JPS6296660A - Sintered iron alloy for valve seat - Google Patents

Sintered iron alloy for valve seat

Info

Publication number
JPS6296660A
JPS6296660A JP4562986A JP4562986A JPS6296660A JP S6296660 A JPS6296660 A JP S6296660A JP 4562986 A JP4562986 A JP 4562986A JP 4562986 A JP4562986 A JP 4562986A JP S6296660 A JPS6296660 A JP S6296660A
Authority
JP
Japan
Prior art keywords
iron
alloy
chromium
valve seat
based sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4562986A
Other languages
Japanese (ja)
Other versions
JPH0559981B2 (en
Inventor
Yukio Kadota
門田 幸男
Akira Manabe
明 真鍋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Publication of JPS6296660A publication Critical patent/JPS6296660A/en
Publication of JPH0559981B2 publication Critical patent/JPH0559981B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To improve the wear resistance and to weaken the attacking property to a valve as an opposite member by uniformly dispersing alloy particles contg. prescribed percentages of Cr, W, Mo, etc., in an Fe alloy contg. prescribed percentages of Cr, Mo, V or Mn and C. CONSTITUTION:This sintered Fe alloy is obtd. by uniformly dispersing, by weight, 5-25% alloy particles in the matrix of an Fe alloy consisting of 1-20% one or more among Cr, Mo, V and Mn, 0.5-2% C and the balance Fe. The alloy particles consist of 10-70% Cr, 5-20% W, 5-20% Mo, 0.5-3% C, <=20% Fe and the balance Co.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は内燃機関のバルブシート用焼結合金に係わり、
より詳しくは合金自身の耐摩耗性を高めるとともに、相
手バルブに対する攻撃性を弱めた鉄系焼結合金に関する
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a sintered alloy for valve seats of internal combustion engines,
More specifically, the present invention relates to an iron-based sintered alloy that has improved wear resistance and is less aggressive against mating valves.

〔従来の技術〕[Conventional technology]

最近、自動車用内燃機関は漏出力、高回転化、低燃費化
が計られ、また排気ガス対策が施される傾向にある。こ
のため、バルブやバルブシート部品は従来以上に厳しい
条件にさらされるようになってきている。
In recent years, internal combustion engines for automobiles have been designed to have higher leakage power, higher rotation speeds, and lower fuel consumption, and there has been a trend to take measures against exhaust gases. For this reason, valves and valve seat components are being exposed to more severe conditions than ever before.

このバルブシートには高温での耐摩耗性を高めるため、
Cr、 Ni、 Co、 Mo等の合金元素を添加した
鉄系焼結合金が多用されつつある。
This valve seat has a
Iron-based sintered alloys to which alloying elements such as Cr, Ni, Co, and Mo are added are increasingly being used.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで、バルブシートは、自身の耐摩耗性を向上させ
るとともに相手パルプへの攻撃性の低減が求められてお
り、バルブシー トの材質の選択は、相手パルプとの相
関において決定されるべきもので、この選択を誤るとバ
ルブ自身の耐摩耗性を弱めるばかりか、相手部材に対す
る攻撃性を増して、バルブ機構全体に思わしくない影響
を与えることになる。そのため従来のような、例えばた
だ単にフェロモリブデン等の金属間化合物又は複合炭化
物を添加して極度に耐摩耗性を高めたバルブシートをそ
のまま使用すると、エンジンバルブの摩耗を増大させる
結果となる。
By the way, the valve seat is required to improve its own wear resistance and reduce its aggressiveness to the pulp it is attached to, and the selection of the material for the valve seat should be determined in relation to the pulp it is attached to. If this selection is incorrect, it will not only weaken the wear resistance of the valve itself, but also increase its aggressiveness towards the mating member, which will have an undesirable effect on the entire valve mechanism. Therefore, if a conventional valve seat, for example, which has extremely high wear resistance by simply adding an intermetallic compound such as ferromolybdenum or a composite carbide, is used as it is, the wear of the engine valve will increase.

本発明は通常の、耐摩耗性が特に高められていない汎用
エンジンバルブ(例えばJIS NFC751裂)を相
手にした場合にも相手材を摩耗することなく、又は自身
の摩耗を著しく増大させることのないようにしようとす
るものである。
Even when the present invention is applied to a general-purpose engine valve whose wear resistance is not particularly enhanced (for example, JIS NFC751 crack), it does not wear out the other material or significantly increase its own wear. This is what we are trying to do.

