JPS629634A - Conveying method for silicon wafer - Google Patents

Conveying method for silicon wafer

Info

Publication number
JPS629634A
JPS629634A JP14801585A JP14801585A JPS629634A JP S629634 A JPS629634 A JP S629634A JP 14801585 A JP14801585 A JP 14801585A JP 14801585 A JP14801585 A JP 14801585A JP S629634 A JPS629634 A JP S629634A
Authority
JP
Japan
Prior art keywords
wafer
metal
oxide
metals
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14801585A
Other languages
Japanese (ja)
Inventor
Hisaaki Suga
須賀 久明
Mitsuhiro Kainuma
貝沼 光浩
Koji Murai
村井 耕治
Shoichi Arai
荒井 昭一
Yasushi Shimanuki
島貫 康
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP14801585A priority Critical patent/JPS629634A/en
Publication of JPS629634A publication Critical patent/JPS629634A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cleaning Or Drying Semiconductors (AREA)

Abstract

PURPOSE:To completely prevent the adverse effects of the contaminated metal contained in a silicon wafer by a method wherein the contaminated metal which can be selectively removed is clearly distinguished by performing a sacrificial oxidization, the contaminated metal is selectively removed, and the other metal which can not be removed by sacrificial oxidation is removed by performing a pretreatment. CONSTITUTION:The surface of silicon is oxidized using oxygen at the temperature of 950 deg.C or above, the metal located on the surface of a wafer and in the vicinity of the surface of the inner layer and having a high tendency of formation of an oxide is oxidized, and said oxide is formed on the wafer surface or in its vicinity. Also, the contaminated metal located on the inner layer is converted to a metal oxide at the above-mentioned temperature by internal oxidation, and the metal is stabilized. Besides, when the contaminated metal is adhered to the back side of the wafer, it is possible that the contaminated metal reaches the surface element region by diffusion when a heat treatment is performed. However, the contaminated metal is turned to a stabilized oxide at the above-mentioned temperature, and the diffusion of the contaminated metal can be prevented. In the oxidized condition wherein an oxide film is adhered as above-mentioned, the wafer surface is in the stably protected state, and the wafer can be conveyed in that state.

Description

【発明の詳細な説明】 「産業上の利用分野」 この発明は、シリコン半導体素子製造工程において、シ
リコンウェハを、その表面を保護し、かつ表面に付着し
ている金属やシリコン内層の表面:r+ Ik  +−
I!  1  1  −r  ++  2  ム Fi
!  M  iaf  eL<  Igl  f−in
、  r↓ す−h J牛 台妙で搬送する方法に関す
る。
Detailed Description of the Invention "Industrial Application Field" This invention protects the surface of a silicon wafer in a silicon semiconductor device manufacturing process, and protects the surface of a metal or silicon inner layer adhering to the surface: r+ Ik +-
I! 1 1 -r ++ 2 Mu Fi
! M iaf eL< Igl f-in
, r↓ Su-h Jgyu Concerning the method of transporting in Taimayo.

