JPS6295460A - Acoustic wave probe - Google Patents

Acoustic wave probe

Info

Publication number
JPS6295460A
JPS6295460A JP60235161A JP23516185A JPS6295460A JP S6295460 A JPS6295460 A JP S6295460A JP 60235161 A JP60235161 A JP 60235161A JP 23516185 A JP23516185 A JP 23516185A JP S6295460 A JPS6295460 A JP S6295460A
Authority
JP
Japan
Prior art keywords
lens
ultrasonic wave
reflected
piezoelectric element
sonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60235161A
Other languages
Japanese (ja)
Inventor
Koshi Umemoto
梅本 講司
Nobuyuki Nakajima
中島 暢之
Masao Takai
高井 正生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60235161A priority Critical patent/JPS6295460A/en
Publication of JPS6295460A publication Critical patent/JPS6295460A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To eliminate trouble due to the reflection of an ultrasonic wave in an acoustic lens and to prevent the ultrasonic wave from attenuating in the acoustic wave lens by forming the whole acoustic lens body conically. CONSTITUTION:The acoustic lens 1 is composed of an acoustic wave propagation body formed conically on the whole. An ultrasonic wave 7 which is oscillated by a piezoelectric element 2 into the lens 1 and reaches its spherical surface part 8 is reflected by a sample 9 and transmitted as a video signal 13 to a display body 14. An ultrasonic wave 7 which reaches a position off the spherical surface part 8 is reflected by the curved surface part of the acoustic lens 1 to the peripheral part of the plane part. Consequently, the possibility of the reflected ultrasonic wave 7 reaches the piezoelectric element 2 is decreased greatly and the adverse influence of the reflected ultrasonic wave 7 is eliminated.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、音波探触子に係り、特に超音波顕微鏡に使用
さnる音波探触子壷こ関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a sonic probe, and particularly to a sonic probe jar used in an ultrasound microscope.

〔発明の背景〕[Background of the invention]

超音波顕微鏡に使用される音波探触子すなわち音波レン
ズは、その先端が平坦な形のものを使用している例が多
い、しかし、先端が平坦な形をしていると、この部分か
らも超音波が音波伝播媒質例えば水の中に漏洩、放射さ
れて集束超音波ビームの信号が有効に利用できないため
有効な超音波と雑音との比(以下単にS/Nという)が
劣化する。そこで、この8/N劣化防止のために音波レ
ンズの球面部の縁に吸音材を貼るといったことも考案さ
nている(例えば、実公昭58−31200号公報)、
シかし、現実には周波数が高く、焦点距離の短い音波レ
ンズの場合、先端の球面部近傍に前記の漏洩した超音波
を減衰させる吸音材が設置されていると、観察時に該吸
音材と試料とが接触する恐nがあるとともに、ワーキン
グディススタンスの設置に不都合が生じる等の不具合が
あった。また、音波レンズ内では、必ず超音波の反射等
が生じるため、完全−こ不要な輻射をな畷すことが困難
である。さらに、G Hz単位近傍の高い周波数になる
と、音波レンズ内部を伝わる超音波の減衰が非常に増大
するといりた不具合があった。
The sonic probes, or sonic lenses, used in ultrasound microscopes often have a flat tip. The ultrasonic waves leak into the sound propagation medium, such as water, and are radiated, so that the signal of the focused ultrasonic beam cannot be used effectively, resulting in a deterioration of the effective ultrasonic wave-to-noise ratio (hereinafter simply referred to as S/N). Therefore, in order to prevent this 8/N deterioration, it has been devised to attach a sound absorbing material to the edge of the spherical part of the acoustic lens (for example, Japanese Utility Model Publication No. 58-31200).
However, in reality, in the case of a sound wave lens with a high frequency and a short focal length, if a sound absorbing material is installed near the spherical part of the tip to attenuate the leaked ultrasonic waves, the sound absorbing material will be removed during observation. There was a risk of contact with the sample, and there were problems such as inconvenience in setting up a working distance. Furthermore, since reflection of ultrasonic waves always occurs within the sonic lens, it is difficult to completely eliminate unnecessary radiation. Furthermore, there is a problem in that attenuation of ultrasonic waves propagating inside the acoustic lens increases significantly when the frequency is high in the vicinity of the GHz unit.