〔問題を解決するための手段〕[Means to solve the problem]

本発明のバルブシート用鉄系焼結合金は、重量比で、ク
ロム(Cr ) 、モリブデン(Mo ) 、バナジウ
ム(V)、及びマンガン(Mn)からなる群から選ばれ
る元素1棟又は2棟以上を1〜20%、炭素(C)0.
5〜2%、所望により(Ni)1〜10チ及び不可避不
純物を含む鉄基合金を基地とし、クロム(Cr)10〜
70%、タングステン(W)5〜20%、モリブデン(
Mo)5〜20%、炭素(C) II 5〜3 %、鉄
(Fe)20%以下及び残部コバル)(Co)からなる
合金粒子5〜25チを前記基地中に均一に分散させたこ
とを特徴とする。
The iron-based sintered alloy for valve seats of the present invention has one or more elements selected from the group consisting of chromium (Cr), molybdenum (Mo), vanadium (V), and manganese (Mn) in terms of weight ratio. 1 to 20%, carbon (C) 0.
Based on an iron-based alloy containing 5-2%, optionally (Ni) 1-10% and unavoidable impurities, chromium (Cr) 10-10%.
70%, tungsten (W) 5-20%, molybdenum (
5 to 25 alloy particles consisting of 5 to 20% Mo), 5 to 3% carbon (C) II, 20% or less iron (Fe), and the balance Cobalt (Co) are uniformly dispersed in the base. It is characterized by

1だ、本発明は前記焼結合金に鉛(Pb)1〜20%を
溶浸したことを特徴とする。
1. The present invention is characterized in that the sintered alloy is infiltrated with 1 to 20% of lead (Pb).

なお、本発明においてチは特記しないかぎり重itチを
示す。
Incidentally, in the present invention, unless otherwise specified, ``chi'' indicates heavy ``chi''.

本発明で用いる各成分元素の限定理由について説明する
The reason for limiting each component element used in the present invention will be explained.

まず、硬質粒子として加える合金粒子の各成分元素につ
いて説明する。
First, each component element of the alloy particles added as hard particles will be explained.

合金粒子中のCr (クロム)はC(炭素)と化合して
炭化物を形成するとともに一部がCOと合金を形成し合
金粒子の硬さを向上させる効果を有しているが、Crが
10%未満では上記の効果が不十分であり、70チを超
えるとCrの拡散が周囲の基地へ進み過ぎ、合金粒子の
内部及び周縁に空隙を生じ、合金粒子がもろくなる。そ
のためCr Vil 0〜70%と限定した。しかしな
がら、40〜70%がさらに好ましい。
Cr (chromium) in the alloy particles combines with C (carbon) to form carbides, and a portion also forms an alloy with CO, which has the effect of improving the hardness of the alloy particles. If it is less than 70%, the above effect is insufficient, and if it exceeds 70%, the diffusion of Cr will proceed too much to the surrounding bases, creating voids inside and at the periphery of the alloy particles, making the alloy particles brittle. Therefore, Cr Vil was limited to 0 to 70%. However, 40-70% is more preferred.

W(タングステン)は、Cと化合してMC型の硬質炭化
物とCOとの複炭化物を形成し、合金粒子の硬さを向上
させるが、Wが5チ未満ではその効果が発揮されず、2
0チを超えると合金粒子が硬くなり過ぎ、相手材である
バルブへの攻撃性が増大するため、WFi5〜20%と
した。
W (tungsten) combines with C to form a double carbide of MC-type hard carbide and CO and improves the hardness of the alloy particles, but if W is less than 5 inches, this effect is not exhibited, and 2
If the WFi exceeds 0%, the alloy particles become too hard and the aggressiveness towards the mating material, the valve, increases, so the WFi was set at 5 to 20%.

Mo  (モリブデン)はCと化合して硬質炭化物を形
成し、合金粒子の硬さを増すが、MOが5%未満ではそ
の効果が現れず、20チを超えると合金粒子が硬くなり
過ぎて相手部材を攻撃するので5〜20%とした。
Mo (molybdenum) combines with C to form hard carbides and increases the hardness of the alloy particles, but if MO is less than 5%, this effect will not appear, and if it exceeds 20%, the alloy particles will become too hard Since it attacks the parts, it was set at 5 to 20%.

CId Cr%Mo及びWと化合して炭化物を形成し、
合金粒子の硬さを向上させるが、Cは0.5チ未満では
その効果が発揮されず、3チを超えると炭化物量が多す
ぎてもろくなる。そのため、Cは0.5〜3チとした。
CId Cr% combines with Mo and W to form carbides,
C improves the hardness of the alloy particles, but if it is less than 0.5 inches, its effect will not be exhibited, and if it exceeds 3 inches, the amount of carbides will be too large and it will become brittle. Therefore, C was set to 0.5 to 3 inches.

Fe (鉄)は特に添加しなくてもよいが、バルブシー
トに必要とする強度等に問題がなければ、高価なCOの
代わりに20%以下の任意の範囲で用いることができる
。また、Cr%W%Moを単体としてではなくフェロア
ロイとして合金の原料に用いる場合に添加されることに
なる。
Fe (iron) does not need to be added, but if there is no problem with the strength required for the valve seat, it can be used in any amount of 20% or less in place of the expensive CO. Moreover, when Cr%W%Mo is used as a raw material for an alloy not as a single substance but as a ferroalloy, it is added.

