JPS6296659A - Sintered iron alloy for valve seat - Google Patents

Sintered iron alloy for valve seat

Info

Publication number
JPS6296659A
JPS6296659A JP4562886A JP4562886A JPS6296659A JP S6296659 A JPS6296659 A JP S6296659A JP 4562886 A JP4562886 A JP 4562886A JP 4562886 A JP4562886 A JP 4562886A JP S6296659 A JPS6296659 A JP S6296659A
Authority
JP
Japan
Prior art keywords
iron
alloy
alloy particles
valve seat
based sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4562886A
Other languages
Japanese (ja)
Inventor
Yukio Kadota
門田 幸男
Akira Manabe
明 真鍋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Publication of JPS6296659A publication Critical patent/JPS6296659A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the wear resistance and to weaken the attacking property to a valve as an opposite member by uniformly dispersing alloy particles contg. prescribed percentages of Cr, W, Mo, etc., and prescribed Fe alloy particles in the pearlite-base matrix of iron. CONSTITUTION:This sintered Fe alloy is obtd. by uniformly dispersing, by weight, 5-25% alloy particles and 1-10% Fe alloy particles in a pearlite-base matrix consisting of 0.5-2% C and the balance Fe. The alloy particles consist of 10-70% Cr, 5-20% W, 5-20% Mo, 0.5-3% C, <=20% Fe and the balance Co. The Fe alloy particles are made of FeMo contg. 60-70% Mo, FeW contg. 70-80% W or a mixture of them.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は内燃機関のバルブシート用焼結合金に係わり、
より詳しくは合金自身の耐摩耗性を高めるとともに、相
手パルプに対する攻撃性を弱めた鉄系焼結合金に関する
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a sintered alloy for valve seats of internal combustion engines,
More specifically, the present invention relates to an iron-based sintered alloy that has improved wear resistance of the alloy itself and is less aggressive to mating pulp.

〔従来の技術〕[Conventional technology]

最近、自動車用内燃機関は高出力、高回転化、低燃費化
が計られ、また排気ガス対策が施される傾向にある。こ
のため、バルブやバルブシート部品は従来以上に厳しい
条件にさらされるようになって・きている。
In recent years, internal combustion engines for automobiles have been designed to have higher output, higher rotation speed, and lower fuel consumption, and there has been a trend toward measures against exhaust gas. For this reason, valves and valve seat parts are being exposed to more severe conditions than ever before.

このバルブシートには高温での耐摩耗性を高めるため、
 cr、 Ni%Co、M、等の合金元素を添加した鉄
系焼結合金が多用されつつある。
This valve seat has a
Iron-based sintered alloys containing alloying elements such as cr, Ni%Co, and M are increasingly being used.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで、バルブシートは、自身の耐摩耗性を向上させ
るとともに相手パルプへの攻撃性の低減が求められてお
り、バルブシートの材質の選択は、相手パルプとの相関
において決定されルヘきもので、この選択を誤るとパル
プ自身の耐摩耗性を弱めるばかシか、相手部材に対する
攻撃性を増して、パルプ機構全体に思わしくない影響を
与えることになる。そのため、従来のような1例えばた
だ単に金属間化合物や複合炭化物を添加して極度に耐摩
耗性を高めたパルプ。
By the way, valve seats are required to improve their own abrasion resistance and reduce their aggressiveness to the partner pulp, and the selection of the material for the valve seat is determined based on the relationship with the partner pulp. If the selection is incorrect, it will either weaken the abrasion resistance of the pulp itself or increase its aggressiveness towards the mating member, giving an undesirable effect on the pulp mechanism as a whole. Therefore, unlike conventional pulps, for example, intermetallic compounds or composite carbides are simply added to make the abrasion resistance extremely high.

シートをそのまま使用すると、エンジンパルプの摩耗を
増大させる結果となる。
Continued use of the sheet results in increased wear of the engine pulp.

本発明は通常の耐摩耗性が特に高められていない汎用エ
ンジンパルプ(例えばJIS  NFC751[)を相
手にした場合にも相手材を摩耗することなく、又は自身
の摩耗を著しく増大させることのないバルブシート用鉄
系焼結合金を提供しようとするものである。
The present invention provides a valve that does not wear out the mating material or significantly increase its own wear even when used with general-purpose engine pulp that does not have particularly high wear resistance (for example, JIS NFC751). The present invention aims to provide a ferrous sintered alloy for sheets.

