GB2127657A - Acoustic lens - Google Patents

Acoustic lens Download PDF

Info

Publication number
GB2127657A
GB2127657A GB08324778A GB8324778A GB2127657A GB 2127657 A GB2127657 A GB 2127657A GB 08324778 A GB08324778 A GB 08324778A GB 8324778 A GB8324778 A GB 8324778A GB 2127657 A GB2127657 A GB 2127657A
Authority
GB
United Kingdom
Prior art keywords
acoustic
acoustic radiation
collimating
focussing
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
GB08324778A
Other versions
GB2127657B (en
GB8324778D0 (en
Inventor
Nicholas Dougall Johnson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Research Development Corp UK
Original Assignee
National Research Development Corp UK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Research Development Corp UK filed Critical National Research Development Corp UK
Priority to GB08324778A priority Critical patent/GB2127657B/en
Publication of GB8324778D0 publication Critical patent/GB8324778D0/en
Publication of GB2127657A publication Critical patent/GB2127657A/en
Application granted granted Critical
Publication of GB2127657B publication Critical patent/GB2127657B/en
Expired legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/18Methods or devices for transmitting, conducting or directing sound
    • G10K11/26Sound-focusing or directing, e.g. scanning
    • G10K11/28Sound-focusing or directing, e.g. scanning using reflection, e.g. parabolic reflectors

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

A device for focussing or collimating a beam of acoustic radiation comprises a body of acoustically transmissive material having first endface (12) coupled to a source of acoustic radiation (16, 18). The radiation is internally reflected by the side surface 20 of the body, this surface being of a shape such that it brings the radiation to a focus F after transmission through a second surface (14). <IMAGE>