合金粒子は耐摩耗性の向上に効果があることから用いら
れる。その粒径は30〜150μmが好1しく、合金中
のCoの一部が基地中に拡散して粒子の周囲に拡散層を
形成することによって、粒子と基地との結合力が増し、
該粒子の脱落が防止される。該合金粒子は5%未満では
得られる焼結合金の耐摩耗効果が発揮されず、25%を
超えると成形性、圧縮性及び被削性が低下するとともに
相手材であるバルブへの攻撃性が増大するため、合金粒
子は5〜25俤と限定した。
Alloy particles are used because they are effective in improving wear resistance. The particle size is preferably 30 to 150 μm, and a part of the Co in the alloy diffuses into the matrix to form a diffusion layer around the particles, increasing the bonding force between the particles and the matrix.
The particles are prevented from falling off. If the alloy particles are less than 5%, the wear-resistant effect of the resulting sintered alloy will not be exhibited, and if it exceeds 25%, the formability, compressibility and machinability will decrease, and the mating material, the valve, will be attacked. In order to increase the number of alloy particles, the number of alloy particles was limited to 5 to 25 particles.

次に基地について説明する。Next, I will explain the base.

Cr%Mo、 V (バナジウム)、Mn (77ガン
)の1種又は2種以上を含む鉄基合金の1棟又は2種以
上を使用することにより、鉄基地の耐熱性及び耐食、性
を向上させることができる。特に、Cr1〜5%、Mo
 0.1〜1 %及びv0.1〜1%を含む鉄基合金、
Cr0.5〜2%、MOo、1〜1%及びMnα1〜1
チを含む鉄基合金又はCr6〜18を含む鉄基合金を使
用することが好ましい。上配鉄基会金中に含まれるCr
%Mo%V%Mnの1種又は2ft1以上#′i14未
満では鉄基地の耐熱性・耐食性の向上に対する効果がな
く、20%超えてもそれ以上の効果が得られないため、
1〜20チとした。
By using one or more types of iron-based alloys containing one or more of Cr%Mo, V (vanadium), and Mn (77 cancer), the heat resistance, corrosion resistance, and properties of the iron base can be improved. can be done. In particular, Cr1-5%, Mo
iron-based alloy containing 0.1-1% and v0.1-1%,
Cr0.5-2%, MOo, 1-1% and Mnα1-1
It is preferable to use an iron-based alloy containing Cr or an iron-based alloy containing Cr6-18. Cr included in the upper railway foundation fee
%Mo%V%Mn or 2ft1 or more and less than #'i14 has no effect on improving the heat resistance and corrosion resistance of the iron base, and even if it exceeds 20%, no further effect can be obtained.
It was set as 1 to 20 inches.

Cは上記鉄基合金中に拡散して焼結を促進させ、基地を
強化させる効果があるとともに、未反応の遊離黒鉛が、
ある程度基地中に内在することによ抄、潤滑効果が発揮
されるが、Cが15−未満ではその効果がなく% 2.
0%を超えるとセメンタイトが析出し、基地がもろくな
ったり、遊離黒鉛が多すぎて基地の強度が低下するため
、Cけ0−5〜2チとした。
C diffuses into the above-mentioned iron-based alloy to promote sintering and has the effect of strengthening the matrix, and unreacted free graphite is
When C is present in the base to some extent, it exhibits a lubricating effect, but if it is less than 15%, it has no effect.
If it exceeds 0%, cementite will precipitate and the base will become brittle, and the strength of the base will decrease due to too much free graphite, so the C content was set at 0-5 to 2 inches.

Niにッケル)はFe基地に固溶]7て基地の強度を向
上させるのに役立つため、更に強度を必要とする場合に
添加されるが、Niが1チ未満ではその効果が発揮され
ず、10チを超えると基地が軟化し、耐摩耗性が低下す
るため、Niは1〜10%とした。
Ni (nickel) is a solid solution in the Fe base] 7 and is useful for improving the strength of the base, so it is added when further strength is required, but if Ni is less than 1 inch, the effect will not be exhibited, If it exceeds 10 inches, the base becomes soft and the wear resistance decreases, so the Ni content was set at 1 to 10%.

pb (鉛)の焼結合金への溶浸け、よりきびしい条件
下で使用されるバルブシートの場合に行われる。溶浸さ
れたpbは、バルブとバルブシートの接触部に介在して
Pb&化物層を形成することにより潤滑剤として作用し
てバルブ及びバルブシート相互の耐摩耗性を向上させる
が、pbの溶浸が1%未満ではpb溶浸の効果が発揮さ
れず、20%を超えて溶浸すると焼結合金のスケルトン
が弱化して摩耗が増大することから1〜20チとした。
Infiltration of sintered alloys with PB (lead) is carried out in the case of valve seats used under more severe conditions. The infiltrated PB acts as a lubricant by forming a Pb & compound layer at the contact area between the valve and the valve seat, improving the mutual wear resistance of the valve and the valve seat. If it is less than 1%, the effect of PB infiltration will not be exhibited, and if it exceeds 20%, the skeleton of the sintered alloy will be weakened and wear will increase.