〔問題点を解決するための手段〕[Means for solving problems]

本発明のバルブシート用鉄系焼結合金は2重量比で、ク
ロム(Cr) 10〜70係、タングステン%5〜20
%、モリブデ7 (Mo) 5〜20 % 、炭素(q
(L5〜3%、鉄(Fe) 20 ah以下及び残部コ
バルト(CO)からなる合金粒子5〜25憾、並びにモ
リブデン(Mo )を60〜70俤含有するフェロモリ
ブデン(FeMo)又、はタングステン(5)を70〜
80俤含有するフェロタングステン(FeW)のうち1
種以上のFe合金粒子1〜10係を、炭素(qas〜2
チ及び残部鉄(Fe)と不可避不純物からなるバーライ
トを主体とする基地中に均一に分散させたことを特徴と
する。
The iron-based sintered alloy for valve seats of the present invention has a weight ratio of 2: chromium (Cr): 10-70%, tungsten%: 5-20%.
%, Molybde 7 (Mo) 5-20%, Carbon (q
(5 to 25 alloy particles consisting of L5 to 3%, iron (Fe) 20 ah or less and the balance cobalt (CO), and ferromolybdenum (FeMo) containing 60 to 70 pieces of molybdenum (Mo) or tungsten ( 5) from 70
1 out of 80 ferrotungsten (FeW) containing
Carbon (qas~2
It is characterized in that it is uniformly dispersed in a base mainly composed of barlite, which is composed of iron (Fe) and the balance iron (Fe) and unavoidable impurities.

また1本発明の鉄系焼結合金は、ニッケル(Nす1〜1
0チを前記のバーライト主体の基地に含有せしめたこと
を特徴とする。さらに1本発明は前記焼結合金に鉛(P
b) 1〜20%を溶浸したことを特徴とする。
Further, the iron-based sintered alloy of the present invention has nickel (N 1 to 1
The present invention is characterized in that Ochi is contained in the above-mentioned barite-based base. Furthermore, one aspect of the present invention is that lead (P) is added to the sintered alloy.
b) Characterized by infiltration of 1 to 20%.

なお1本発明において俤は特記しない限シ重量係を示す
・ 本発明の好ましい鉄系焼結合金は、重量比で、りo A
 (Cr)40〜709b %=r ハk ) (Co
) 5〜30%。
Note that in the present invention, the weight indicates the weight ratio unless otherwise specified. The preferable iron-based sintered alloy of the present invention has a weight ratio of 1.
(Cr)40~709b%=r hak) (Co
) 5-30%.

タングステン尚5〜20俤、モリブデン(Mo)5〜2
0幅、鉄(Fe)20幅以下及び炭素(qα5〜3係か
らなる合金粒子5〜25チをFe合金粒子と共に基地中
に分散させてなるものである〇 本発明で用いる各成分元素の限定理由について説明する
Tungsten 5~20 yen, molybdenum (Mo) 5~2
0 width, 5 to 25 pieces of alloy particles consisting of iron (Fe) of 20 pieces or less and carbon (qα5 to 3) are dispersed in the base together with Fe alloy particles. 〇Limitations of each component element used in the present invention Let me explain the reason.

まず、硬質粒子として添加される合金粒子の各成分元素
について説明する。
First, each component element of the alloy particles added as hard particles will be explained.

合金粒子中のCr (クロム)はC(炭素)と化合して
炭化物を形成するとともに一部がCoと合金を形成し合
金粒子の硬さを向上させる効果を有しているが、Orが
10チ未満では上記の効果が不十分であり、70憾を超
えるとCrの拡散が周囲の基地へ進み過ぎ1合金粒子が
脆化して割れや脱落が発生し始め、バルブシートに適用
したときパルプと共に著しく阜粍し易くなる。そのため
Crは10〜70チと限定した0本発明の合金粒子のう
ちCrを40〜70%含みかつCoを5〜50優含むも
のは、硬さ及び脆性等の点で好ましいものになる◇ W(タングステン)は、Cと化合してMC型の硬質炭化
物と、 Coとの複炭化物を形成し1合金粒子の硬さを
向上させるが、Wが591未満ではその効果が発揮され
ず、20チを超えると合金粒子が硬くなシ過ぎ、相手材
であるパルプへの攻撃性が増大°するため、Wは5〜2
0チとした。
Cr (chromium) in the alloy particles combines with C (carbon) to form carbides, and a portion also forms an alloy with Co, which has the effect of improving the hardness of the alloy particles, but when Or is 10 If the temperature is less than 70, the above effect is insufficient, and if it exceeds 70, the diffusion of Cr will proceed too much to the surrounding bases, and the 1 alloy particles will become brittle and begin to crack or fall off. Becomes extremely susceptible to deterioration. Therefore, among the alloy particles of the present invention, in which Cr is limited to 10 to 70%, those containing 40 to 70% Cr and 5 to 50% Co are preferable in terms of hardness and brittleness. (Tungsten) combines with C to form MC-type hard carbides and double carbides with Co, improving the hardness of 1 alloy particles, but this effect is not exhibited when W is less than 591, and 20-chip If W exceeds 5 to 2, the alloy particles become too hard and become more aggressive towards pulp, which is the mating material.
It was set to 0.