Description

SPECIFICATION Acoustic lens This invention relates to a device for focusing or collimating a beam of acoustic radiation, and a major use will be in acoustic microscopes.
A scanning acoustic microscope is described by R. A. Lemons and C. F. Quate in the 1 973 Ultrasonics Symposium Proceedings of the Institute of Electrical and Electronic Engineers Cat.
No. CHO 807--8SU. An acoustic plane wave is focused by passage through a concave face in a sapphire crystal into a water cell which couples the focused wave to an object. Transmitted radiation is received by a similar sapphire crystal and recollimated.
At the high frequencies essential for good resolution, the attentuation of sound in water is very high so that only a short path length in water can be tolerated. The focal length of the curved surface must therefore be short, so the curvature of the concave face must be very small, and manufacture of the lens is difficult. An acoustic lens according to the present invention does not require a concave focusing face of very short radius and the absence of this requirement allows use at higher acoustic frequencies than is possible with known lenses.
According to the invention, there is provided apparatus for focussing or collimating a beam of acoustic radiation comprising a body of material capable of transmitting acoustic radiation and having a first surface with an electro-acoustic transducer coupled thereto, a second surface remote from said first surface for propagation of acoustic radiation between said body and an acoustic transmission medium in contact with said second surface and a third surface cooperable with said first surface to focus said acoustic radiation externally to said body and beyond said second surface.
In one embodiment the first endface is plane and parallel to the second endface and the sides of the body are curved; the sides are usually approximately parabolic in shape, a slight difference from the precise mathematical form being required when the velocity of sound in the lens is different from the velocity of sound in a coupling liquid in contact with the second endface.
In a second embodiment, the first endface is generally concave and has an outer annulus of frusto-conical form and the sides of the body between the endfaces are also frusto-conical; the transducer is in contact with said outer annulus of the first endface. It is an advantage of this embodiment that it has a considerable depth of focus.
In a third embodiment, the first endface is generally convex and is of smaller area than the second endface, and the sides of the body between the endfaces are frusto-conical, the cone angle of the part adjacent the first endface being smaller than the cone angle of the part adjacent the second endface. The third embodiment also has a considerable depth of focus.
Usually the lens body will be of circular cross section parallel to the second endface, but other sections, for example a square cross section, may be used in some circumstances.
An acoustic lens according to the invention can either be used as an acoustic transmitter, when an alternating electrical signal is applied to the electro-acoustic transducer, and a convergent acoustic signal is emitted through the second endface, or the lens can be used as an acoustic receiver, when a divergent signal received through the second endface will be collimated, will be incident on the electro-acoustic transducer as a plane acoustic wave, and converted to an a.c.
electrical signal. In a scanning acoustic microscope, two acoustic lenses according to the invention will be arranged with their second endfaces adjacent and spaced so as to be confocal and there will also be provided means for causing relative movement in the focal plane between an object and the position of the focus.
In use the lenses are coupled to the object by a layer of coupling liquid.
The invention will now be described by way of example only with reference to the accompanying drawings in which: Figure 1 is a longitudinal section through a first embodiment of an acoustic lens according to the invention, with ray tracing to illustrate the focusing effect on acoustic radiation; Figure 2 illustrates schematically a scanning acoustic microscope; Figure 3 is a section through a second embodiment of an acoustic lens; and Figure 4 is a section through a third embodiment of an acoustic lens.
In Figure 1, an acoustic lens 10 according to the invention comprises a solid body having first and second plane, parallel endfaces 12, 1 4. The first endface carries a plane peizoelectric transducer 1 6 connected to a high frequency source 1 8. The lens is symmetrical about an axis A perpendicular to the endfaces 12, 14, and the lens wall 20 between the endfaces is approximately parabolic in shape, the apex of the parabola lying beyond the second endface 1 4.
In the Figure, several ray paths are shown, all rays being internally reflected once by the curved wall 20. The rays meet at a focus F beyond the second endface 1 4. The distance of the focus from the endface is exaggerated. The focus will lie in a coupling liquid, usually water, so there is a change in acoustic refractive index at the endface 14. To find the precise shape of the lens wall 20, the rays are traced backwards from the focus in accordance with the index difference between the coupling liquid round the focus and the material of the lens 10, and a calculation is made of the locus of reflection points required to give parallel rays at the first endface 12, the rays also having equal times of flight; this gives the shape of the lens wall 20.
Typically lens materials are aluminium, fused quartz or sapphire, or a high polymeric material such as polyethylene or polymethylmethacrylate, Figure 2 illustrates use of two acoustic lenses according to the invention in a scanning acoustic microscope. The two lenses 1 or, 1 OB are arranged with their second endfaces adjacent and confocal. Between the second endfaces is a specimen to be investigated 22, attached to a thin support 24 carried by a scanning device 26 which scans the specimen 22 in two dimensions through the focus. The specimen 22 is coupled to the second endfaces of the lenses 1 or, 1 OB, by drops of water 28.
The transducer 1 6B of the lens 1 OB is connected to a high frequency source 30 through a variable attenuator 32 and a first stub tuner matching device 34. The transducer 1 6A of the lens 1 OA is connected through a second stub tuner matching device 36 to a first input of a mixer 38. The second input of the mixer is connected to a local oscillator 40 operating at a frequency which differs slightly from the oscillator 30. The mixer output is connected through an amplifier 41 and a variable band pass filter 42 to a storage cathode ray display unit 44. The unit 44 is also connected to a scan synchronisation unit 46 which controls the scanning device 26.
In operation, the high frequency signal from the oscillator 30 is converted to acoustic radiation by the transducer 1 6B, and focused by the body of the lens lOB. Radiation transmitted by the specimen 22 is recollimated by the body of the lens 1 OA, converted to an electrical signal by the transducer 1 6A, and mixed with the signal from the local oscillator 40. The frequency is supplied as the intensity signal to the storage and display unit 44. The scan synchronisation unit 46 supplies x and y scan signals both to the unit 44 and to the scanning device 26. As the specimen 22 is scanned in the focal plane of the lens 1 OA, 1 OB, an intensity signal corresponding to each point is stored by the unit, and a point-by-point image is built up and displayed.
The arrangement illustrated in Figure 2, is a transmission scanning acoustic microscope. It is also possible to use only one acoustic lens, plus a time-gating arrangement, to give a scanning acoustic microscope operable in a reflection mode. Either type of arrangement can be used in a C-scan mode, in which the specimen is scanned in the focal plane, and the focus is a known depth below the specimen surface, or in a B-scan mode, in which axial scanning within the specimen is achieved by timing gating; this is possible because of the long depth of focus.
If a split transducer is provided, as described by Smith and Wickramasinghe in Electronic Letters, 18 (2), 1 982 pages 92 to 94, a Doppler shift is provided which could be used to study flow in blood vessels.
An alternative embodiment of an acoustic lens is illustrated in Figure 3. The lens 50 has the general form of a short truncated cone. The second endface 52 is plane and perpendicular to the conical axis, and the first endface has a central, inoperative area 54 which is parallel to the second endface, and an outer operative area 56 frusto-conical form, the endface being generally concave. An annular piezoeelectric transducer 58 contacts the operative area 56.
Between the endfaces is a conical lens wall 60, its cone apex angle lying beyond the first endface.
When the transducer 58 generates effectively a plane wave of acoustic radiation, i.e. a wave having a radius of curvature much longer than the wave length, so that plane wave theory can be applied, the wave is reflected internally at the conical lens wall 60 and refracted through the second endface 52. In this embodiment, the focus is a line focus L having considerable axial depth so that it is essential to use the technique of time gating. The main lobe is almost the same width along the whole length of the line focus, and it is easier to achieve a good focus by altering the time gating than by physical relative movement of the object and the focus.
The angles with respect to the central axis of the frusto-conical operative area 56 and of the reflecting lens wall 60 are chosen so that a large shear component is generated as the acoustic wave is internally reflected, which couples into the coupling fluid in contact with the second endface 52 as a longitudinal wave. Preferably the coupling occurs as close as possible to the shear critical angle, and in general the angle of transmission of the acoustic wave should be as large as possible, so that the focal line is as narrow as possible, and also the amplitude of transmission at the design angle should be maximal.
In the third embodiment illustrated in Figure 4, the lens 62 is of generally conical form. The second endface 64 is plane and perpendicular to the conical convex axis, the first endface 66 is conical, is much smaller in area than the second endface, and carries a transducer 68. The lens wall between the endfaces has two distinct areas; the area 70 adjacent the first endface 66 is frusto-conical and has a smaller cone angle than the cone angle of the first endface. The area 72 adjacent the second endface is of even smaller cone angle and shorter axial length than the first area 70. In this arrangement the effectively plane waves generated by the tansducer 68 cross the axis of the cone to be reflected by the area 72 through the second endface 64 to a line focus L.
The advantages of the third embodiment of the lens are that it is now entirely convex in shape, and small convex lenses are easier to make than small lenses having a concave surface, and the transducer 68 is at a considerable distance from the reflecting wall area 72, so that any problem of internal reverberations is minimised.
A great advantage of an acoustic lens according to the invention is that the layer of liquid which couples the second endface to the specimen under investigation can be very thin, and can be the minimum thickness required to couple the radiation so that path length in the liquid is very short, much shorter than is possible with a concave-face sapphire lens. It is therefore possible to use the lens at higher frequencies than the 50 MHz to 1 GHz of known scanning acoustic microscopes, because the higher attenuation at the higher frequency is tolerable, and higher resolution is available. It is of course essential that the curved wall 20 of the lens conforms very accurately to the required shape.
In addition to the use of higher frequencies, a lens according to the invention has the further advantage of allowing the use of shear waves in scanning acoustic microscopy. Shear waves are not supported by the low viscosity liquids such as water commonly used as coupling liquids, and are supported only in liquids having much higher viscosity, such as honey or silicone oil. But higher viscosity liquids are highly attenuating to acoustic radiation, and with the substantial path lengths in liquid in conventional, concave-faced acoustic lenses, use of shear waves was very difficult.
However, the use of a thin layer of viscous coupling liquid in conjunction with an acoustic lens according to the invention is tolerable. A major advantage is that the velocity of a shear wave is approximately half the velocity of a longitudinal wave, so that the theoretical resolution is doubled. Another advantage is that shear waves can be used in a direct study of anisotropy, such as that of crystals within materials, and the disposition of different stereo-isomers of a high polymeric material within a spherulite.
The lens will usually be of circular crosssection perpendicular to the axis A, but the lens may also be of square or other cross-section.
A lens according to the invention may be made of the materials conventional in scanning acoustic microscopy, such as fused quartz or sapphire. In such a material, the velocity of sound is high, and usually the lens will be used to provide an acoustic image of a material having a similarly high acoustic velocity, such as investigation of an integrated circuit, or for crack detection in metals.
Alternatively, the lens may be made of a high polymeric material such as polyethylene or polymethylmethacrylate, in which the velocity of sound is low, but which provide a good impedance match to water, the most frequently used coupling liquid.

Claims (14)

Claims
1. Apparatus for focussing or collimating a beam of acoustic radiation comprising a body of material capable of transmitting acoustic radiation and having a first surface with an electro-acoustic transducer coupled thereto, a second surface remote from said first surface for propagation of acoustic radiation between said body and an acoustic transmission medium in contact with said second surface and a third surface co-operable with said first surface to focus said acoustic radiation externally to said body and beyond said second surface.
2. Apparatus for focussing or collimating a beam of acoustic radiation as claimed in Claim 1 wherein said electro-acoustic transducer is adapted to generate acoustic radiation.
3. Apparatus for focussing or collimating a beam of acoustic radiation as claimed in Claim 1 wherein said electro-acoustic transducer is adapted to receive acoustic radiation.
4. Apparatus for focussing or collimating a beam of acoustic radiation as claimed in any one of Claims 1 to 3 wherein said first surface is substantially plane and parallel to said second surface and said third surface is substantially parabloid.
5. Apparatus for focussing or collimating a beam of acoustic radiation as claimed in any one of Claims 1 to 3 wherein said first surface is concave and has an outer annulus of frustoconical form and said third surface is also frustoconical.
6. Apparatus for focussing or collimating a beam of acoustic radiation as claimed in any one of Claims 1 to 3 wherein said first surface is convex and of smaller area than the second surface and said third surface is frusto-conical.
7. Apparatus for focussing or collimating a beam of acoustic radiation as claimed in any one of the preceding claims wherein said material is aluminium.
8. Apparatus as claimed in any one of the preceding claims 1 to 6 wherein said material is sapphire.
9. Apparatus as claimed in any one of the preceding claims 1 to 6 wherein said material is quartz.
10. Apparatus as claimed in any one of the preceding claims 1 to 6 wherein said material is a high polymeric plastics material.
11. A scanning acoustic microscope including apparatus for focussing or collimating a beam of acoustic radiation as claimed in any one of the preceding claims.
12. A transmission-mode scanning acoustic microscope as claimed in Claim 11 incorporating a first device for generating and focussing a beam of acoustic radiation and a second device for collimating a receiving said beam.
1 3. A reflection-mode scanning acoustic microscope as claimed in Claim 11 incorporating a common device for generating a focussing beam of acoustic radiation and also for collimating and receiving said beam.
14. Apparatus substantially as herein described with reference to and as shown in the accompanying drawings.
GB08324778A 1982-09-23 1983-09-15 Acoustic lens Expired GB2127657B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
GB08324778A GB2127657B (en) 1982-09-23 1983-09-15 Acoustic lens

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB8227166 1982-09-23
GB08324778A GB2127657B (en) 1982-09-23 1983-09-15 Acoustic lens

Publications (3)

Publication Number Publication Date
GB8324778D0 GB8324778D0 (en) 1983-10-19
GB2127657A true GB2127657A (en) 1984-04-11
GB2127657B GB2127657B (en) 1986-05-29

Family

ID=26283925

Family Applications (1)

Application Number Title Priority Date Filing Date
GB08324778A Expired GB2127657B (en) 1982-09-23 1983-09-15 Acoustic lens

Country Status (1)

Country Link
GB (1) GB2127657B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2633202A1 (en) * 1988-06-27 1989-12-29 Gaboriaud Paul ELECTROSTATIC TRIPLET
GB2221303A (en) * 1988-07-27 1990-01-31 Olympus Optical Co Acoustic lens apparatus
DE4041063A1 (en) * 1990-12-20 1992-06-25 Siemens Ag Removal of artificial joints - with focussed ultrasonic head to loosen cement around joint support
WO2008149879A1 (en) * 2007-05-30 2008-12-11 Panasonic Corporation Ultrasonic receiver

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2633202A1 (en) * 1988-06-27 1989-12-29 Gaboriaud Paul ELECTROSTATIC TRIPLET
WO1990000094A1 (en) * 1988-06-27 1990-01-11 Union Laitiere Normande An ultrasonic emitter and a device for focussing ultrasonic emissions
GB2221303A (en) * 1988-07-27 1990-01-31 Olympus Optical Co Acoustic lens apparatus
US4967873A (en) * 1988-07-27 1990-11-06 Olympus Optical Co., Ltd. Acoustic lens apparatus
DE4041063A1 (en) * 1990-12-20 1992-06-25 Siemens Ag Removal of artificial joints - with focussed ultrasonic head to loosen cement around joint support
WO2008149879A1 (en) * 2007-05-30 2008-12-11 Panasonic Corporation Ultrasonic receiver
US8042398B2 (en) 2007-05-30 2011-10-25 Panasonic Corporation Ultrasonic receiver
CN101578652B (en) * 2007-05-30 2012-05-23 松下电器产业株式会社 Ultrasonic receiver

Also Published As

Publication number Publication date
GB2127657B (en) 1986-05-29
GB8324778D0 (en) 1983-10-19

Similar Documents

Publication Publication Date Title
US4391281A (en) Ultrasonic transducer system and method
US5565628A (en) Ultrasonic transducer with backing layer and acoustic matching layer having electrorheological fluid therein
US5099693A (en) Apparatus for investigating a sample with ultrasound
US4961176A (en) Ultrasonic probe
US4550609A (en) Acoustic lens
US4779241A (en) Acoustic lens arrangement
JPS6035254A (en) Acoustic microscope
US5381695A (en) Apparatus for investigating a sample with ultrasound
US4509153A (en) Resolution transducers, systems and methods for the transmission and/or reception of waves propagated by vibration
GB2127657A (en) Acoustic lens
GB2041697A (en) Ultrasonic scanning head
JPH03113362A (en) Conical ultrasonic wave deflector
FR1451813A (en) Improvements to ultrasonic scanning generators
US4566333A (en) Focusing ultrasonic transducer element
JPH08261997A (en) Surface wave probe
GB1602741A (en) Acoustic test devices
Chakroun et al. Ultrasonic nondestructive testing with time reversal mirrors
GB2091520A (en) Ultrasonic Probe
JPS634142B2 (en)
US4881618A (en) Acoustic lens for use in acoustic microscope
JPS5831200Y2 (en) ultrasonic focusing lens
EP0033751A1 (en) Ultrasonic transducer using ultra high frequency
Farnell et al. Planar acoustic microscope lens
Knollman et al. Experimental Hydroacoustic Imaging System
JPS61186850A (en) Acoustic wave probe

Legal Events

Date Code Title Description
PCNP Patent ceased through non-payment of renewal fee