〔実施例〕〔Example〕

本発明を実施例により説明する。 The present invention will be explained by examples.

実施例1 (ylO%、V2O4、Mo10%、Fe 10%、c
2,5チ及び残部Coからなる合金アトマイズ粉(−1
00メツシー)15%、黒鉛粉末(−350メソシユ)
1.5%、カルボニルNi 粉末(10μm以下)5%
、及び粉末の残部としてCr12%及び残部Feからな
る合金アトマイズ鉄粉(−100メツシユ)である焼結
用粉末組成に潤滑剤としてステアリン酸1r!、銅粉末
α8%を混合した後、この混合粉末を金型内に充てんし
、成形圧7t/ctAで成形してバルブシート粗形状の
粉末成形体を得た。
Example 1 (ylO%, V2O4, Mo10%, Fe 10%, c
Alloy atomized powder (-1
00 meth) 15%, graphite powder (-350 meth)
1.5%, carbonyl Ni powder (10μm or less) 5%
, and the powder composition for sintering is an alloy atomized iron powder (-100 mesh) consisting of 12% Cr and the balance Fe, and 1r stearic acid as a lubricant! After mixing copper powder α8%, this mixed powder was filled into a mold and molded at a molding pressure of 7 t/ctA to obtain a powder molded body having a rough shape of a valve seat.

この粉末成形体をアンモニア分解ガス雰囲気中で115
0℃の温度にて60分間焼結して焼結体を得た。焼結体
密度はZOり/7゜ 得られた焼結体を排気弁座の形状に加工して排気f20
00田4気筒のディーゼルエンジンに装着し、全負荷で
200時間台上耐久試験を実施し、バルブシート当り面
幅増触量及びバルブ摩耗量を測定した。なp−,8手バ
ルブにはJISNFC751を用いた。
This powder compact was heated to 115% in an ammonia decomposition gas atmosphere.
A sintered body was obtained by sintering at a temperature of 0° C. for 60 minutes. The density of the sintered body is ZO/7° The obtained sintered body is processed into the shape of an exhaust valve seat and the exhaust f20
It was installed in a 4-cylinder diesel engine and subjected to a bench durability test under full load for 200 hours, and the amount of increase in surface width per valve seat and the amount of valve wear were measured. JIS NFC751 was used for the p-, 8-hand valve.

実施例2〜4 各材料を表1及び表2に示す各組成割合にそれぞれ配合
を−で実施例1と同様に行って、各焼結体を得た。なお
、実施例3及び4は得られた焼結体をpb塊と接触させ
て再度アンモニア分解ガス雰囲気中で1050℃の温度
にて50分間加熱して焼結体中にpbを溶浸したもので
ある。
Examples 2 to 4 Each material was mixed in the respective composition ratios shown in Tables 1 and 2 in the same manner as in Example 1, with -, to obtain each sintered body. In addition, in Examples 3 and 4, the obtained sintered body was brought into contact with a PB lump and heated again at a temperature of 1050 ° C. for 50 minutes in an ammonia decomposition gas atmosphere to infiltrate PB into the sintered body. It is.

得られた各焼結体を弁座形状に加工し、バルブシート当
り面幅増加量及びバルブ摩耗量を実施例1と同様に試験
したのち測定した。
Each of the obtained sintered bodies was processed into a valve seat shape, and the increase in surface width per valve seat and the amount of valve wear were tested and measured in the same manner as in Example 1.

実施例5 Cr43%、W16%、MO17%、Fe8%、C1,
5チ及び残部COからなる合金アトマイズ粉(−100
メツシー) 15 % 、i鉛粉末(−350メツシュ
)1.1%、カルボニルNi粉末(10Pm以下)4%
、及び粉末の残部としてCr12%及び残部Feからな
る合金アトマイズ鉄粉(−100メツシユ)である焼結
用粉末組成に潤滑剤としてステアリン酸亜鉛粉末18%
を混合した後、この混合粉末を金型内に充てんし、成形
圧7t/cdで成形してバルブシート粗形状の粉末成形
体を得た。
Example 5 Cr43%, W16%, MO17%, Fe8%, C1,
Alloy atomized powder (-100
mesh) 15%, i-lead powder (-350 mesh) 1.1%, carbonyl Ni powder (10Pm or less) 4%
, and the balance of the powder is alloy atomized iron powder (-100 mesh) consisting of 12% Cr and the balance Fe, and 18% zinc stearate powder as a lubricant.
After mixing, this mixed powder was filled into a mold and molded at a molding pressure of 7 t/cd to obtain a powder molded body in the rough shape of a valve seat.