Mo (モリブデン)はCと化合して硬質炭化物を形成
し1合金粒子の硬さを増すが、 Moが54未満ではそ
の効果が現れず、2・0係を超えると合金粒子が硬くな
シ過ぎて相手部材を攻撃するので5〜20%とした@ CはCr、Mo及びWと化合して炭化物を形成し。
Mo (molybdenum) combines with C to form hard carbides and increases the hardness of the alloy particles, but if Mo is less than 54, this effect will not appear, and if it exceeds 2.0, the alloy particles will not be too hard. Since C attacks the mating member, it is set at 5 to 20% @C combines with Cr, Mo and W to form carbide.

合金粒子の硬さを向上させるが、Cがα5俤未満ではそ
の効果が発揮されず、5係を超えると炭化物量が多すぎ
てもろくなる・そのため、Cはα5〜3俤としたO Fe (鉄)は特に添加しなくてもよいが、バルブシー
トに必要とする強度等に問題がなければ。
It improves the hardness of alloy particles, but if C is less than α5, the effect will not be exhibited, and if it exceeds 5, the amount of carbides will be too large and it will become brittle.Therefore, O Fe (with C of α5 to 3) There is no need to add iron), provided there are no problems with the strength required for the valve seat.

高価なcoの代わシに20係以下の任意の範囲で用いる
ことができる。また、 Cr、 W、 Moを単体とし
てではなくフェロアロイとして合金の原料に用いる場合
に添加されることになる。
It can be used in place of expensive CO in any range of 20 or less. Further, Cr, W, and Mo are added when they are used as raw materials for an alloy not as single substances but as a ferroalloy.

COは他の成分と合金を形成して合金粒子の耐熱性を向
上させ、これと共にその一部が基地に拡散して合金粒子
と基地の接合性を向上させる。
CO forms an alloy with other components to improve the heat resistance of the alloy particles, and at the same time, a part of it diffuses into the base, improving the bondability between the alloy particles and the base.

例えばCrを40〜70%含む合金粒子にあっては。For example, in alloy particles containing 40 to 70% Cr.

COが5俤未満では耐熱性、接合性の向上効果が発揮さ
れず、30%を超えるとその効果が殆ど一定になるので
、 Coの含有量を5〜60憾とするのが好ましい0 また1合金粒子は、粒径が20μm未満であると、耐摩
耗性が不十分に弱く、−万粒径が2Q(1趨を超えると
成形性、圧縮性が低下ししかも耐摩耗性が低いものにな
る0そのため合金粒子の粒径は20〜200μ講、特に
30〜150μ溝とするのが好ましい。
If the amount of CO is less than 5%, the effect of improving heat resistance and bondability is not exhibited, and if it exceeds 30%, the effect becomes almost constant. Therefore, it is preferable that the content of Co is 5 to 60%. When the particle size of the alloy particles is less than 20 μm, the wear resistance is insufficiently weak, and when the particle size exceeds 2Q (1), the formability and compressibility decrease and the wear resistance becomes low. Therefore, it is preferable that the grain size of the alloy particles is 20 to 200 microns, particularly 30 to 150 microns.

また1合金粒子は、硬さがHv1000未満であると1
粒子の摩耗が進行し易く耐摩耗性が低下するので、硬さ
がHvIQGO以上のものであるのが好ましい〇 合金粒子は耐摩耗性の向上に効果があることから用いら
れる0合金中のCoの一部が基地中に拡散して粒子の周
囲に拡散層を形成することによって1粒子と基地との結
合力が増し、該粒子の脱落が防止される@義金金粒子は
5俤未満では得られる焼結合金の耐摩耗効果が発揮され
ず。
In addition, if the hardness of 1 alloy particle is less than Hv1000, 1
It is preferable that the hardness is HvIQGO or higher, since the wear of the particles tends to progress and the wear resistance decreases. Since the alloy particles are effective in improving the wear resistance, the Co content in the alloy used is A part of the particles diffuses into the base and forms a diffusion layer around the particles, increasing the bonding force between each particle and the base and preventing the particles from falling off. The wear resistance effect of the sintered alloy is not exhibited.

25俤を超えると成形性、圧縮性及び被剛性が低下する
とともに相手材であるパルプへの攻撃性が増大するため
、合金粒子は5〜25%と限定した。
If it exceeds 25 yen, the moldability, compressibility, and rigidity will decrease, and the aggressiveness to pulp, which is the mating material, will increase, so the alloy particles were limited to 5 to 25%.

硬質粒子として加えるフェロモリブデン(FeMo )
はMoを60〜70%含むもので1粒径50〜150μ
mを有し、硬さHv800〜1300と硬く。
Ferromolybdenum (FeMo) added as hard particles
contains 60-70% Mo and has a particle size of 50-150μ
m, and hardness Hv800-1300.