「従来の技術およびその問題点」 現在、IC,LSI等の半導体素子の製造工程では、特
に搬送時において、シリコンウェハに素子特性に悪影響
をあたえる重金属の汚染が起こることがあり、それによ
って素子製造の歩留り収率が低下していた。これに対す
る対策として、従来は、シリコンウェハ内部に酸化物起
因の結晶欠陥を故意に導入したり、素子に対してウェハ
の裏面に転位等の欠陥を導入するなどによって、汚染金
属の凝集源を設けていた。しかしながら、この方法のい
ずれにおいても、凝集源が素子側のウェハ表面から離れ
過ぎていて汚染金属凝集作用が生じなかったり、多量の
汚染に対応できないことが多く、素子領域からの重金属
のより効果的な除去方法が望まれていた。これに対し、
最近、例えばシリコン表面の酸化膜付けの前にこの表面
を一度酸化して、その酸化膜を除去することによって、
汚染金属の除去または安定化を行なう犠牲酸化法が行な
われている〜1.h〜1− このα牲酸化法における酸
化膜特性への影響が明確でなく、他の処理条件が確立さ
れていないので、効果的な汚染金属の除去または安定化
がなされず、実効が上がっていないのが現状である。
"Prior art and its problems" Currently, in the manufacturing process of semiconductor devices such as ICs and LSIs, heavy metal contamination that adversely affects the device characteristics may occur on silicon wafers, especially during transportation, and this can lead to device manufacturing. The yield was decreasing. As a countermeasure against this, conventional methods have been to create a source of agglomeration of contaminant metals by intentionally introducing crystal defects caused by oxides into the silicon wafer, or by introducing defects such as dislocations onto the backside of the wafer for the device. was. However, in all of these methods, the source of aggregation is often too far away from the wafer surface on the element side to cause a contaminating metal aggregation effect, or it is not possible to deal with a large amount of contamination. A new removal method was desired. On the other hand,
Recently, for example, by oxidizing the silicon surface once before applying an oxide film and removing the oxide film,
Sacrificial oxidation methods are used to remove or stabilize contaminated metals.1. h~1- The effect of this alpha oxidation method on the oxide film properties is not clear, and other treatment conditions have not been established, so the contaminant metals cannot be effectively removed or stabilized, and the effectiveness has not improved. The current situation is that there is no such thing.

この発明は上記事情に鑑みてなされたもので、犠牲酸化
法における対象金属の有効性を明らかにし、それに基づ
いた酸化膜形成および前処理により効率よく汚染金属の
除去および安定化を行ない、しかもこの酸化膜により表
面を保護した状態でシリコンウェハを搬送する方法を提
供することを目的とするものである。
This invention was made in view of the above circumstances, and it clarifies the effectiveness of target metals in the sacrificial oxidation method and efficiently removes and stabilizes contaminant metals through oxide film formation and pretreatment based on this. The object of the present invention is to provide a method for transporting a silicon wafer with its surface protected by an oxide film.

「問題点を解決するための手段」 本発明は下記知見に基づいてなされたものである。"Means to solve problems" The present invention was made based on the following findings.

すなわち、まず、汚染金属として代表的なCu。That is, first, Cu is a typical contaminating metal.

Fe、Au、Ni、Co、Mo、T a 1A (2s
 I nなどをシリコンウェハに希釈溶液として汚染さ
せたり、真空蒸着したり、あるいは直接金属片で接触さ
せたりすることにより付着させた。その後、このウェハ
に対して1000℃で1〜20時間酸化熱処理を行なっ
た。酸化されたシリコンウェハの表面を高速電子線回折
とX線回折による表面付着金属の同定を行なった。また
、光学顕微鏡による観察により金属酸化物の大きさと、
そのウェハ内分布を調べた。また、分析電子顕微鏡とマ
イクロオージェ電子分光により金属の元素分析と状態分
析を行なった。さらに、イオンマイクロアナライザーに
よる金属のウェハ内深さ分布も調べた。その結果、酸化
により容易に酸化物となり、表面近傍に留どまりで内部
に拡散していかない金属と、酸化雰囲気下の熱処理にも
かかわらず、酸化せずにウェハ内部に容易に拡散してい
く金属があることが判明した。そして、シリコンの酸化
に際し、有効に酸化物となり、ウェハ内の拡散が起こり
にくくなる目安が室温での酸化物の形成エンタルピーで
一100K cal/ mo12であることが明確とな
った。
Fe, Au, Ni, Co, Mo, Ta 1A (2s
In was deposited onto a silicon wafer by contaminating it as a dilute solution, by vacuum deposition, or by direct contact with a metal piece. Thereafter, this wafer was subjected to oxidation heat treatment at 1000° C. for 1 to 20 hours. Metals attached to the surface of oxidized silicon wafers were identified by high-speed electron diffraction and X-ray diffraction. In addition, the size of the metal oxide was determined by observation using an optical microscope.
The distribution within the wafer was investigated. In addition, elemental and state analyzes of the metals were performed using analytical electron microscopy and micro Auger electron spectroscopy. Furthermore, the depth distribution of metal within the wafer was also investigated using an ion microanalyzer. As a result, some metals easily become oxides through oxidation and remain near the surface and do not diffuse into the wafer, while others easily diffuse into the wafer without oxidizing despite heat treatment in an oxidizing atmosphere. It turns out that there is. Furthermore, it has become clear that the enthalpy of formation of the oxide at room temperature is -100K cal/mo12, which effectively turns into an oxide during oxidation of silicon and makes it difficult for diffusion within the wafer to occur.