この粉末成形体をアンモニア分解ガス雰囲気中で115
0℃の温度にて60分間焼結して焼結体を得た。焼結体
密度は& 85)/aA 0得られた焼結体を排気弁座
の形状に加工して排気量2000(E4気筒のディーゼ
ルエンジンに装着し、全負荷で200時間台上耐久試験
を実施し、バルブシート当り面幅増加量及びパルプ摩耗
量を測定した。なお、相手バルブにはJISNPC75
1を用いた。
This powder compact was heated to 115% in an ammonia decomposition gas atmosphere.
A sintered body was obtained by sintering at a temperature of 0° C. for 60 minutes. The density of the sintered body is &85)/aA 0 The obtained sintered body was processed into the shape of an exhaust valve seat and installed in a diesel engine with a displacement of 2000 (E4 cylinders), and a bench durability test was conducted for 200 hours at full load. The increase in surface width per valve seat and the amount of pulp wear were measured.The mating valve was JIS NPC75.
1 was used.

実施例6〜8 各材料を表1及び表2に示す各組成割合にそれぞれ配合
して実施例1と同様に行って、各焼結体を得た。なお、
実施例7及び8は得られた焼結体をPb塊と接触させて
再度アンモニア分解ガス雰囲気中で1050℃の温度に
て30分間加熱して焼結体中にPbtl−溶浸したもの
である。
Examples 6 to 8 Each material was blended in the respective composition ratios shown in Tables 1 and 2, and the same procedure as in Example 1 was carried out to obtain each sintered body. In addition,
In Examples 7 and 8, the obtained sintered body was brought into contact with a Pb lump and heated again at a temperature of 1050°C for 30 minutes in an ammonia decomposition gas atmosphere to infiltrate Pbtl into the sintered body. .

得られた各焼結体を弁座形状に加工し、バルブシート当
り面幅増加量及びバルブ摩耗量を実施例1と同様に試験
したのち測定した。
Each of the obtained sintered bodies was processed into a valve seat shape, and the increase in surface width per valve seat and the amount of valve wear were tested and measured in the same manner as in Example 1.

比較例1及び2 比較例1としてJISFC30鋳鉄、比較例2としてJ
IS耐熱鋼材SUM 4Bをそれぞれ用いて弁座形状に
加工し、これらを実施例1と同様に試験してバルブ摩耗
量を測定した。
Comparative Examples 1 and 2 Comparative Example 1 is JISFC30 cast iron, Comparative Example 2 is JISFC30 cast iron.
IS heat-resistant steel material SUM 4B was processed into the shape of a valve seat, and these were tested in the same manner as in Example 1 to measure the amount of valve wear.

以上の測定結果をまとめて表1に示す。The above measurement results are summarized in Table 1.

表2 表1かられかるように実施例1〜8のバルブシート当り
面幅増加量はα1ないしく12.で、比較例1及び2の
1.2及び1.4 Mに比してかなり小さな値を示し、
実施例1〜8の焼結合金は過酷な条件下で使用されるデ
ィーゼルエンジンの弁座材料としても耐摩耗性に優れて
いる。また、実施例1〜8のパルプ摩耗量は2ないし7
μmで、比較例1及び2の30及び40踊に比してかな
り小さく、実施例1〜8の焼結合金は相手材であるパル
プに対する攻撃性が低い。
Table 2 As can be seen from Table 1, the amount of increase in surface width per valve seat in Examples 1 to 8 was α1 to 12. , which shows a considerably smaller value compared to 1.2 and 1.4 M in Comparative Examples 1 and 2,
The sintered alloys of Examples 1 to 8 have excellent wear resistance as valve seat materials for diesel engines used under severe conditions. In addition, the amount of pulp abrasion in Examples 1 to 8 was 2 to 7.
The sintered alloys of Examples 1 to 8 have low aggressiveness against pulp as the mating material, which is considerably smaller than the 30 and 40 μm of Comparative Examples 1 and 2.

〔発明の効果〕〔Effect of the invention〕

本発明のバルブシート用鉄系焼結合金は上記したように
合金粒子をCr、Mo%V%Mnの1種又Fi2種以上
を含む鉄基合金基地中に均一に分散させたので、耐摩耗
性に優れ、かつ相手材であるパルプに対する攻撃性が低
く、バルブシート用焼結合金−として最適なものである
As mentioned above, the iron-based sintered alloy for valve seats of the present invention has alloy particles uniformly dispersed in the iron-based alloy matrix containing one of Cr, Mo%V%Mn, or two or more types of Fi, so it has excellent wear resistance. It has excellent properties and low aggressiveness towards pulp, which is the mating material, making it ideal as a sintered alloy for valve seats.

特許出願人 トヨタ自動車株式会社 代理人 弁理士  萼   優 美 【゛ (1コ?−1,?) ) 1、。Patent applicant: Toyota Motor Corporation Agent Patent Attorney Yumi Sakai [゛ (1 piece?-1,?)) 1,.