耐摩耗性の向上に効果があシ、また同じく硬質粒子たる
7エロタングステン(FeW)はWを70〜aol含有
するものであり、 FeMoと同様に耐摩耗性の向上に
効果がある0しかしながら、 FeM。
However, tungsten (FeW), which is also a hard particle, contains 70 to aol of W, and is effective in improving wear resistance like FeMo. FeM.

又はFeWの合計含有量が1俤未満ではその効果がな(
,1096を超えると成形性、被剛性が悪化するため、
1〜10%とした〇 次に基地について説明するO Cは基地のFeに固溶してバーライト組織全形成し、焼
結合金の強度と硬さを向上させ、また、前記合金粒子中
のCr、Mo及びWと化合して硬質の炭化物を形成し5
合金粒子の硬さを更に向上させる効果が・あるとともに
、未反応の遊離黒鉛が、ある程度基地中に内在すること
によシ。
Or, if the total content of FeW is less than 1 ton, the effect is not effective (
, 1096, the moldability and stiffness deteriorate,
1 to 10% 〇The base will be explained next.O C dissolves in the Fe of the base to form a complete barlite structure, improves the strength and hardness of the sintered alloy, and also improves the strength and hardness of the sintered alloy. Combines with Cr, Mo and W to form a hard carbide5
It has the effect of further improving the hardness of the alloy particles, and also because some unreacted free graphite remains in the matrix.

潤滑効果が発揮されるが、Cが15%未満ではその効果
がなく、2%を超えるとセメンタイトド i    が粗大化し遊離黒鉛が多すぎて基地がもろく
な1    るため、Cはα5〜2qbとした。
A lubricating effect is exerted, but if C is less than 15%, it is not effective, and if it exceeds 2%, the cementite becomes coarse and there is too much free graphite, making the base brittle. did.

N1(−ツケル)はFe基地に固溶して基地の強度を向
上させるのに役立つため、更に強度を必要とする場合に
添加されるが、Ntが1俤未満ではその効果が発揮され
ず、10%を超えると基地が軟化し、耐摩耗性が低下す
るため、Niは1〜10俤とした。
N1 (-Tsukeru) is solid dissolved in the Fe base and helps improve the strength of the base, so it is added when further strength is required, but if Nt is less than 10, its effect will not be exhibited. If it exceeds 10%, the base becomes soft and the wear resistance decreases, so the Ni content was set to 1 to 10%.

pb (鉛)の焼結合金への溶浸は、よシきびしい条件
下で使用されるバルブシートの場合に行われる0溶浸さ
れたpbは、パルプとバルブシートの接触部に介在して
pb酸化物層を形成することによシ潤滑剤として作用し
てパルプ及びバルブシート相互の耐摩耗性を向上させる
が、Pbの溶浸が1俤未満ではpb溶浸の効果が発揮さ
れず。
The infiltration of PB (lead) into the sintered alloy is carried out in the case of valve seats used under very severe conditions. By forming an oxide layer, it acts as a lubricant and improves the wear resistance between the pulp and the valve seat, but if the amount of Pb infiltrated is less than one layer, the effect of Pb infiltration is not exhibited.

20係を超えて溶浸すると焼結合金のスケルトンが弱化
して摩耗が増大することから1〜20%とした。
If infiltration exceeds 20%, the skeleton of the sintered alloy will weaken and wear will increase, so it was set at 1 to 20%.

〔実施例〕〔Example〕

本発明を実施例によシ説明する。 The present invention will be explained by way of examples.

実施例1 Cr45%、wio俤、Mo17%、Fe9%、C10
%及びCo1B14からなる合金粒子粉末(粒径65p
g、−80メツシュ、硬さHv1380ン15係。
Example 1 Cr45%, wio 俤, Mo17%, Fe9%, C10
% and Co1B14 alloy particle powder (particle size 65p
g, -80 mesh, hardness Hv1380n15.

FeMo(−1ooメツ’/ z ) 2 % 、黒鉛
粉末(−550メツシュ31.2%、カルボニルNi粉
末(10μm以下)3係及び残部アトマイズ鉄粉(−1
00メツシユ)に潤滑剤としてステアリン酸亜鉛α8俤
を混合した彼、この混合粉末を金型内に充てんし、成形
圧7t/−で成形してバルブシート粗形状の粉末成形体
を得た。
FeMo (-10 mesh'/z) 2%, graphite powder (-550 mesh 31.2%, carbonyl Ni powder (10 μm or less) 3 parts, and the balance atomized iron powder (-1
00 mesh) was mixed with α8 g of zinc stearate as a lubricant, and this mixed powder was filled into a mold and molded at a molding pressure of 7 t/- to obtain a powder molded body in the rough shape of a valve seat.