〔発明の目的〕[Purpose of the invention]

本発明の目的とするところは、−i波しンズ内における
超音波の反射による不具合を防止するととも壷こ、該音
波レンズ内暴こおける超音波の減衰を防止して効率のよ
い音波レンズすなわち音波探触子を提供することにある
The object of the present invention is to prevent problems caused by the reflection of ultrasonic waves within the i-wave lens, and to prevent the attenuation of ultrasonic waves within the sonic lens to create an efficient sonic lens. Our objective is to provide a sonic probe.

〔発明の概要〕[Summary of the invention]

本発明は、音波伝播体である音波探触子いわゆる音波レ
ンズ内で反射して圧電素子に達する超音波を減少させ、
かつ、該音波レンズ内での超音波の減衰を防止するため
に、音波レンズ全体を円錐形状に形成したことを特徴と
するものである。
The present invention reduces ultrasonic waves that are reflected within a sonic probe, which is a sonic wave propagating body, so-called a sonic lens, and reaches a piezoelectric element.
Further, in order to prevent ultrasonic waves from attenuating within the sonic lens, the entire sonic lens is formed into a conical shape.

〔発明の実施例〕[Embodiments of the invention]

以下1本発明による一実施例を】1図および第2図によ
って説明する。同図において、1は全体を円錐状に形成
した音波伝播体から成る音波レンズ、2は該音波レンズ
1の平面部に上部電極3および下部電極4によってはさ
まnた状態で取付けられる圧電議子(例えばZnO等)
である。5は該圧電素子2に印加さnるパルス6を発生
させるパルス発振器である。前記パルス6が圧電素子2
に印加されることにより、該圧電素子2から超音波7が
音波レンズ1内に発振される。8は前記音波レンズ1の
先端に形成さnた口径0.1mflu〜8.0II!I
If程度の凹面の球面部である。9は試料で、前記音波
レンズ1の球面部8との間に音波伝播媒質(例えば水)
10が鷹ださ几ている。捻は前記超音波7の試料9から
の反射波を圧電素子2によって変換さnた高周波信号(
以下RF倍信号いう)11を受信し、ダイオード検波し
てビデオ信号131こ変換する受信器である。14は該
受信器刊からのビデオ信号13を試料9の走査を行なう
試料台駆動手段15からの走査情報と同期させて画像化
し表示する表示器である。なお16は前記音波レンズ1
の球面部8の縁で、鋭角に形成されている。
An embodiment according to the present invention will be explained below with reference to FIGS. 1 and 2. In the figure, reference numeral 1 denotes a sonic lens consisting of a sound wave propagating body having a conical shape as a whole, and 2 a piezoelectric filter mounted on the flat surface of the sonic lens 1 sandwiched between an upper electrode 3 and a lower electrode 4. (For example, ZnO, etc.)
It is. Reference numeral 5 denotes a pulse oscillator that generates pulses 6 to be applied to the piezoelectric element 2. The pulse 6 is transmitted through the piezoelectric element 2
, the ultrasonic wave 7 is oscillated from the piezoelectric element 2 into the sonic lens 1 . 8 is an aperture formed at the tip of the sonic lens 1 with a diameter of 0.1 mflu to 8.0 II! I
It is a spherical part with a concave surface of about If. Reference numeral 9 denotes a sample, and a sound wave propagation medium (for example, water) is provided between the sample and the spherical part 8 of the sound wave lens 1.
10 is standing tall. The twist is to generate a high frequency signal (
This is a receiver that receives an RF multiplied signal (hereinafter referred to as an RF signal) 11, performs diode detection, and converts it into a video signal 131. Reference numeral 14 denotes a display device that synchronizes the video signal 13 from the receiver with scanning information from the sample stage driving means 15 for scanning the sample 9, converts it into an image, and displays the image. Note that 16 is the sound wave lens 1
The edge of the spherical portion 8 is formed at an acute angle.

このような構成において、パルス発振器5から発振され
たパルス信号6を圧電素子2に印加して超音波7を生じ
させる。該超音波7は該音波レンズ1を成す音波伝播体
と音波伝播媒質10との音速の差により球面部8で起こ
る屈折作用によって試料9面上に集束して照射される。
In such a configuration, a pulse signal 6 oscillated from a pulse oscillator 5 is applied to the piezoelectric element 2 to generate an ultrasonic wave 7. The ultrasonic waves 7 are focused and irradiated onto the surface of the sample 9 by the refraction effect that occurs at the spherical portion 8 due to the difference in sound speed between the sound wave propagating body forming the sound wave lens 1 and the sound wave propagating medium 10 .

このよう暑二して照射された超音波フは、試料9によっ
て反射され音波レンズ1の球面部8により集音整相さn
て平面波となり圧電素子2に達する。該圧電素子2で前
記超音波7はRF信号11に変換されて受信器nに送ら
れ、かつ、該受信器鵞でダイオード検波されてビデオ信
号13に変換されて表示器14(こ送られるO このような構成によれば、音波レンズ1内暑こ圧電素子
2から発振さnた超音波7のうち球面部8に達したもの
は、前述のとおり試料9に達し反射して表示器14にビ
デオ信号13として伝えられる。
The ultrasonic wave irradiated in this way is reflected by the sample 9 and collected by the spherical part 8 of the sonic lens 1 with a phase adjustment n.
It becomes a plane wave and reaches the piezoelectric element 2. The ultrasonic wave 7 is converted into an RF signal 11 by the piezoelectric element 2 and sent to the receiver n, and is diode-detected by the receiver and converted to a video signal 13, which is then sent to the display 14 (which is sent to the receiver n). According to this configuration, among the ultrasonic waves 7 emitted from the piezoelectric element 2 inside the sonic lens 1, those that reach the spherical part 8 reach the sample 9 and are reflected to the display 14 as described above. It is transmitted as a video signal 13.

一方、前記超音波7のうち球面部8より外nた位置に達
したものは、音波レンズ1の曲面部によって平面部にお
ける周辺部分へ反射さnる。したがって、該反射さnた
超音波7が圧電素子2に達することが非常に少なくなり
、該反射した超音波7による悪影響を防止できるもので
ある。なお、従来の音波レンズで円柱先端部に円錐形状
部を形成した例については1円柱部分でさらに反射さn
圧電素子に反射した超音波が達することが多く、この構
成に比較しても前記構成の場合反射した超音波の悪影響
を大幅に防止できるものである。
On the other hand, the ultrasonic waves 7 that reach a position outside the spherical surface 8 are reflected by the curved surface of the sonic lens 1 to the peripheral portion of the flat surface. Therefore, the reflected ultrasonic waves 7 rarely reach the piezoelectric element 2, and the adverse effects of the reflected ultrasonic waves 7 can be prevented. In addition, in the case of a conventional sound wave lens in which a conical part is formed at the tip of the cylinder, the light is further reflected by one cylinder part.
In many cases, the ultrasonic waves reflected from the piezoelectric element reach the piezoelectric element, and compared to this structure, the above structure can significantly prevent the adverse effects of the reflected ultrasonic waves.

また、前記構成によnば、圧電素子2から球面部8まで
の距離を短々できるため、GHz  単位の非常に高い
周波数の超音波であっても音波レンジ1内における減衰
を防止できる。
Further, according to the above configuration, since the distance from the piezoelectric element 2 to the spherical surface portion 8 can be shortened, even ultrasonic waves having a very high frequency on the GHz scale can be prevented from being attenuated within the sonic range 1.