Claims (20)

【特許請求の範囲】[Claims] (1)重量比で、クロム(Cr)、モリブデン(Mo)
、バナジウム(V)、及びマンガン(Mn)からなる群
から選ばれる元素1種又は2種以上1〜20%、炭素(
C)0.5〜2%及び不可避不純物を含む鉄基合金を基
地とし、重量比で、クロム(Cr)10〜70%、タン
グステン(W)5〜20%、モリブデン(Mo)5〜2
0%、炭素(C)0.5〜3%、鉄(Fe)20%以下
及び残部コバルト(Co)からなる合金粒子5〜25%
を前記基地中に均一に分散させたことを特徴とするバル
ブシート用鉄系焼結合金。
(1) Chromium (Cr), molybdenum (Mo) in weight ratio
, vanadium (V), and manganese (Mn), 1 to 20% of one or more elements selected from the group consisting of , carbon (
C) Based on iron-based alloy containing 0.5-2% and unavoidable impurities, weight ratio: chromium (Cr) 10-70%, tungsten (W) 5-20%, molybdenum (Mo) 5-2
0%, carbon (C) 0.5-3%, iron (Fe) 20% or less, and balance cobalt (Co) 5-25%.
An iron-based sintered alloy for a valve seat, characterized in that: is uniformly dispersed in the base.
(2)重量比で、クロム(Cr)1〜5%、モリブデン
(Mo)0.1〜1%及びバナジウム(V)0.1〜1
%を鉄基合金中に含むことを特徴とする特許請求の範囲
第1項記載のバルブシート用鉄系焼結合金。
(2) Chromium (Cr) 1-5%, molybdenum (Mo) 0.1-1% and vanadium (V) 0.1-1% by weight
% of the iron-based sintered alloy for a valve seat according to claim 1.
(3)重量比で、クロム(Cr)0.5〜2%、モリブ
デン(Mo)0.1〜1%及びマンガン(Mn)0.1
〜1%を鉄基合金中に含むことを特徴とする特許請求の
範囲第1項記載のバルブシート用鉄系焼結合金。
(3) By weight, chromium (Cr) 0.5-2%, molybdenum (Mo) 0.1-1%, and manganese (Mn) 0.1
The iron-based sintered alloy for a valve seat according to claim 1, characterized in that the iron-based alloy contains ~1% of the iron-based sintered alloy.
(4)重量比で、クロム(Cr)6〜18%を鉄基合金
中に含むことを特徴とする特許請求の範囲第1項記載の
バルブシート用鉄系焼結合金。
(4) The iron-based sintered alloy for a valve seat according to claim 1, wherein the iron-based alloy contains 6 to 18% of chromium (Cr) by weight.
(5)合金粒子中のクロム(Cr)の含有量が重量比で
40〜70%であることを特徴とする特許請求の範囲第
1項記載のバルブシート用鉄系焼結合金。
(5) The iron-based sintered alloy for a valve seat according to claim 1, wherein the content of chromium (Cr) in the alloy particles is 40 to 70% by weight.
(6)重量比で、クロム(Cr)、モリブデン(Mo)
、バナジウム(V)、及びマンガン(Mn)からなる群
から選ばれる元素1種又は2種以上1〜20%、炭素(
C)0.5〜2%、ニッケル(Ni)1〜10%及び不
可避不純物を含む鉄基合金を基地とし、重量比で、クロ
ム(Cr)10〜70%、タングステン(W)5〜20
%、モリブデン(Mo)5〜20%、炭素(C)0.5
〜3%、鉄(Fe)20%以下及び残部コバルト(Co
)からなる合金粒子5〜25%を前記基地中に均一に分
散させたことを特徴とするバルブシート用鉄系焼結合金
(6) Chromium (Cr), molybdenum (Mo) in weight ratio
, vanadium (V), and manganese (Mn), 1 to 20% of one or more elements selected from the group consisting of , carbon (
C) Based on an iron-based alloy containing 0.5-2% nickel (Ni), 1-10% nickel (Ni), and unavoidable impurities, the weight ratio is 10-70% chromium (Cr) and 5-20% tungsten (W).
%, molybdenum (Mo) 5-20%, carbon (C) 0.5
~3%, less than 20% iron (Fe) and the balance cobalt (Co
1. An iron-based sintered alloy for a valve seat, characterized in that 5 to 25% of alloy particles consisting of ) are uniformly dispersed in the matrix.
(7)重量比で、クロム(Cr)1〜5%、モリブデン
(Mo)0.1〜1%及びバナジウム(V)0.1〜1
%を鉄基合金中に含むことを特徴とする特許請求の範囲
第6項記載のバルブシート用鉄系焼結合金。
(7) Chromium (Cr) 1-5%, molybdenum (Mo) 0.1-1% and vanadium (V) 0.1-1% by weight
% of the iron-based sintered alloy for a valve seat according to claim 6.
(8)重量比で、クロム(Cr)0.5〜2%、モリブ
デン(Mo)0.1〜1%及びマンガン(Mn)0.1
〜1%を鉄基合金中に含むことを特徴とする特許請求の
範囲第6項記載のバルブシート用鉄系焼結合金。
(8) By weight, chromium (Cr) 0.5-2%, molybdenum (Mo) 0.1-1%, and manganese (Mn) 0.1
The iron-based sintered alloy for valve seats according to claim 6, characterized in that the iron-based alloy contains ~1% of the iron-based sintered alloy.
(9)重量比で、クロム(Cr)6〜18%を鉄基合金
中に含むことを特徴とする特許請求の範囲第6項記載の
バルブシート用鉄系焼結合金。
(9) The iron-based sintered alloy for a valve seat according to claim 6, characterized in that the iron-based alloy contains 6 to 18% by weight of chromium (Cr).
(10)合金粒子中のクロム(Cr)の含有量が重量比
で40〜70%であることを特徴とする特許請求の範囲
第6項記載のバルブシート用鉄系焼結合金。
(10) The iron-based sintered alloy for a valve seat according to claim 6, wherein the content of chromium (Cr) in the alloy particles is 40 to 70% by weight.
(11)重量比で、クロム(Cr)、モリブデン(Mo
)、バナジウム(V)、及びマンガン(Mn)からなる
群から選ばれる元素1種又は2種以上1〜20%、炭素
(C)0.5〜2%及び不可避不純物を含む鉄基合金を
基地とし、重量比で、クロム(Cr)10〜70%、タ
ングステン(W)5〜20%、モリブデン(Mo)5〜
20%、炭素(C)0.5〜3%、鉄(Fe)20%以