本発明の方法は、上記知見に基づいてなされたもので、
犠牲酸化により選択的に除去できる汚染金属を明確にし
、その汚染金属を選択的に除去もしくは不活性化すると
ともに、・犠牲酸化により除去または安定化できない他
の金属を前処理により除去しておき、シリコンウェハ中
の汚染金属の悪影響を確実に防ぐ方法である。
The method of the present invention was made based on the above findings, and
Identify the contaminant metals that can be selectively removed by sacrificial oxidation, selectively remove or inactivate the contaminant metals, and remove other metals that cannot be removed or stabilized by sacrificial oxidation by pretreatment. This method reliably prevents the adverse effects of contaminated metals in silicon wafers.

この発明方法は、シリコンウェハ表面近傍に付着もしく
は侵入した汚染金属をシリコン酸化膜の形成速度が高い
950℃以上の温度範囲で熱処理することによっても酸
化物として除去もしくは安定化できない(室温での酸化
物形成エンタルピーが−100Kcal/mol以上の
)金属を予め酸洗浄により除去し、その後上記熱処理に
よりシリコン表面に酸化膜を形成し、この状態でシリコ
ンウェハを搬送することを特徴としている。
In the method of this invention, contaminant metals that have adhered to or penetrated near the silicon wafer surface cannot be removed or stabilized as oxides even by heat treatment at a temperature range of 950°C or higher, where the formation rate of silicon oxide film is high (oxidation at room temperature The method is characterized in that metals (having an enthalpy of formation of -100 Kcal/mol or more) are removed in advance by acid cleaning, and then an oxide film is formed on the silicon surface by the heat treatment described above, and the silicon wafer is transported in this state.

「作用」 950℃以上の高温では、酸素は、シリコン表面を酸化
するとともに、表面および内層の表面近傍の酸化物形成
傾向の強い金属を酸化して、その酸化物をウェハ表面あ
るいはその近傍に形成する。
"Operation" At high temperatures of 950°C or higher, oxygen oxidizes the silicon surface and also oxidizes metals that have a strong tendency to form oxides on the surface and near the surface of the inner layer, forming oxides on or near the wafer surface. do.

また、内層の汚染金属は、上記温度では内部酸化により
金属酸化物となり、安定化する。さらに、り表側素子領
域にまで金属が拡散により到達する可能性があるが、上
記温度では安定な酸化物となり、拡散することが防止で
きる。そして、このような酸化膜のついた酸化状態では
、ウェハの表面は安定保護された状態にあり、その状態
で搬送することができる。従って、搬送中にウェハに汚
染が生じても、ウェハ使用直前にその汚染を酸化膜とと
もに化学処理により容易に除去することができる。また
、上記酸化処理によって、酸化物とならない金属は、予
め酸洗浄により除去されているので、汚染金属の除去ま
たは安定化は確実に行なわれる。なお、搬送中の汚染に
対しては、希フッ酸処理が酸化膜の除去に対して有効で
あるので、酸化膜と一緒に搬送後のウェハ使用直前に除
去すればよい。
Moreover, the contaminant metal in the inner layer becomes a metal oxide through internal oxidation at the above temperature, and is stabilized. Further, although there is a possibility that the metal may reach the front side element region by diffusion, it becomes a stable oxide at the above temperature, and diffusion can be prevented. In such an oxidized state with an oxide film, the surface of the wafer is in a stable and protected state, and can be transported in that state. Therefore, even if the wafer becomes contaminated during transportation, the contamination can be easily removed together with the oxide film by chemical treatment immediately before the wafer is used. Moreover, since the metals that do not become oxides in the oxidation treatment have been previously removed by acid cleaning, the removal or stabilization of the contaminating metals is reliably performed. As for contamination during transportation, since dilute hydrofluoric acid treatment is effective for removing the oxide film, it is sufficient to remove it together with the oxide film immediately before using the wafer after transportation.

