JPS6294955A - Element isolation - Google Patents

Element isolation

Info

Publication number
JPS6294955A
JPS6294955A JP23575785A JP23575785A JPS6294955A JP S6294955 A JPS6294955 A JP S6294955A JP 23575785 A JP23575785 A JP 23575785A JP 23575785 A JP23575785 A JP 23575785A JP S6294955 A JPS6294955 A JP S6294955A
Authority
JP
Japan
Prior art keywords
film
silicon
trenches
oxide film
trench
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23575785A
Other languages
Japanese (ja)
Other versions
JPH0531825B2 (en
Inventor
Nobuhiro Endo
遠藤 伸裕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP23575785A priority Critical patent/JPS6294955A/en
Publication of JPS6294955A publication Critical patent/JPS6294955A/en
Publication of JPH0531825B2 publication Critical patent/JPH0531825B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a flat construction by a method wherein a deposit is placed only on the sidewalls of trenches and the trenches are embedded from their both sides by combining a plasma CVD method having a good step coating property with a reactive ion etching technique capable of vertically etching. CONSTITUTION:A resist pattern to form trench isolating regions therein is formed and thereafter, a silicon nitride film 13, a silicon oxide film 12 and a silicon substrate 11 are etched in a vertical state using a reactive ion etching technique. By this way, trenches 4 having a depth of about 5mum are formed. After a resist film is removed, a thermal oxide film 15 and a silicon oxide film 16 are continuously formed. Then, silicon tetrachloride-oxygen mixed gas is introduced in a parallel plate plasma etchign device and pressure is set at 3-5Pa. At the time of high-frequency power =0.05W/cm<2> and the flow rate ratio of SiCl4/H2=1-2, the film thickness of an amorphous silicon film in the vertical direction becomes zero. When a plasma discharge is generated using these conditions, the trenches can be filled almost flatly and completely with an amorphous silicon film 17 deposited from the sidewalls of the trenches.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置の素子分離方法、特にトレンチ分離
におけるトレンチ内への埋込み方法に関するものである
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for isolating elements in a semiconductor device, and particularly to a method for embedding in a trench in trench isolation.

〔従来の技術〕[Conventional technology]

素子を高集積化するには、スケーリング則にしたがって
素子全構成する部分のパターンを微細化しなけnばなら
ない。しかし、従来実用されていた選択酸化法(LOG
O8)はバーズビークと呼ばれる酸化膜の素子領域への
喰い込み現象を生じるため、2μm以下の微細素子分離
@を形成することが困難となりてきた。そこで、シリコ
ン基板に微細な幅をもつ垂直状の溝を設け、その溝壁に
絶縁膜全形成した後、多結晶シリコンや絶縁膜を用いて
溝内を充填するトレンチ分離法が提案された(ジャパニ
ーズ・ジャーナル・オプ・アゲライド・フィシ4yクス
、 (Japan、 J、 Appl@Phys、 5
upp1. 。
In order to achieve high integration of devices, it is necessary to miniaturize the patterns of all the components of the device according to the scaling law. However, the selective oxidation method (LOG
O8) causes a phenomenon called bird's beak in which the oxide film digs into the element region, making it difficult to form a fine element isolation of 2 μm or less. Therefore, a trench isolation method was proposed in which a vertical trench with a fine width is formed in a silicon substrate, an insulating film is completely formed on the trench wall, and then the inside of the trench is filled with polycrystalline silicon or an insulating film ( Japanese Journal of Agelide Phys4yx, (Japan, J, Appl@Phys, 5
upp1. .

21−1 、37 、1982) )。21-1, 37, 1982)).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

微細幅のトレンチを平坦に充填するには、段差被覆性の
優れたLPCVD(Low Pressure Che
micalVapor Deposition)法が一
般的に用いられ、トレンチ幅寸法程度の膜厚の多結晶シ
リコン全全面に堆積していた。その後、垂直方向に強く
エツチングを起こす反応性イオンエツチング法によりて
多結晶シリコン全均一にエッチ・マッグすると、溝内に
のみ多結晶シリコンが残る。さらに熱酸化することによ
って多結晶シリコンの表面のみを酸化し、フィールド領
域が形成さnる。このように従来法では、トレンチを多
結晶シリコンで埋込むために膜堆積とエツチングの2段
階の工程を必要とし、しかもエッチバックする時溝内の
みに多結晶シリコン全残るようにエツチング全土めなけ
ればならないという制御性の点(C欠点がおった。
In order to fill trenches with a fine width evenly, LPCVD (Low Pressure Chemistry), which has excellent step coverage, is used.
The chemical vapor deposition (mical vapor deposition) method is generally used to deposit polycrystalline silicon over the entire surface with a film thickness approximately equal to the width of the trench. Thereafter, when the entire polycrystalline silicon is uniformly etched and mapped using a reactive ion etching method that strongly etches in the vertical direction, the polycrystalline silicon remains only in the grooves. Further, by thermal oxidation, only the surface of the polycrystalline silicon is oxidized, and a field region is formed. In this way, the conventional method requires a two-step process of film deposition and etching to fill the trench with polycrystalline silicon, and in addition, when etching back, the entire etching must be done so that all of the polycrystalline silicon remains only within the trench. There was a defect in controllability (C).

本発明の目的はこの問題点全解決した素子分離の形成方
法を提供するととKある。
An object of the present invention is to provide a method for forming element isolation that completely solves these problems.