下及び残部コバルト(Co)からなる合金粒子5〜25
%を前記基地中に均一に分散してなる焼結合金に、鉛(
Pb)1〜20%を溶浸したことを特徴とするバルブシ
ート用鉄系焼結合金。
(11) Chromium (Cr), molybdenum (Mo) in weight ratio
), vanadium (V), and manganese (Mn) in an amount of 1 to 20% of one or more elements selected from the group consisting of In terms of weight ratio, chromium (Cr) 10-70%, tungsten (W) 5-20%, molybdenum (Mo) 5-5%.
20%, carbon (C) 0.5 to 3%, iron (Fe) 20% or less, and the balance cobalt (Co).
% of lead (
An iron-based sintered alloy for valve seats, characterized in that it is infiltrated with 1 to 20% Pb).
(12)重量比で、クロム(Cr)1〜5%、モリブデ
ン(Mo)0.1〜1%及びバナジウム(V)0.1〜
1%を鉄基合金中に含むことを特徴とする特許請求の範
囲第11項記載のバルブシート用鉄系焼結合金。
(12) By weight, chromium (Cr) 1-5%, molybdenum (Mo) 0.1-1%, and vanadium (V) 0.1-5%
12. The iron-based sintered alloy for a valve seat according to claim 11, wherein the iron-based sintered alloy contains 1% of the iron-based alloy.
(13)重量比で、クロム(Cr)0.5〜2%、モリ
ブデン(Mo)0.1〜1%及びマンガン(Mn)0.
1〜1%を鉄基合金中に含むことを特徴とする特許請求
の範囲第11項記載のバルブシート用鉄系焼結合金。
(13) By weight, chromium (Cr) 0.5-2%, molybdenum (Mo) 0.1-1%, and manganese (Mn) 0.
12. The iron-based sintered alloy for a valve seat according to claim 11, wherein the iron-based sintered alloy contains 1 to 1% of the iron-based alloy.
(14)重量比で、クロム(Cr)6〜18%を鉄基合
金中に含むことを特徴とする特許請求の範囲第11項記
載のバルブシート用鉄系焼結合金。
(14) The iron-based sintered alloy for a valve seat according to claim 11, wherein the iron-based alloy contains 6 to 18% of chromium (Cr) by weight.
(15)合金粒子中のクロム(Cr)の含有量が重量比
で40〜70%であることを特徴とする特許請求の範囲
第11項記載のバルブシート用鉄系焼結合金。
(15) The iron-based sintered alloy for a valve seat according to claim 11, wherein the content of chromium (Cr) in the alloy particles is 40 to 70% by weight.
(16)重量比で、クロム(Cr)、モリブデン(Mo
)、バナジウム(V)、及びマンガン(Mn)からなる
群から選ばれる元素1種又は2種以上1〜20%、炭素
(C)0.5〜2%、ニッケル(Ni)1〜10%及び
不可避不純物を含む鉄基合金を基地とし、重量比で、ク
ロム(Cr)10〜70%、タングステン(W)5〜2
0%、モリブデン(Mo)5〜20%、炭素(C)0.
5〜3%、鉄(Fe)20%以下及び残部コバルト(C
o)からなる合金粒子5〜25%を前記基地中に均一に
分散してなる焼結合金に鉛(Pb)1〜20%を溶浸し
たことを特徴とするバルブシート用鉄系焼結合金。
(16) Chromium (Cr), molybdenum (Mo) in weight ratio
), vanadium (V), and manganese (Mn), 1 to 20% of one or more elements selected from the group consisting of, carbon (C) 0.5 to 2%, nickel (Ni) 1 to 10%, and Based on an iron-based alloy containing unavoidable impurities, the weight ratio is 10 to 70% chromium (Cr) and 5 to 2% tungsten (W).
0%, molybdenum (Mo) 5-20%, carbon (C) 0.
5 to 3%, less than 20% iron (Fe) and the balance cobalt (C
An iron-based sintered alloy for valve seats, characterized in that 1-20% of lead (Pb) is infiltrated into a sintered alloy in which 5-25% of alloy particles consisting of o) are uniformly dispersed in the matrix. .
(17)重量比で、クロム(Cr)1〜5%、モリブデ
ン(Mo)0.1〜1%及びバナジウム(V)0.1〜
1%を鉄基合金中に含むことを特徴とする特許請求の範
囲第16項記載のバルブシート用鉄系焼結合金。
(17) By weight, chromium (Cr) 1-5%, molybdenum (Mo) 0.1-1%, and vanadium (V) 0.1-5%
17. The iron-based sintered alloy for a valve seat according to claim 16, wherein the iron-based sintered alloy contains 1% of the iron-based alloy.
(18)重量比で、クロム(Cr)0.5〜2%、モリ
ブデン(Mo)0.1〜1%及びマンガン(Mn)0.
1〜1%を鉄基合金中に含むことを特徴とする特許請求
の範囲第16項記載のバルブシート用鉄系焼結合金。
(18) By weight, chromium (Cr) 0.5-2%, molybdenum (Mo) 0.1-1%, and manganese (Mn) 0.
17. The iron-based sintered alloy for a valve seat according to claim 16, wherein the iron-based sintered alloy contains 1 to 1% of the iron-based alloy.
(19)重量比で、クロム(Cr)6〜18%を鉄基合
金中に含むことを特徴とする特許請求の範囲第16項記
載のバルブシート用鉄系焼結合金。
(19) The iron-based sintered alloy for a valve seat according to claim 16, wherein the iron-based alloy contains 6 to 18% by weight of chromium (Cr).
(20)合金粒子中のクロム(Cr)の含有量が重量比
で40〜70%であることを特徴とする特許請求の範囲
第16項記載のバルブシート用鉄系焼結合金。
(20) The iron-based sintered alloy for a valve seat according to claim 16, wherein the content of chromium (Cr) in the alloy particles is 40 to 70% by weight.
JP4562986A 1985-06-10 1986-03-03 Sintered iron alloy for valve seat Granted JPS6296660A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP60-125935 1985-06-10
JP12593585 1985-06-10