〔発明の効果〕〔Effect of the invention〕

以と説明したように本発明によnば、音波レンズ内にお
ける超音波の反射薔こよる不具合を防止できるとともに
、該音波レンズ内直こおける超音波の減衰を防止できる
As described above, according to the present invention, it is possible to prevent problems caused by reflection of ultrasonic waves within the sonic lens, and also to prevent attenuation of ultrasonic waves directly within the sonic lens.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による音波探触子の一実施例を用いた超
音波顕微鏡の概要を示す回路図、第2図は第1図の音波
探触子を示す断面図である。
FIG. 1 is a circuit diagram showing an outline of an ultrasound microscope using an embodiment of the sonic probe according to the present invention, and FIG. 2 is a sectional view showing the sonic probe of FIG. 1.

Claims (1)

【特許請求の範囲】 1、試料に対向して配置され、該試料に対して超音波の
送受を行なうとともに相対的に走査を行なって試料の観
察を行なう音波探触子において、全体を円錐形に形成し
、その先端部に球面部を形成するとともに平面部に圧電
素子を設けたことを特徴とする音波探触子。 2、特許請求の範囲第1項において、前記円錐形の先端
角度を曲面からの反射超音波が前記圧電素子に達しない
角度としたことを特徴とする音波探触子。
[Claims] 1. A sonic probe that is placed facing a sample, transmits and receives ultrasonic waves to and from the sample, and performs relative scanning to observe the sample; What is claimed is: 1. A sonic probe characterized in that a spherical surface is formed at the tip of the probe, and a piezoelectric element is provided on the flat surface. 2. The sonic probe according to claim 1, wherein the tip angle of the conical shape is set at an angle such that reflected ultrasound waves from the curved surface do not reach the piezoelectric element.
JP60235161A 1985-10-23 1985-10-23 Acoustic wave probe Pending JPS6295460A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60235161A JPS6295460A (en) 1985-10-23 1985-10-23 Acoustic wave probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60235161A JPS6295460A (en) 1985-10-23 1985-10-23 Acoustic wave probe

Publications (1)

Publication Number Publication Date
JPS6295460A true JPS6295460A (en) 1987-05-01

Family

ID=16981953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60235161A Pending JPS6295460A (en) 1985-10-23 1985-10-23 Acoustic wave probe

Country Status (1)

Country Link
JP (1) JPS6295460A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021511485A (en) * 2018-01-26 2021-05-06 エーエスエムエル ネザーランズ ビー.ブイ. Equipment and methods for locating the target structure on the substrate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021511485A (en) * 2018-01-26 2021-05-06 エーエスエムエル ネザーランズ ビー.ブイ. Equipment and methods for locating the target structure on the substrate
US11927891B2 (en) 2018-01-26 2024-03-12 Asml Netherlands B.V. Apparatus and methods for determining the position of a target structure on a substrate

Similar Documents

Publication Publication Date Title
US5099693A (en) Apparatus for investigating a sample with ultrasound
US5072722A (en) Device for the spatial ultrasonic location of calculi
JPS59160754A (en) Scan type acoustic microscope
JPS5816672B2 (en) Onpaketsuzohou Oyobi Onpaketsuzoouchi
US5381695A (en) Apparatus for investigating a sample with ultrasound
US4779241A (en) Acoustic lens arrangement
JPS6295460A (en) Acoustic wave probe
JPH0273151A (en) Ultrasonic probe
JPH0330105B2 (en)
US4550609A (en) Acoustic lens
JPH0437379B2 (en)
JP3121430B2 (en) Ultrasonic flaw detection method and ultrasonic probe
JP2002044773A (en) Acoustic lens and ultrasonic transmitter
JPS61262653A (en) Sonic wave probe
JPS61120962A (en) Acoustic lens for ultrasonic microscope
JP3027495B2 (en) Ultrasonic probe
GB2127657A (en) Acoustic lens
JPS61186850A (en) Acoustic wave probe
JPS5831200Y2 (en) ultrasonic focusing lens
JPS58166258A (en) Ultrasonic microscopic lens
JPS62133946A (en) Ultrasonic transmitter-receiver
JPH0158458B2 (en)
JP2020071229A (en) Probe and system for optoacoustic imaging and method for controlling such probe
JPH0835956A (en) Ultrasonic probe
JPH0338543B2 (en)