動作について説明する。第2図は入口ベー
ン角度と流量との関係を示したもので、ある任意の角度
θにより流量特性を大流量域と小流量域に区分する。
Next, the operation of the present invention will be described. FIG. 2 shows the relationship between the inlet vane angle and the flow rate. The flow rate characteristic is divided into a large flow rate range and a small flow rate range by an arbitrary angle θ c .

今、目標流量との偏差流量をΔQとし、それに見合うベ
ーン回動量をΔθとする。回動前の流量,ベーン角度の
状態量をそれぞれQ0とする。ある任意温度Taにお
けるベーン角度と流量の関係及び限界角θを調節装置
10に記憶する。検出器13から取り込んだθをθと比
較し、θ>θが成立する運転状態では、ベーン角度
θに対応する点のベーン角度に対する流量の変化率か
ら偏差流量ΔQに相当するベーン回動量Δθを得る。
Now, the deviation flow rate from the target flow rate is ΔQ, and the vane rotation amount corresponding to it is Δθ. The flow rate before rotation and the state quantity of the vane angle are Q 0 and θ 0 , respectively. A device for adjusting the relationship between the vane angle and the flow rate at a certain arbitrary temperature T a and the limit angle θ c
Remember in 10. Θ 0 taken from the detector 13 is compared with θ c, and in an operating state where θ 0 > θ c is established, the flow rate change rate with respect to the vane angle at the point corresponding to the vane angle θ 0 corresponds to the deviation flow rate ΔQ. The amount of vane rotation Δθ is obtained.

従って、目標ベーン角度θは次式となる。 Therefore, the target vane angle θ 1 is given by the following equation.

θ=θ+Δθ …(2) 検出器13から取り込んだθとθを比較し、θがθ
より小さい場合には、流量Q0に対応する点の流量に対
するベーン角度の変化率から偏差流量ΔQに相当するベ
ーン回動量Δθを得る。
θ 1 = θ 0 + Δθ ... (2) comparing the theta 0 and theta c captured from the detector 13, theta 0 is theta
If it is smaller than c, the vane rotation amount Δθ corresponding to the deviation flow amount ΔQ is obtained from the change rate of the vane angle with respect to the flow amount at the point corresponding to the flow amount Q 0 .

さらに上述の回動量演算の前段階で検出器15から取り込
んだ入口温度T0により、調節装置10に記憶しているベー
ン角度と流量との関係を補正する。例えばベーン角度を
固定して流量を補正する場合には(4)式で補正する。
任意角θに対応する流量Qaを補正して、補正後の流量
Qa1が得られる。
Further, the relationship between the vane angle and the flow rate stored in the adjusting device 10 is corrected by the inlet temperature T 0 taken in from the detector 15 before the above-described rotation amount calculation. For example, if the vane angle is fixed and the flow rate is corrected, the flow rate is corrected by the equation (4).
Corrected flow rate Q a corresponding to arbitrary angle θ a , and corrected flow rate
Q a1 is obtained.

ここで、Qa1;任意角θに対応する補正後の流量 Qa;任意角θに対応する補正前の流量 Ta;記憶しているQaの関係温度条件 T0;容量調節を行うときの入口検出温度 この補正を行うことにより、常に実際に近いベーン角度
と流量の特性を使ってベーン回動量を決ることができ、
制御精度の向上、また制御速度の調節を容易に行うこと
ができる。
Here, Q a1; flow rate after correction corresponding to an arbitrary angle θ a Q a; before correction corresponding to an arbitrary angle theta a flow T a; store and Q a, theta relationship temperature of a T 0; Inlet detection temperature when adjusting capacity By performing this correction, it is possible to always determine the vane rotation amount using the characteristics of the vane angle and flow rate that are close to the actual values.
The control accuracy can be improved and the control speed can be easily adjusted.

〔発明の効果〕〔The invention's effect〕

本発明によれば、任意点の運転状態に対応するベーン角
度に対する流量の変化率およびその逆の変化率を精度よ
く、しかも簡単に演算できるので、精度がよい容量調節
が可能である。また、流量変化を流量の全域に亘って高
精度にコントロールすることができるので信頼性の高い
容量調節が可能となる。
According to the present invention, the rate of change of the flow rate with respect to the vane angle corresponding to the operating state at an arbitrary point and the opposite rate of change can be calculated accurately and easily, and therefore the capacity can be adjusted with high accuracy. In addition, since the change in the flow rate can be controlled with high accuracy over the entire range of the flow rate, the capacity can be adjusted with high reliability.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例の流体機械の容量調節系統を
示した系統図、第2図はベーン角度と流量の関係を示す
図で本発明の動作を説明する図、第3図は従来の流体機
械の容量調節系統図、第4図は遠心圧縮機の入口ベーン
角度と流量特性。 1……遠心圧縮機、2……入口ベーン、3……ベーン駆
動装置、4……オリフィス、5……オリフィス差圧、6
……オリフィス全圧、7……オリフィス全温、8……流
量計、9……流量信号、10……調節装置、11……目標流
量、12……ベーン角度指令信号、13……ベーン角度検出
器、14……ベーン角度信号、15……入口温度検出器、16
……入口温度信号。
FIG. 1 is a system diagram showing a capacity adjusting system of a fluid machine according to an embodiment of the present invention, FIG. 2 is a diagram showing a relationship between a vane angle and a flow rate, which is a diagram for explaining the operation of the present invention, and FIG. Fig. 4 shows the capacity control system of a conventional fluid machine, and Fig. 4 shows the inlet vane angle and flow rate characteristics of a centrifugal compressor. 1 ... Centrifugal compressor, 2 ... Inlet vane, 3 ... Vane drive device, 4 ... Orifice, 5 ... Orifice differential pressure, 6
...... Orifice total pressure, 7 …… Orifice total temperature, 8 …… Flow meter, 9 …… Flow signal, 10 …… Adjuster, 11 …… Target flow rate, 12 …… Vane angle command signal, 13 …… Vane angle Detector, 14 …… Vane angle signal, 15 …… Inlet temperature detector, 16
…… Inlet temperature signal.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】流量検出装置と、圧縮機の入口側に配置し
た可変ガイドベーンとを有し、目標流量に対する偏差が
許容値以上であればこの可変ガイドベーンに動作指令を
出力する指示手段を備えた調節装置とを有する流体機械
において、 ガイドベーン角度と流量の関係を記憶する記憶手段を前
記調節装置に設けるとともに、この記憶手段に記憶した
ガイドベーン角度と流量との関係を流体機械の入口温度
に基づいて補正演算し、大流量域ではガイドベーン角度
に対する流量変化の傾きを、小流量域では流量に対する
ガイドベーン角度変化の傾きを演算する演算手段を設
け、前記指示手段はこの演算手段の出力に基づいて目標
流量偏差に対応するガイドベーンの動作指示を行うもの
であることを特徴とする流体機械の容量制御装置。
1. A flow rate detecting device and a variable guide vane disposed on the inlet side of the compressor, and an instruction means for outputting an operation command to the variable guide vane if the deviation from the target flow rate is not less than an allowable value. In a fluid machine having an adjusting device provided therein, storage means for storing the relationship between the guide vane angle and the flow rate is provided in the adjusting device, and the relationship between the guide vane angle and the flow rate stored in the storage means is stored in the inlet of the fluid machine. Compensation calculation is performed based on the temperature, and a calculating means is provided for calculating the inclination of the flow rate change with respect to the guide vane angle in the large flow rate region and the inclination of the guide vane angle change with respect to the flow rate in the small flow rate region. A capacity control device for a fluid machine, characterized in that an operation instruction of a guide vane corresponding to a target flow rate deviation is given based on an output.
JP23517385A 1985-10-23 1985-10-23 Capacity control device for flow machine Expired - Lifetime JPH0788829B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23517385A JPH0788829B2 (en) 1985-10-23 1985-10-23 Capacity control device for flow machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23517385A JPH0788829B2 (en) 1985-10-23 1985-10-23 Capacity control device for flow machine

Publications (2)

Publication Number Publication Date
JPS6296798A JPS6296798A (en) 1987-05-06
JPH0788829B2 true JPH0788829B2 (en) 1995-09-27

Family

ID=16982144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23517385A Expired - Lifetime JPH0788829B2 (en) 1985-10-23 1985-10-23 Capacity control device for flow machine

Country Status (1)

Country Link
JP (1) JPH0788829B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7210895B2 (en) 2002-08-12 2007-05-01 Hitachi Industries Co., Ltd. Turbo compressor and method of operating the turbo compressor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009156086A (en) * 2007-12-25 2009-07-16 Toyota Motor Corp Device for controlling gas turbine engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7210895B2 (en) 2002-08-12 2007-05-01 Hitachi Industries Co., Ltd. Turbo compressor and method of operating the turbo compressor

Also Published As

Publication number Publication date
JPS6296798A (en) 1987-05-06

Similar Documents

Publication Publication Date Title
JPH0580576B2 (en)
GB2067247A (en) A device for determining the wind energy in order to control wind generators
JP5968504B1 (en) Control device for an internal combustion engine with a supercharger
CN106050722A (en) General characteristic curve surge control method and system based on principle of similitude
US5002459A (en) Surge control system
CN110056530A (en) Anti-surge control method and system
US4104876A (en) Fan R. P. M. control loop stabilization using high rotor speed
US11530683B2 (en) Velocity feedfoward control of a hydraulic pitch system
JPH0788829B2 (en) Capacity control device for flow machine
JPS63131844A (en) Revolving speed control device for internal combustion engine
JPS6363733B2 (en)
RU2252329C1 (en) Method of and system for regulating gas-turbine drive
EP0112792A1 (en) Blade pitch angle control for large wind turbines
CN100387937C (en) Electronic turbine flowmeter for gas
US5699267A (en) Hot gas expander power recovery and control
SU987193A1 (en) Method of controlling centrifugal compressor
JPS62294797A (en) Air quantity control method for air blowing/exhausting equipment
SU901582A1 (en) Method for determining insensitivity of turbine governing system
SU1121594A2 (en) Axial compressor technical condition checking method
SU450983A1 (en) Method for determining droplet diameter
JPS59138891A (en) Control of vacuum degree of condenser
JPS6220690A (en) Method and device for controlling pump flow rate to constant
JPS59160097A (en) Capacity regulation of multi-stage compressor
JPS58206812A (en) Device for adjusting discharged gas of steam turbine with vacuum
SU1067229A1 (en) Method of controlling guide case of turbo-machine