Publications (2)

Publication Number Publication Date
JPS6296660A true JPS6296660A (en) 1987-05-06
JPH0559981B2 JPH0559981B2 (en) 1993-09-01

Family

ID=14922602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4562986A Granted JPS6296660A (en) 1985-06-10 1986-03-03 Sintered iron alloy for valve seat

Country Status (1)

Country Link
JP (1) JPS6296660A (en)

Also Published As

Publication number Publication date
JPH0559981B2 (en) 1993-09-01

Similar Documents

Publication Publication Date Title
US4424953A (en) Dual-layer sintered valve seat ring
JP4693170B2 (en) Wear-resistant sintered alloy and method for producing the same
JPH0555589B2 (en)
JPS6296660A (en) Sintered iron alloy for valve seat
JPH0555591B2 (en)
JPH0561346B2 (en)
JPH0313546A (en) Ferrous sintered alloy for valve seat
JPS60258449A (en) Sintered iron alloy for valve seat
JP2716575B2 (en) Manufacturing method of wear resistant iron-based sintered alloy
JPS6296661A (en) Sintered iron alloy for valve seat
JP2833116B2 (en) Sintered alloy for valve seat
JPS60258450A (en) Sintered iron alloy for valve seat
JP2725430B2 (en) Sintered alloy for valve seat
JPH0559982B2 (en)
JPH0657387A (en) Iron-base sintered alloy for valve seat
JP3068127B2 (en) Wear-resistant iron-based sintered alloy and method for producing the same
JPS63171858A (en) Ferrous sintered alloy for valve seat
JP3304805B2 (en) Iron-based sintered alloy with excellent wear resistance
JPS62188755A (en) Ferrous sintered alloy for valve seat
JP2677813B2 (en) High temperature wear resistant iron-based sintered alloy
JPS62164858A (en) Ferrous sintered alloy for valve seat
JP3264092B2 (en) Wear-resistant iron-based sintered alloy and method for producing the same
JPS6296659A (en) Sintered iron alloy for valve seat
JPH07109023B2 (en) Iron-based sintered alloy for valve sheet
JPS61183448A (en) Sintered iron alloy for valve seat

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees