JPS62188758A - Ferrous sintered alloy for valve seat - Google Patents

Ferrous sintered alloy for valve seat

Info

Publication number
JPS62188758A
JPS62188758A JP23073186A JP23073186A JPS62188758A JP S62188758 A JPS62188758 A JP S62188758A JP 23073186 A JP23073186 A JP 23073186A JP 23073186 A JP23073186 A JP 23073186A JP S62188758 A JPS62188758 A JP S62188758A
Authority
JP
Japan
Prior art keywords
iron
alloy
carbon
balance
sintered alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23073186A
Other languages
Japanese (ja)
Inventor
Yukio Kadota
門田 幸男
Akira Manabe
明 真鍋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Publication of JPS62188758A publication Critical patent/JPS62188758A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To obtain a ferrous sintered alloy for valve seat excellent in wear resistance and reduced in the attack upon a valve as opposite material, by uniformly dispersing alloy grains into an iron matrix mainly composed of pearlite. CONSTITUTION:The alloy grains have a composition consisting of, by weight, 10-17% Cr, 5-20% W, 2-20% V and/or Nb, <20% Fe, 0.5-3% C, and the balance Co. The above alloy grains are uniformly dispersed by 5-25wt% into the matrix mainly composed of pearlite consisting of, by weight, 0.5-2% C and the balance Fe with inevitable impurities or of the one consisting of 0.5-2% C, 1-10% Ni, and the balance Fe with inevitable impurities.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は内燃機関のバルブシート用焼結合金に係り、よ
シ詳しくはバルブシート自身の耐摩耗性を向上させ、相
手パルプへの攻撃性を低減させ得るような焼結合金に関
するものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a sintered alloy for valve seats of internal combustion engines, and more specifically, it improves the wear resistance of the valve seats themselves and reduces the aggressiveness of the mating pulp. This relates to a sintered alloy that can reduce the

(従来技術) 最近、自動車用エンジンは高出力、高回転化。(Conventional technology) Recently, automobile engines have become more powerful and rotated at higher speeds.

排ガス対策や燃費対策を施される傾向にある。There is a tendency for exhaust gas and fuel efficiency measures to be implemented.

そうした場合、パルプ及びバルブシート部品は従来以上
に厳しい条件にさらされることになる。
In such a case, the pulp and valve seat components will be exposed to more severe conditions than before.

従来自動車用エンジンのバルブシートには鉄系焼結合金
、耐熱鋼、鋳鉄が使用されている。特に高温での耐摩耗
性を高めるため、クロム、ニッケル、コバルト、モリブ
デン等の合金用元素を添加した鉄系焼結合金が多用され
ククある。
Conventionally, ferrous sintered alloys, heat-resistant steel, and cast iron have been used for the valve seats of automobile engines. In order to improve wear resistance, especially at high temperatures, iron-based sintered alloys to which alloying elements such as chromium, nickel, cobalt, and molybdenum are added are often used.

(発明が解決しようとする問題点) しかしそうした7エロモリブデン等の金属間化合物とか
複合炭化物を添加して極度に耐摩耗性を高めたバルブシ
ートをそのまま使用すると相手パルプの摩耗を増大させ
るという欠点があったO 本発明は上記問題点に鑑みなされたもので、その目的と
するところは、耐摩耗性が特に高められていない通常の
汎用エンジンパルプ(例えばJI8 NPC751製)
を相手にした場合にも相手材を摩耗させず且つバルブシ
ート自身の耐摩耗性にも優れた、言い換えるならパルプ
機構全体の耐久性を向上できるようなバルブシート用合
金を得ようとするものである。
(Problem to be solved by the invention) However, if a valve seat that has been added with intermetallic compounds such as 7eromolybdenum or composite carbide to have extremely high wear resistance is used as is, it will increase the wear of the mating pulp. The present invention was made in view of the above problems, and its purpose is to use ordinary general-purpose engine pulp (such as JI8 NPC751) that does not have particularly enhanced wear resistance.
The aim is to obtain an alloy for valve seats that does not wear out the other material and has excellent wear resistance of the valve seat itself, in other words, can improve the durability of the entire pulp mechanism. be.

(問題点を解決するための手段) そのため、本発明のバルブシート用鉄系焼結合金は、重
量比で、クロム(Cr)  10〜70%、タングステ
ン(W)5〜209%、バナジウム(V)又はニオブ(
Nb)の1種又は2種2〜20%、鉄(Fe)zo1以
下、炭素(C)(15〜3%及び残部コバルト(Co)
から成るコバルト合金粒子5〜25〜を、炭素(C)1
5〜2%、所望によりニッケル(Ni)1〜10チ及び
残部鉄(Fe)と不可避不純物からなるパーライトを主
体の素地中に分散させたことを特徴とする。
(Means for Solving the Problems) Therefore, the iron-based sintered alloy for valve seats of the present invention contains, by weight, 10 to 70% chromium (Cr), 5 to 209% tungsten (W), and vanadium (V ) or niobium (
2-20% of one or two types of Nb), iron (Fe) zo1 or less, carbon (C) (15-3% and the balance cobalt (Co))
Cobalt alloy particles 5 to 25 consisting of carbon (C) 1
It is characterized in that pearlite consisting of 5 to 2%, optionally 1 to 10 nickel (Ni), and the balance iron (Fe) and inevitable impurities is dispersed in the main matrix.

また、本発明は前記焼結合金に鉛(Pb) 1〜20チ
を溶浸したことを特徴とする。
Further, the present invention is characterized in that the sintered alloy is infiltrated with 1 to 20 pieces of lead (Pb).

なお、本発明において−は特記しないかぎり重量%を示
す。
In the present invention, - indicates weight % unless otherwise specified.

本発明で用いる各成分元素の限定理由について説明する
The reason for limiting each component element used in the present invention will be explained.

まず、硬質粒子として加える合金粒子の各成分元素につ
いて説明する。
First, each component element of the alloy particles added as hard particles will be explained.

合金粒子中のCr (クロム)はC(炭素)と化合して
炭化物を形成するとともに一部がC。
Cr (chromium) in the alloy particles combines with C (carbon) to form carbides, and some of them are carbon.

と付会を形成し合金粒子の硬さを向上させる効果を有し
ているが、Crが10%未満では上記の効果が不十分で
あり、70チを超えるとCr の拡散が周囲の基地へ進
み過ぎ、合金粒子の内部及び周縁に空隙を生じ、合金粒
子がもろくなる。
However, if the Cr content is less than 10%, the above effect is insufficient, and if it exceeds 70%, Cr will diffuse into the surrounding bases. If it advances too much, voids are created inside and at the periphery of the alloy particles, and the alloy particles become brittle.

そのためCrは10〜70−と限定した。Therefore, Cr was limited to 10 to 70-.

W(タングステン)は、Cと化合してMCfiの硬質炭
化物とCo との複炭化物を形成し、合金粒子の硬さを
向上させるが、Wが5〜未満ではその効果が発揮されず
、20−を超えると合金粒子が硬くなシ過ぎ、相手材で
あるパルプへの攻撃性が増大するため、Wは5〜209
Gとした。
W (tungsten) combines with C to form a double carbide of MCfi hard carbide and Co and improves the hardness of the alloy particles, but if W is less than 5 or more, the effect is not exhibited, and 20- If W exceeds 5 to 209, the alloy particles will become too hard and will be more aggressive towards the other material, pulp.
It was set as G.

■(バナジウム)やNbにニオブ)は炭素と化合して炭
化物を形成し硬質粒子の硬さを向上させると同時に、硬
質粒子中にて他のCr−?Wの炭化物と一緒罠なって複
合炭化物の粒子を形成するが、その場合■やNbの入っ
た複合炭化物粒子は微細化する性質を有するのでb V
+Nbは相手パルプ攻撃性を低減させる効果を有する。
■(vanadium), Nb and niobium) combine with carbon to form carbides and improve the hardness of hard particles, while at the same time, other Cr-? W traps with carbide to form composite carbide particles, but in this case, composite carbide particles containing ■ and Nb have the property of becoming finer, so b V
+Nb has the effect of reducing the aggressiveness of the opponent pulp.

そしてこれら両金属の合計量が2%以下ではその効果が
なく、20%以上では硬くなりすぎ相手パルプを攻撃す
る。そのためV + Nb は2〜20チとした。
If the total amount of these two metals is less than 2%, there is no effect, and if it is more than 20%, the pulp becomes too hard and attacks the other pulp. Therefore, V + Nb was set to 2 to 20 inches.

硬質粒子中のC(炭素)はOr、 w、 V、 Nbと
化合して炭化物を形成して硬質粒子の硬さを向上させる
が、α5チ以下ではその効果がなく、3−を超えると炭
化物量が多すぎてもろくなる。
C (carbon) in the hard particles combines with Or, W, V, and Nb to form carbides and improve the hardness of the hard particles, but if α5 or less, there is no effect, and if α exceeds 3-, carbides are formed. Too much will make it brittle.

そのため、Cは15〜3−とじた。Therefore, C was closed at 15-3.

Fe  (鉄)は特に添加しなくてもよいが、バルブシ
ートに必要とする強度等に問題がなければ、高価なCo
0代わシに20−以下の任意の範囲で用いることができ
る。また、Cr、 W、 M。
It is not necessary to add Fe (iron), but if there is no problem with the strength required for the valve seat, expensive Co
Instead of 0, it can be used in any range of 20 or less. Also, Cr, W, M.

を単体としてではなく7エロアロイとして合金の原料に
用いる場合に添加されることになる。
It is added when used as a raw material for an alloy not as a single substance but as a 7Eroalloy.

合金粒子は耐摩耗性の向上に効果があることから用いら
れる。その粒径は30〜1507mが好ましく、合金中
のCOの一部が基地中に拡散して粒子の周囲に拡散層を
形成することによって、粒子と基地との結合力が増し、
該粒子の脱落が防止される。該合金粒子は5s未満では
得られる焼結合金の耐摩耗効果が発揮されず、25〜を
超えると成形性、圧縮性及び被剛性が低下するとともに
相手材であるパルプへの攻撃性が増大するため、合金粒
子は5〜25〜と限定した。
Alloy particles are used because they are effective in improving wear resistance. The particle size is preferably 30 to 1507 m, and a part of the CO in the alloy diffuses into the matrix to form a diffusion layer around the particles, increasing the bonding force between the particles and the matrix.
The particles are prevented from falling off. If the alloy particles are less than 5 seconds, the wear-resistant effect of the obtained sintered alloy will not be exhibited, and if it exceeds 25 seconds, the formability, compressibility, and stiffness will decrease and the attack on the pulp, which is the mating material, will increase. Therefore, the number of alloy particles was limited to 5 to 25.

次に基地について説明する。Next, I will explain about the base.

C(炭素)は基地のFeに固溶して硬さを向上させると
共に硬質粒子中のCr、 w、 Ve Nbと化合して
硬質の炭化物を構成し硬質粒子の硬さをさらに向上させ
る効果があるが、α5〜以下ではその効果がなく、2チ
以上ではセメンタイトが析出して基地が脆化したり、遊
離黒鉛が多量に残留しすぎて基地の強度が低下するため
Cは(15〜2−とした。
C (carbon) improves the hardness by solidly dissolving in Fe in the matrix, and also combines with Cr, w, Ve, Nb in the hard particles to form hard carbide, which has the effect of further improving the hardness of the hard particles. However, if it is less than α5, it has no effect, and if it is more than 2, cementite will precipitate and the base will become brittle, or too much free graphite will remain, reducing the strength of the base. And so.

Niにッケル)はFe基地に固溶して基地の強度を向上
させるのに役立つため、更に強度を必要とする場合に添
加されるが、Ni が1−未満ではその効果が発揮され
ず、10sを超えると基地が軟化し、耐摩耗性が低下す
るため、Niは1〜10−とした。
Ni (nickel) is solid dissolved in the Fe base and helps improve the strength of the base, so it is added when further strength is required, but if Ni is less than 1, the effect will not be exhibited, and after 10 s If the Ni content exceeds 1 to 10, the base becomes soft and the wear resistance decreases.

pb  (鉛)の焼結合金への溶浸は、よシきびしい条
件下で使用されるバルブシートの場合に行われる。溶浸
されたpbは、パルプとバルブシートの接触部に介在し
てPb酸化物層を形成することだより潤滑剤として作用
してパルプ及びバルブシート相互の耐摩耗性を向上させ
るが。
Infiltration of sintered alloys with PB (lead) is carried out in the case of valve seats used under more severe conditions. The infiltrated Pb acts as a lubricant by forming a Pb oxide layer at the contact area between the pulp and the valve seat, thereby improving mutual wear resistance between the pulp and the valve seat.

Pb の溶浸が1−未満ではpb溶浸の効果が発揮され
ず、20チを超えて溶浸すると焼結合金のスケルトンが
弱化して摩耗が増大することから1〜20チとした。
If the infiltration of Pb is less than 1 inch, the effect of Pb infiltration will not be exhibited, and if the infiltration exceeds 20 inches, the skeleton of the sintered alloy will weaken and wear will increase.

(実施例) 以下に本発明を実施例により説明するがこれによシ本発
明は何ら限定されるものでない。
(Examples) The present invention will be explained below with reference to Examples, but the present invention is not limited thereto in any way.

実施例1 02%、Cr30%、Wlo%、Nb5*。Example 1 02%, Cr30%, Wlo%, Nb5*.

Fe  5〜及び残部がCOからなる合金アトマイズ粉
(%、00メツ7瓢)15%、黒鉛粉末(−350)l
 7 ’/工) 1.51% カルボ=kNi 粉末(
10μm以下) 3チ及び残部アトマイズ鉄粉(%、0
0メツシエ)に潤滑剤としてステアリン酸亜鉛粉末α8
sとなる割合でこれらを混合した後、この混合粉末を金
型内に充填し、成形圧カフ Ton / cy/Iで成
形してバルブシート粗形状j1 M±【) ;lメト 
/  lk a獄 I  Q  −w   / 〜」 
\ 、P−(a 4−    >  Δ1粉末成形体を
アンモニア分解ガス雰囲気中で1150℃の温度にて6
0分間焼結して、密度ZOP/cr/lの焼結体を得た
。得られた焼結体を排気弁座の形状に加工して排気量2
000cc、4気筒のディーゼルエンジンに装着し、全
負荷で200時間台上耐久試験を実施し、バルブシート
当り面幅増加量及びパルプ摩耗量を測定した。なお相手
パルプにはJI8 NFC751を用いた。
Alloy atomized powder (%, 00 7 gourd) consisting of 5~Fe and the balance CO 15%, graphite powder (-350) l
7'/engine) 1.51% Carbo=kNi powder (
10 μm or less) 3 pieces and the rest atomized iron powder (%, 0
Zinc stearate powder α8 as a lubricant for
After mixing these at a ratio of s, this mixed powder is filled into a mold and molded with a molding pressure cuff of Ton / cy / I to obtain a rough valve seat shape j1 M±[);
/ lka prison IQ-w / ~”
\, P-(a4->Δ1) The powder compact was heated at a temperature of 1150°C in an ammonia decomposition gas atmosphere.
Sintering was performed for 0 minutes to obtain a sintered body having a density of ZOP/cr/l. The obtained sintered body is processed into the shape of an exhaust valve seat and the displacement is 2.
000cc, 4-cylinder diesel engine, a bench durability test was conducted for 200 hours at full load, and the amount of increase in face width per valve seat and the amount of pulp wear were measured. Note that JI8 NFC751 was used as the partner pulp.

実施例2−8 各材料の組成を次表に示す各組成割合に変更したほかは
実施例1と同様に行なって各焼結体を得た。ただし実施
例5.4.7及び8は得られた焼結体をpb塊と接触さ
せて再度アンモニア分解ガス中1050℃で30分間加
熱して焼結体中にpbを溶浸したものである。得られた
各焼結体を弁座形状に加工し喪後実施例1と同様の試験
を行なった。
Example 2-8 Each sintered body was obtained in the same manner as in Example 1 except that the composition of each material was changed to each composition ratio shown in the following table. However, in Examples 5.4.7 and 8, the obtained sintered body was brought into contact with the PB lump and heated again at 1050°C for 30 minutes in ammonia decomposition gas to infiltrate the PB into the sintered body. . Each of the obtained sintered bodies was processed into a valve seat shape, and the same tests as in Example 1 were conducted after the molding.

比較例1及び2 本発明焼結体の代わりに比較例1としてJISFC!5
0鋳鉄、比紳例2としてJIS耐、I5A鋼材S開4B
を用いて弁座形状に加工し、これらを実施例1と同様に
試験してバルブシート当り面幅増加量及びパルプ摩耗量
を測定した。
Comparative Examples 1 and 2 JISFC! Comparative Example 1 instead of the sintered body of the present invention! 5
0 cast iron, JIS resistance as ratio 2, I5A steel S open 4B
These were processed into the shape of a valve seat, and tested in the same manner as in Example 1 to measure the amount of increase in surface width per valve seat and the amount of pulp wear.

以上の測定結果をまとめて次表に示す。The above measurement results are summarized in the following table.

表かられかるように実施例1〜8のバルブシート当り面
幅増加量はcl、1〜(L2龍で、比較例1及び2の1
.2及び1.40に比してかなシ小さな値を示しており
、実施例1〜8の焼結合金は過酷な条件下で使用される
ディーゼルエンジンの弁座材料としても耐摩耗性に優れ
ていることがわかる。また実施例1〜8のバルブ摩耗量
は3ないしB pmで比較例1及び2の50及び40p
mに比してかなり小さく、実施例1〜8の焼結合金は相
手材であるパルプに対する攻撃性が低い。
As can be seen from the table, the amount of increase in surface width per valve seat in Examples 1 to 8 was cl, 1 to (L2 dragon, 1 in Comparative Examples 1 and 2)
.. 2 and 1.40, and the sintered alloys of Examples 1 to 8 have excellent wear resistance as valve seat materials for diesel engines used under harsh conditions. I know that there is. Further, the valve wear amount of Examples 1 to 8 was 3 to B pm, and the amount of valve wear of Comparative Examples 1 and 2 was 50 and 40 Pm.
It is considerably smaller than m, and the sintered alloys of Examples 1 to 8 have low aggressiveness against pulp, which is the mating material.

(発明の効果) 本発明のバルブシート用鉄系焼結合金は上記したように
合金粒子分パーライトを主体とする鉄基地中に均一に分
散させたので耐摩耗性に優れ、かつ相手材であるパルプ
に対する攻撃性が低く、バルブシート用焼結合金として
最適なものである。
(Effects of the Invention) As mentioned above, the iron-based sintered alloy for valve seats of the present invention has excellent wear resistance because the alloy particles are uniformly dispersed in the iron base mainly composed of pearlite, and it is compatible with the mating material. It has low aggressiveness against pulp and is ideal as a sintered alloy for valve seats.

Claims (4)

【特許請求の範囲】[Claims] (1)重量比で、クロム(Cr)10〜70%、タング
ステン(W)5〜20%、バナジウム(V)又はニオブ
(Nb)の1種又は2種2〜20%、鉄(Fe)20%
以下、炭素(C)0.5〜3%及び残部コバルト(Co
)からなる合金粒子5〜25%を、炭素(C)0.5〜
2%及び残部鉄(Fe)と不可避不純物からなるパーラ
イトを主体とする基地中に均一に分散させたことを特徴
とするバルブシート用鉄系焼結合金。
(1) By weight, chromium (Cr) 10-70%, tungsten (W) 5-20%, one or both of vanadium (V) or niobium (Nb) 2-20%, iron (Fe) 20% %
Below, carbon (C) 0.5 to 3% and the balance cobalt (Co
), 5 to 25% of alloy particles consisting of 0.5 to 25% of carbon (C)
An iron-based sintered alloy for valve seats, characterized in that it is uniformly dispersed in a matrix mainly composed of pearlite, which is composed of 2% iron (Fe) and inevitable impurities.
(2)重量比で、クロム(Cr)10〜70%、タング
ステン(W)5〜20%、バナジウム(V)又はニオブ
(Nb)の1種又は2種2〜20%、鉄(Fe)20%
以下、炭素(C)0.5〜3%及び残部コバルト(Co
)からなる合金粒子5〜25%を、炭素(C)0.5〜
2%、ニッケル(Ni)1〜10%及び残部鉄(Fe)
と不可避不純物からなるパーライトを主体とする基地中
に均一に分散させたことを特徴とするバルブシート用鉄
系焼結合金。
(2) By weight, chromium (Cr) 10-70%, tungsten (W) 5-20%, one or both of vanadium (V) or niobium (Nb) 2-20%, iron (Fe) 20% %
Below, carbon (C) 0.5 to 3% and the balance cobalt (Co
), 5 to 25% of alloy particles consisting of 0.5 to 25% of carbon (C)
2%, nickel (Ni) 1-10% and balance iron (Fe)
An iron-based sintered alloy for valve seats, which is characterized by being uniformly dispersed in a base mainly consisting of pearlite and inevitable impurities.
(3)重量比でクロム(Cr)10〜70%、タングス
テン(W)5〜20%、バナジウム(V)又はニオブ(
Nb)の1種又は2種2〜20%、鉄(Fe)20%以
下、炭素(C)0.5〜3%及び残部コバルト(Co)
からなる合金粒子5〜25%を、炭素(C)0.5〜2
%、及び残部鉄(Fe)と不可避不純物からなるパーラ
イトを主体とする基地中に均一に分散してなる焼結合金
に鉛(Pb)1〜20%を溶浸したことを特徴とするバ
ルブシート用鉄系焼結合金。
(3) Chromium (Cr) 10-70%, tungsten (W) 5-20%, vanadium (V) or niobium (by weight)
2 to 20% of one or two types of Nb), 20% or less of iron (Fe), 0.5 to 3% of carbon (C), and the balance cobalt (Co)
5 to 25% of alloy particles consisting of carbon (C) 0.5 to 2
A valve seat characterized by infiltrating 1 to 20% of lead (Pb) into a sintered alloy that is uniformly dispersed in a pearlite-based matrix consisting of 1.5% and the balance iron (Fe) and unavoidable impurities. Iron-based sintered alloy.
(4)重量比でクロム(Cr)10〜70%、タングス
テン(W)5〜20%、バナジウム(V)又はニオブ(
Nb)の1種又は2種2〜20%、鉄(Fe)20%以
下、炭素(C)0.5〜3%及び残部コバルト(Co)
からなる合金粒子5〜25%を、炭素(C)0.5〜2
%、ニッケル(Ni)1〜10%及び残部鉄(Fe)と
不可避不純物からなるパーライトを主体とする基地中に
均一に分散してなる焼結合金に鉛(Pb)1〜20%を
溶浸したことを特徴とするバルブシート用鉄系焼結合金
(4) Chromium (Cr) 10-70%, tungsten (W) 5-20%, vanadium (V) or niobium (by weight)
2 to 20% of one or two types of Nb), 20% or less of iron (Fe), 0.5 to 3% of carbon (C), and the balance cobalt (Co)
5 to 25% of alloy particles consisting of carbon (C) 0.5 to 2
%, 1 to 10% of nickel (Ni) and 1 to 20% of lead (Pb) are infiltrated into a sintered alloy that is uniformly dispersed in a pearlite-based matrix consisting of 1 to 10% of nickel (Ni) and the balance iron (Fe) and inevitable impurities. A ferrous sintered alloy for valve seats that is characterized by:
JP23073186A 1985-10-07 1986-09-29 Ferrous sintered alloy for valve seat Pending JPS62188758A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP60-223282 1985-10-07
JP22328285 1985-10-07

Publications (1)

Publication Number Publication Date
JPS62188758A true JPS62188758A (en) 1987-08-18

Family

ID=16795684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23073186A Pending JPS62188758A (en) 1985-10-07 1986-09-29 Ferrous sintered alloy for valve seat

Country Status (1)

Country Link
JP (1) JPS62188758A (en)

Similar Documents

Publication Publication Date Title
JP4948636B2 (en) Hard particles for blending sintered alloys, wear-resistant iron-based sintered alloys, and valve seats
JPH03158445A (en) Valve seat made of fe-base sintered alloy excellent in wear resistance
JP2004124162A (en) Manufacturing method of iron-based sintered alloy valve seat exhibiting wear resistance under high surface pressure applied condition
JP3784926B2 (en) Ferrous sintered alloy for valve seat
JPS62188758A (en) Ferrous sintered alloy for valve seat
JP3226618B2 (en) Iron-based sintered alloy for valve seat
JP3942136B2 (en) Iron-based sintered alloy
JP2716575B2 (en) Manufacturing method of wear resistant iron-based sintered alloy
JPH03225008A (en) Valve seat made of fe-based sintered alloy having superior abrasion resistance
JPH0561346B2 (en)
JPS62188755A (en) Ferrous sintered alloy for valve seat
JP3275727B2 (en) Method for producing two-layer valve seat made of Fe-based sintered alloy with excellent wear resistance
JPH0115583B2 (en)
JPS6296661A (en) Sintered iron alloy for valve seat
JPS5974265A (en) Heat and wear resistant sintered alloy
JPS6296662A (en) Sintered iron alloy for valve seat
JP3068127B2 (en) Wear-resistant iron-based sintered alloy and method for producing the same
JPS6296660A (en) Sintered iron alloy for valve seat
JPS6296659A (en) Sintered iron alloy for valve seat
KR970001323B1 (en) Sintering alloy of valve seat
JP3264092B2 (en) Wear-resistant iron-based sintered alloy and method for producing the same
JPS61183448A (en) Sintered iron alloy for valve seat
JPH1096068A (en) Valve seat made of fe-based sintered alloy excellent in wear resistance
JPS61179856A (en) Iron system sintered alloy for valve seat
JPS62164858A (en) Ferrous sintered alloy for valve seat