以下、この発明を実施例によりさらに詳しく説明する。Hereinafter, this invention will be explained in more detail with reference to Examples.

「実施例」 酸化物形成傾向の大きく異なるAu、Cu、N15Pb
SCr。
"Example" Au, Cu, and N15Pb with significantly different oxide formation tendencies
SCr.

IJ/% Da Ill&n Ta尤壬th Aff 
l−1フ准1h l +−’tTE th−は、金属で
直接ウェハ表面に接触する、金属イオンを含む溶液に浸
漬する、真空蒸着する方法により行なった。汚染される
対象ウェハは、鏡面研摩仕上げのものを用いた。シリコ
ン表面に金属を付着させた後に1100℃で1時間、酸
素ガスを流しながら、そのウェハの熱処理を行なった。
IJ/% Da Ill & n Ta 尤壬th Aff
The l-1 wafer surface was formed by directly contacting the wafer surface with a metal, by immersing the wafer in a solution containing metal ions, and by vacuum evaporation. The wafer to be contaminated had a mirror-polished finish. After the metal was attached to the silicon surface, the wafer was heat-treated at 1100° C. for 1 hour while oxygen gas was flowing.

熱処理後のウェハをまずフッ酸エツチングで表面シリコ
ン酸化膜を取り除いた後、金属酸化物の相同定をX線回
折、電子線回折により行なった。
The silicon oxide film on the surface of the heat-treated wafer was first removed by hydrofluoric acid etching, and then the phase of the metal oxide was identified by X-ray diffraction and electron beam diffraction.

その結果、Fe、In、A12など酸化物形成傾向の高
い金属は、酸化物になっていることが確認された。
As a result, it was confirmed that metals with a high tendency to form oxides, such as Fe, In, and A12, were converted into oxides.

また、酸化物形成傾向の小さいAuは金属状態で存在し
、NtやCuは81化合物を形成していた。ウェハ深さ
方向での付着金属の拡散は、分析電子顕微鏡による観察
とイオンマイクロアナライザーによる分析によれば、酸
化物形成傾向の高い金属は表面近傍に局在しているが、
Au、CuSNiなど酸化物形成傾向の小さい金属では
、用いたウェハ厚である500μ儂の中央部分にも存在
していることが確認された。
Further, Au, which has a small tendency to form oxides, existed in a metallic state, and Nt and Cu formed 81 compounds. According to observation using an analytical electron microscope and analysis using an ion microanalyzer, the diffusion of deposited metal in the wafer depth direction shows that metals with a high tendency to form oxides are localized near the surface.
It was confirmed that metals with a small tendency to form oxides, such as Au and CuSNi, were present even in the center of the wafer used, which was 500 μm thick.