この粉末成形体をアンモニア分解ガス雰囲気中で114
0℃の温度にて60分間焼結して焼結体を得た◎焼結体
の密度は6..8t/ctA、その硬さは)lv220
であった。
This powder compact was heated to 114 mL in an ammonia decomposition gas atmosphere.
A sintered body was obtained by sintering at a temperature of 0°C for 60 minutes.The density of the sintered body was 6. .. 8t/ctA, its hardness is lv220
Met.

得られた焼結体を排気弁座の形状に加工して排気ii2
 D 00c、c、 4気筒のディーゼルエンジンに装
着し、全負荷で300時間台上耐久試験を実施し、バル
ブシート当り面幅増加量及びパルプ摩耗量を測定した。
The obtained sintered body is processed into the shape of an exhaust valve seat and exhaust ii2
D 00c, c, was installed in a 4-cylinder diesel engine, and a bench durability test was conducted for 300 hours at full load, and the amount of increase in surface width per valve seat and the amount of pulp wear were measured.

なお、相手パルプにはJIS NFC751を用いた。Note that JIS NFC751 was used as the mating pulp.

実施例2〜4 各材料を次表に示す各組成割合にそれぞれ配合して実施
例1と同様に行って、各焼結体を得た。実施例5及び4
は得られた焼結体をPb塊と接触させて再度アンモニア
分解ガス雰囲気中で1050℃の温度にて30分間加熱
して焼結体中にpbを溶浸したものである。また、実施
例2はFe合金粒子としてFeWを適用し、実施例3は
同粒子としてFeMo及びFeWを適用したものである
O 得られた各焼結体を弁座形状に加工し、バルブシート当
り・面幅増加量及びパルプ摩耗量を実施例1と同様に試
験したのち測定した〇実施例5 Cr 30%、 W 10%、 Mo 10%、 Fe
 10%、 C2,0チ及び残部、Coからなる合金ア
トマイズ粉(−100メツシユ)15%、 FeMo 
5 %、黒鉛粉末(−450メツシユ)1.2%、カル
ボニルNi粉末(10μm以下)4チ及び残部還元鉄粉
(−100メツシユ)に潤滑剤としてステアリン酸亜鉛
α8%を混合した後、この混合粉末を金型内に充てんし
、成形圧7t/−で成形してバルブシート粗形状の粉末
成形体を得た。
Examples 2 to 4 Each material was blended in the composition ratio shown in the following table and the same procedure as in Example 1 was carried out to obtain each sintered body. Examples 5 and 4
The obtained sintered body was brought into contact with a Pb lump and heated again at a temperature of 1050° C. for 30 minutes in an ammonia decomposition gas atmosphere to infiltrate Pb into the sintered body. In addition, in Example 2, FeW was applied as the Fe alloy particles, and in Example 3, FeMo and FeW were applied as the same particles. - Face width increase and pulp abrasion were measured after testing in the same manner as in Example 1 〇Example 5 Cr 30%, W 10%, Mo 10%, Fe
10%, C2,0 and balance, Co alloy atomized powder (-100 mesh) 15%, FeMo
5% graphite powder (-450 mesh), 1.2% carbonyl Ni powder (10 μm or less), and the balance reduced iron powder (-100 mesh) were mixed with 8% zinc stearate α as a lubricant. The powder was filled into a mold and molded at a molding pressure of 7 t/- to obtain a powder molded body having a rough shape of a valve seat.

この粉末成形体をアンモニア分解ガス雰囲気中で115
0℃の温度にて60分間焼結して焼結体を得た◎焼結体
密度は7.0f/−0得られた焼結体を排気弁座の形状
に加工して排気量2000c、c、4気筒のディーゼル
エンジンに装着し、全負荷で200時間台上耐久試験を
実施し、バルブシート当シ面幅増加量及びパルプ摩耗t
を測定した0なお、相手バルブにはJIS NFC75
1を用いた。
This powder compact was heated to 115% in an ammonia decomposition gas atmosphere.
A sintered body was obtained by sintering at a temperature of 0°C for 60 minutes.◎The density of the sintered body was 7.0f/-0.The obtained sintered body was processed into the shape of an exhaust valve seat, and the displacement was 2000c. c. Installed on a 4-cylinder diesel engine and conducted a 200-hour bench durability test under full load to determine the amount of increase in valve seat surface width and pulp wear t.
In addition, the mating valve is JIS NFC75.
1 was used.