以上の結果を図に示した。図から明らかなように、−1
00K cal/ mo12以上の酸化物形成エンタル
ピーをもつ金属において、本発明の酸化による金属の選
択的除去が有効であることを示すものである。また、こ
の結果は拡散速度の目安としていた不活性雰囲気での拡
散係数の傾向からは予想出来ないもので、本発明の酸化
による除去方法が意義あるものであることを示している
。従って、この酸化によって生じた酸化膜で表面を保護
したまま搬送することができ、最終的にはフッ酸処理で
ウェハ使用前に汚染金属を落とせばよいことになる。
The above results are shown in the figure. As is clear from the figure, −1
This shows that the selective removal of metals by oxidation of the present invention is effective for metals having an oxide formation enthalpy of 00K cal/mo12 or more. Furthermore, this result was unexpected from the tendency of the diffusion coefficient in an inert atmosphere, which was used as a measure of the diffusion rate, and shows that the removal method by oxidation of the present invention is significant. Therefore, it is possible to transport the wafer with its surface protected by the oxide film produced by this oxidation, and finally, the contaminated metal can be removed by hydrofluoric acid treatment before use.

「発明の効果」 以上説明したように、この発明方法によれば、950℃
以上の高温で酸素がシリコン表面を酸化するとともに、
表面および内層の表面近傍の酸化物形成傾向の強い金属
を酸化して、その酸化物をウェハ表面あるいはその近傍
に形成する。また、内層の汚染金属を上記温度で内部酸
化により金属酸化物とし、安定化する。さらに、ウェハ
裏面からの汚染がある場合には熱処理により表側素子領
域にまで金属が拡散により到達する可能性があるが、上
記温度では安定な酸化物とし、拡散することを防止でき
る。そして、このような酸化膜のついた酸化状態では、
ウェハの表面は安定保護された状態にあり、その状態で
搬送することができる。従って、搬送中にウェハに汚染
が生じても、ウェハ使用直前にその汚染を酸化膜ととも
に化学処理により容易に除去することができる。また、
上記酸化処理によって、酸化物とならない金属は、予め
酸洗浄により除去されるので、汚染金属の除去または安
定化は確実に行なわれる。また、搬送中の汚染に対して
は、希フッ酸処理が酸化膜の除去に対して有効であるの
で、酸化膜と一緒に搬送後のウェハ使用直前に除去する
ことになる。
"Effects of the Invention" As explained above, according to the method of this invention,
Oxygen oxidizes the silicon surface at higher temperatures, and
Metals with a strong tendency to form oxides on the surface and in the vicinity of the surface of the inner layer are oxidized to form oxides on or near the wafer surface. In addition, the contaminated metal in the inner layer is internally oxidized at the above temperature to become a metal oxide and stabilized. Furthermore, if there is contamination from the back side of the wafer, there is a possibility that metal may diffuse to the front side element region due to heat treatment, but at the above temperature, it becomes a stable oxide and can be prevented from diffusing. In this oxidized state with an oxide film,
The surface of the wafer is in a stable and protected state and can be transported in that state. Therefore, even if the wafer becomes contaminated during transportation, the contamination can be easily removed together with the oxide film by chemical treatment immediately before the wafer is used. Also,
Metals that do not become oxides in the above oxidation treatment are removed in advance by acid cleaning, so that the removal or stabilization of contaminant metals is reliably performed. Furthermore, as for contamination during transportation, dilute hydrofluoric acid treatment is effective for removing the oxide film, so it is removed together with the oxide film immediately before use of the wafer after transportation.

【図面の簡単な説明】[Brief explanation of the drawing]

図はシリコンウェハ表面の付着金属が1100℃、1時
間の酸化熱処理により500μ儂厚のウェハの中心に拡
散し、析出するか否かと、それら金属の室ラフである。
The figure shows whether or not metals deposited on the surface of a silicon wafer diffuse and precipitate into the center of a 500 μm thick wafer after an oxidation heat treatment at 1100° C. for 1 hour, and the roughness of these metals.