実施例5〜8 各材料を次表に示す各組成割合にそれぞれ配合して実施
例5と同様に行って、各焼結体を得た。なお、実施例7
及び8は得られた焼結体をPb塊と接触させて再度アン
モニア分解ガス雰囲気中で1050℃の温度にて30分
間加熱して焼結体中にPbを溶浸したものである@ 得られた各焼結体を弁座形状に加工し、バルブシート当
り面幅増加量及びパルプ摩耗量を実施例5と同様に試験
したのち測定した〇比較例1及び2 比較例1としてJIS I”C50鋳鉄、比較例2とし
てJIS耐熱鋼S UH4Bをそれぞれ用いて弁座形状
に加工し、これらを実施例1と同様に試験してバルブシ
ート当り面幅増加量及びパルプ摩耗1tを測定した。
Examples 5 to 8 Each material was mixed in the composition ratio shown in the following table and the same procedure as in Example 5 was carried out to obtain each sintered body. In addition, Example 7
and 8 are those obtained by bringing the obtained sintered body into contact with a Pb lump and heating it again at a temperature of 1050°C for 30 minutes in an ammonia decomposition gas atmosphere to infiltrate Pb into the sintered body. Each sintered body was processed into a valve seat shape, and the amount of increase in surface width per valve seat and the amount of pulp abrasion were tested and measured in the same manner as in Example 5. Comparative Examples 1 and 2 Comparative Example 1 was JIS I"C50. Cast iron and JIS heat-resistant steel S UH4B as Comparative Example 2 were processed into valve seat shapes, and these were tested in the same manner as in Example 1 to measure the amount of increase in surface width per valve seat and 1 ton of pulp wear.

以上の測定結果をまとめて次表に示す。The above measurement results are summarized in the following table.

表かられかるように実施例1〜8のバルブシート当り面
幅増加量は0.1ないしcL5fiで、比較例1及び2
の1.2及び1.4 mmに比してかなシ小さな値を示
し゛、実施例1〜8の焼結合金は過酷な条件下で使用さ
れるディーゼルエンジンの弁座材料としても耐摩耗性に
優れている。また。
As can be seen from the table, the increase amount of the surface width per valve seat in Examples 1 to 8 was 0.1 to cL5fi, and Comparative Examples 1 and 2
The sintered alloys of Examples 1 to 8 have wear resistance as valve seat materials for diesel engines used under severe conditions. Excellent. Also.

実施例1〜8のパルプ摩耗量は3ないし7μmで。The amount of pulp abrasion in Examples 1 to 8 was 3 to 7 μm.

比較例1及び2の30及び40μmに比してかなり小さ
く、実施1+IJ 1〜8の焼結合金は相手材であるパ
ルプに対する枚重性が低い。
It is considerably smaller than the 30 and 40 μm of Comparative Examples 1 and 2, and the sintered alloys of Example 1+IJ 1 to 8 have low sheet weight relative to the pulp that is the mating material.

〔発明の効果〕〔Effect of the invention〕

本発明のバルブシート用鉄系焼結合金は上記したように
硬質粒子として合金粒子とFe合金粒子をバーライトを
主体とする鉄基地中に均一に分散させたので、耐摩耗性
に優れ、かつ相手材であるパルプに対する攻撃性が低く
、バルブシート用焼結合金として最適なものである。
As mentioned above, the iron-based sintered alloy for valve seats of the present invention has alloy particles and Fe alloy particles as hard particles uniformly dispersed in an iron base mainly composed of barlite, so it has excellent wear resistance and It has low aggressiveness against pulp, which is the mating material, and is ideal as a sintered alloy for valve seats.

Claims (12)

【特許請求の範囲】[Claims] (1)重量比で、クロム(Cr)10〜70%、タング
ステン(W)5〜20%、モリブデン(Mo)5〜20
%、炭素(C)0.5〜3%、鉄(Fe)20%以下及
び残部コバルト(Co)からなる合金粒子5〜25%、
並びにモリブデン(Mo)を60〜70%含有するフェ
ロモリブデン(FeMo)又はタングステン(W)を7
0〜80%含有するフェロタングステン(FeW)のう
ち1種以上のFe合金粒子1〜10%を、炭素(C)0
.5〜2%及び残部鉄(Fe)と不可避不純物からなる
バーライトを主体とする基地中に均一に分散させたこと
を特徴とするバルブシート用鉄系焼結合金。
(1) Chromium (Cr) 10-70%, tungsten (W) 5-20%, molybdenum (Mo) 5-20% by weight
%, 5 to 25% of alloy particles consisting of 0.5 to 3% of carbon (C), 20% or less of iron (Fe), and the balance cobalt (Co),
and ferromolybdenum (FeMo) containing 60 to 70% molybdenum (Mo) or tungsten (W).
0 to 80% of ferrotungsten (FeW) containing 1 to 10% of one or more Fe alloy particles, carbon (C) 0
.. An iron-based sintered alloy for a valve seat, characterized in that it is uniformly dispersed in a matrix mainly consisting of barlite, which is composed of 5 to 2% iron (Fe) and inevitable impurities.
(2)合金粒子中のクロム(Cr)の含有量が重量比で
40〜70%であることを特徴とする特許請求の範囲第
1項記載のバルブシート用鉄系焼結合金。
(2) The iron-based sintered alloy for a valve seat according to claim 1, wherein the content of chromium (Cr) in the alloy particles is 40 to 70% by weight.
(3)合金粒子の粒径が20〜200μmであり、合金
粒子の硬さがHv1000以上であることを特徴とする
特許請求の範囲第1項記載のバルブシート用鉄系焼結合
金。
(3) The iron-based sintered alloy for a valve seat according to claim 1, wherein the alloy particles have a particle size of 20 to 200 μm and a hardness of Hv1000 or more.
(4)重量比で、クロム(Cr)10〜70%、タング
ステン(W)5〜20%、モリブデン(Mo)5〜20
%、炭素(C)0.5〜3%、鉄(Fe)20%以下及
び残部コバルト(Co)からなる合金粒子5〜25%、
並びにモリブデン(Mo)を60〜70%含有するフェ
ロモリブデン(FeMo)又はタングステン(W)を7
0〜80%含有するフェロタングステン(FeW)のう
ち1種以上のFe合金粒子1〜10%を、炭素(C)0
.5〜2%、ニッケル(Ni)1〜10%及び残部鉄(
Fe)と不可避不純物からなるバーライトを主体とする
基地中に均一に分散させたことを特徴とするバルブシー
ト用鉄系焼結合金。
(4) By weight, chromium (Cr) 10-70%, tungsten (W) 5-20%, molybdenum (Mo) 5-20
%, 5 to 25% of alloy particles consisting of 0.5 to 3% of carbon (C), 20% or less of iron (Fe), and the balance cobalt (Co),
and ferromolybdenum (FeMo) containing 60 to 70% molybdenum (Mo) or tungsten (W).
0 to 80% of ferrotungsten (FeW) containing 1 to 10% of one or more Fe alloy particles, carbon (C) 0
.. 5-2%, nickel (Ni) 1-10% and balance iron (
An iron-based sintered alloy for valve seats, characterized in that it is uniformly dispersed in a matrix mainly consisting of barlite, which is composed of Fe) and inevitable impurities.
(5)合金粒子中のクロム(Cr)の含有量が重量比で
40〜70%であることを特徴とする特許請求の範囲第
4項記載のバルブシート用鉄系焼結合金。
(5) The iron-based sintered alloy for a valve seat according to claim 4, wherein the content of chromium (Cr) in the alloy particles is 40 to 70% by weight.
(6)合金粒子の粒径が20〜200μmであり、合金
粒子の硬さがHv1000以上であることを特徴とする
特許請求の範囲第4項記載のバルブシート用鉄系焼結合
金。
(6) The iron-based sintered alloy for a valve seat according to claim 4, wherein the alloy particles have a particle size of 20 to 200 μm and a hardness of Hv1000 or more.
(7)重量比で、クロム(Cr)10〜70%、タング
ステン(W)5〜20%、モリブデン(Mo)5〜20
%、炭素(C)0.5〜3%、鉄(Fe)20%以下及
び残部コバルト(Co)からなる合金粒子5〜25%、
並びにモリブデン(Mo)を60〜70%含有するフェ
ロモリブデン(FeMo)又はタングステン(W)を7
0〜80%含有するフェロタングステン(FeW)のう
ち1種以上のFe合金粒子1〜10%を、炭素(C)0
.5〜2%及び残部鉄(Fe)と不可避不純物からなる
バーライトを主体とする基地中に均一に分散してなる焼
結合金に鉛(Pb)1〜20%を溶浸したことを特徴と
するバルブシート用鉄系焼結合金。
(7) By weight, chromium (Cr) 10-70%, tungsten (W) 5-20%, molybdenum (Mo) 5-20
%, 5 to 25% of alloy particles consisting of 0.5 to 3% of carbon (C), 20% or less of iron (Fe), and the balance cobalt (Co),
and ferromolybdenum (FeMo) containing 60 to 70% molybdenum (Mo) or tungsten (W).
0 to 80% of ferrotungsten (FeW) containing 1 to 10% of one or more Fe alloy particles, carbon (C) 0
.. It is characterized by infiltrating 1 to 20% of lead (Pb) into a sintered alloy that is uniformly dispersed in a matrix mainly composed of barlite, which consists of 5 to 2% of lead (Pb) and the balance iron (Fe) and unavoidable impurities. Iron-based sintered alloy for valve seats.
(8)合金粒子中のクロム(Cr)の含有量が重量比で
40〜70%であることを特徴とする特許請求の範囲第
7項記載のバルブシート用鉄系焼結合金。
(8) The iron-based sintered alloy for a valve seat according to claim 7, wherein the content of chromium (Cr) in the alloy particles is 40 to 70% by weight.
(9)合金粒子の粒径が20〜200μmであり、合金
粒子の硬さがHv1000以上であることを特徴とする
特許請求の範囲第7項記載のバルブシート用鉄系焼結合
金。
(9) The iron-based sintered alloy for a valve seat according to claim 7, wherein the alloy particles have a particle size of 20 to 200 μm and a hardness of Hv1000 or more.
(10)重量比で、クロム(Cr)10〜70%、タン
グステン(W)5〜20%、モリブデン(Mo)5〜2
0%、炭素(C)0.5〜3%、鉄(Fe)20%以下
及び残部コバルト(Co)からなる合金粒子5〜25%
、並びにモリブデン(Mo)を60〜70%含有するフ
ェロモリブデン(FeMo)1〜10%を、炭素(C)
0.5〜2%、ニッケル(Ni)1〜10%及び残部鉄
(Fe)と不可避不純物からなるバーライトを主体とす
る基地中に均一に分散してなる焼結合金に鉛(Pb)1
〜20%を溶浸したことを特徴とするバルブシート用鉄
系焼結合金。
(10) By weight, chromium (Cr) 10-70%, tungsten (W) 5-20%, molybdenum (Mo) 5-2
0%, carbon (C) 0.5-3%, iron (Fe) 20% or less, and balance cobalt (Co) 5-25%.
, and 1 to 10% of ferromolybdenum (FeMo) containing 60 to 70% of molybdenum (Mo), carbon (C)
Lead (Pb) 1 is uniformly dispersed in a sintered alloy consisting of barlite, which consists of 0.5-2% nickel (Ni), 1-10% nickel (Ni), and the balance iron (Fe) and unavoidable impurities.
An iron-based sintered alloy for valve seats, characterized by being infiltrated with ~20%.
(11)合金粒子中のクロム(Cr)の含有量が重量比
で40〜70%であることを特徴とする特許請求の範囲
第10項記載のバルブシート用鉄系焼結合金。
(11) The iron-based sintered alloy for a valve seat according to claim 10, wherein the content of chromium (Cr) in the alloy particles is 40 to 70% by weight.
(12)合金粒子の粒径が20〜200μmであり、合
金粒子の硬さがHv1000以上であることを特徴とす
る特許請求の範囲第10項記載のバルブシート用鉄系焼
結合金
(12) The iron-based sintered alloy for a valve seat according to claim 10, characterized in that the particle size of the alloy particles is 20 to 200 μm, and the hardness of the alloy particles is Hv1000 or more.
JP4562886A 1985-06-10 1986-03-03 Sintered iron alloy for valve seat Pending JPS6296659A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP60-125934 1985-06-10
JP12593485 1985-06-10

Publications (1)

Publication Number Publication Date
JPS6296659A true JPS6296659A (en) 1987-05-06

Family

ID=14922577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4562886A Pending JPS6296659A (en) 1985-06-10 1986-03-03 Sintered iron alloy for valve seat

Country Status (1)

Country Link
JP (1) JPS6296659A (en)

Similar Documents

Publication Publication Date Title
US8733313B2 (en) Iron-based sintered alloy for valve seat, and valve seat for internal combustion engine
JP3226618B2 (en) Iron-based sintered alloy for valve seat
JPS62207847A (en) Ferrous sintered alloy for valve seat
JPS6296659A (en) Sintered iron alloy for valve seat
JP2716575B2 (en) Manufacturing method of wear resistant iron-based sintered alloy
JPH0313546A (en) Ferrous sintered alloy for valve seat
JPS62164858A (en) Ferrous sintered alloy for valve seat
JP3068127B2 (en) Wear-resistant iron-based sintered alloy and method for producing the same
JPS61117254A (en) Ferrous sintered alloy for valve seat
JP2677813B2 (en) High temperature wear resistant iron-based sintered alloy
JP2833116B2 (en) Sintered alloy for valve seat
JPS61179856A (en) Iron system sintered alloy for valve seat
JPS61183448A (en) Sintered iron alloy for valve seat
JPS6164855A (en) Iron compound sintered alloy for valve seat
JPS63171858A (en) Ferrous sintered alloy for valve seat
JPS6296661A (en) Sintered iron alloy for valve seat
JP3264092B2 (en) Wear-resistant iron-based sintered alloy and method for producing the same
JPS6296660A (en) Sintered iron alloy for valve seat
JP3068128B2 (en) Wear-resistant iron-based sintered alloy and method for producing the same
JP3077865B2 (en) Iron-based alloy powder for sintering and wear-resistant iron-based sintered alloy
JPS61183447A (en) Sintered iron alloy for valve seat
KR970001323B1 (en) Sintering alloy of valve seat
JPS62188755A (en) Ferrous sintered alloy for valve seat
JPS6296662A (en) Sintered iron alloy for valve seat
JPS62188758A (en) Ferrous sintered alloy for valve seat