Claims (1)

【特許請求の範囲】[Claims] シリコンウェハ表面近傍に付着もしくは侵入した汚染金
属を950℃以上の温度範囲で熱処理することによって
も酸化物として除去もしくは安定化できない室温での酸
化物形成エンタルピーが−100Kcal/mol以上
の金属を予め酸洗浄により除去し、その後上記熱処理に
よりシリコン表面に酸化膜を形成して残りの汚染金属を
除去または安定化し、この状態で、シリコンウェハを搬
送することを特徴とするシリコンウェハの搬送方法。
Contaminant metals that have adhered to or penetrated near the silicon wafer surface cannot be removed or stabilized as oxides even by heat treatment at a temperature range of 950°C or higher. Metals with an oxide formation enthalpy of -100 Kcal/mol or higher at room temperature are pre-oxidized. A method for transporting silicon wafers, which comprises removing them by cleaning, then forming an oxide film on the silicon surface by the heat treatment described above to remove or stabilize the remaining contaminant metals, and transporting the silicon wafer in this state.
JP14801585A 1985-07-05 1985-07-05 Conveying method for silicon wafer Pending JPS629634A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14801585A JPS629634A (en) 1985-07-05 1985-07-05 Conveying method for silicon wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14801585A JPS629634A (en) 1985-07-05 1985-07-05 Conveying method for silicon wafer

Publications (1)

Publication Number Publication Date
JPS629634A true JPS629634A (en) 1987-01-17

Family

ID=15443196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14801585A Pending JPS629634A (en) 1985-07-05 1985-07-05 Conveying method for silicon wafer

Country Status (1)

Country Link
JP (1) JPS629634A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS546466A (en) * 1977-06-17 1979-01-18 Hitachi Ltd Surface cleaning method
JPS58100433A (en) * 1981-12-10 1983-06-15 Fujitsu Ltd Cleaning of wafer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS546466A (en) * 1977-06-17 1979-01-18 Hitachi Ltd Surface cleaning method
JPS58100433A (en) * 1981-12-10 1983-06-15 Fujitsu Ltd Cleaning of wafer

Similar Documents

Publication Publication Date Title
US4231809A (en) Method of removing impurity metals from semiconductor devices
JPH03129732A (en) Treatment of semiconductor
TWI421965B (en) Method for treating semiconductor processing components and components formed thereby
JP3285723B2 (en) Semiconductor heat treatment jig and surface treatment method thereof
US5589005A (en) System for supplying ultrapure water and method of washing substrate, and system for producing ultrapure water and method of producing ultrapure water
JPS629634A (en) Conveying method for silicon wafer
WO2017169458A1 (en) Method for evaluating cleanliness, method for determining cleaning condition, and method for manufacturing silicon wafer
JP4290187B2 (en) Surface cleaning method for semiconductor wafer heat treatment boat
KR20210035189A (en) Platinum patterning by alloying and etching platinum alloys
JP2023137868A (en) Structure manufacturing method and capacitor manufacturing method
JP2907095B2 (en) Method for manufacturing semiconductor device
JP4131105B2 (en) Silicon boat manufacturing method
US6723578B2 (en) Method for the sulphidation treatment of III-V compound semiconductor surfaces
JPS6030110B2 (en) Semiconductor device and its manufacturing method
JP3329199B2 (en) Semiconductor device manufacturing method and manufacturing apparatus
JP4608884B2 (en) Method for forming surface protective film of jig for heat treatment
JPH07240394A (en) Surface cleaning method of semiconductor wafer
Ruzyllo Assessment of the progress in gas-phase processing of silicon surfaces
KR940008377B1 (en) Fabricating method of semiconductor device
JP3036366B2 (en) Processing method of semiconductor silicon wafer
JP2001244228A (en) Liquid and method for washing semiconductor substrate
JPS6345822A (en) Method and apparatus for cleaning
JPS58175828A (en) Cap-less-annealing method by metallic solution seal
JPH04361527A (en) Surface processing method and application of semiconductor heat treatment jig
JPS63199434A (en) Forming method for insulating film