〔問題点全解決するための手段〕[Means to solve all problems]

本発明の要旨とするところは、平行平板型プラズマエツ
チング装置内に堆積すべき元素を含むハロゲン化化合物
るるいぼ水素化化合物の気体とノ・【v )fンガスあ
るいは水素ガスと?少くとも加えた混合気体?導入し、
前記堆積すべき元素からなる薄膜の堆積速度と前記堆積
物を−直にエツチングする速度と全等しくする条件の下
でプラズマ放電全行い、l・レンチへのみ前記堆積物を
埋込むことKある。
The gist of the present invention is that a gas of a halogenated compound, a hydrogenated compound containing an element to be deposited in a parallel plate plasma etching apparatus, and a gas or hydrogen gas? At least a mixed gas added? introduced,
Plasma discharge is carried out under conditions where the deposition rate of the thin film of the element to be deposited is completely equal to the rate of direct etching of the deposit, and the deposit is buried only in the l-trench.

すなわち、本発明はプラズマ装置内で被覆性のすぐれた
プラズマCVDと垂直エツチングとを同時にそしてバラ
ンス良く起こすことによってトレンチ側壁にのみ堆積物
を被着してトレンチを両側から埋込むことを特徴として
いる。
That is, the present invention is characterized in that plasma CVD with excellent coverage and vertical etching are performed simultaneously and in a well-balanced manner in a plasma apparatus, thereby depositing deposits only on the side walls of the trench and filling the trench from both sides. .

〔作 用〕[For production]

本発明の原理を第2囚〜第3図(a)、(b)l(e)
を用いて説明する。第2図は四塩化シラン(S 1C6
4)と水素との混合ガスにおける水素の混合割合とシリ
コンの堆積速度との関係を示したもので、基板温度が2
5℃と200℃の場合の結果を比較している。水素が少
ない場合にはプラズマ放電によって分解した塩素イオン
によってシリコンのエツチングが起こり易く、水素が増
えるにしたがい、塩素イオンは水素と結合して排気され
るため、シリコンの堆積が起こり始める。第2図におい
て工、チングtFff域′fcA、堆積速度が零付近の
領域をB、膜堆積の領域をCと表現したときにA、B、
Cそれぞれの模式的形状を第3図(a)、(bMc)に
断面図として示した。
The principles of the present invention are explained in Figures 2 to 3 (a), (b) and (e).
Explain using. Figure 2 shows silane tetrachloride (S 1C6
This figure shows the relationship between the mixing ratio of hydrogen and the silicon deposition rate in a mixed gas of 4) and hydrogen, and when the substrate temperature is 2.
The results at 5°C and 200°C are compared. When hydrogen is low, silicon is easily etched by chlorine ions decomposed by plasma discharge, and as hydrogen increases, chlorine ions combine with hydrogen and are exhausted, so silicon begins to accumulate. In Fig. 2, the area where the deposition rate is around zero is expressed as B, and the area of film deposition is expressed as C, where A, B,
The schematic shapes of each C are shown in cross-sectional views in FIGS. 3(a) and (bMc).

101Uシリコン基板、102はシリコン酸化膜、10
3はシリフン酸化嘆の開口部を示しているが、第3図(
a)に示すAの轡域では104のようにシリフン基板自
身、D−1:、ッチ:、、77″が生じ、第3図(cl
に示すCの領域では通常(リノラズマCVDと同様に無
定形シリコン膜106が段差の周囲金均−な膜厚で堆積
さ几る。しかるに、第3図(blに示すBの領域では、
均一な膜堆積と垂直方向のエツチングがバランスして起
こるため、段差の側壁部にのみシリコン膜105が堆積
している。さらにこの状態ヲ続けていくと側壁堆積物同
士が接触するようになり、開口部はほぼ完全に埋込ま几
る。
101U silicon substrate, 102 silicon oxide film, 10
3 shows the opening of the silicon oxidation hole;
In the area of A shown in a), the silicon substrate itself, D-1:, 77'', as shown in 104, is generated, and as shown in FIG.
In the region C shown in FIG.
Since uniform film deposition and vertical etching occur in balance, the silicon film 105 is deposited only on the sidewalls of the steps. If this state continues, the side wall deposits will come into contact with each other, and the opening will be almost completely buried.

また四塩化シランの代わりに二塩化シラン(S’ H2
CZ 2 ) 2用いた場合には水素に加えなくても膜
堆積奮起こすので、塩素ガス全同時に加えて堆積速度を
零にすることができる。
In addition, silane dichloride (S' H2
When CZ 2 ) 2 is used, film deposition is stimulated without adding hydrogen, so the deposition rate can be brought to zero by adding all chlorine gases at the same time.

〔実施例〕〔Example〕

以下、図示の実施例により本発明全説明するり第1図(
aドd) l″ttトレンチ分離するnチャネルMO8
FET cDIA造工程t/iす模式的断面図である。
Hereinafter, the present invention will be fully explained with reference to the illustrated embodiments, and FIG.
a do d) l″tt trench isolation n-channel MO8
FIG. 3 is a schematic cross-sectional view of the FET cDIA manufacturing process t/i.

p型シリコン基板11上に400Xの熱酸化膜12とi
 000Xのシリコン窒化膜13ヲ形成し、トレンチ分
離領域を形成すべきレジストパターンを形成した後、レ
ジストを1スクとして反応性イオンエツチング技術を用
いてシリコン窒化膜、シリコン酸化膜そして基板シリコ
ンを垂直状にエツチングする。こうして約5 Jim深
さのトレンチ14が形成さnる。レジスト膜全除去後、
15の熱酸化膜1000 Xと16のシリコン窒化膜5
00 X +連続して形成すると第1図(aJの構造が
得られる。次に本発明の主旨とするところの四塩化シリ
コン(stcz4)と水素(H2)との混合ガスを平行
平板プラズマエツチング装置に導入し、圧力を3〜5P
aに設定する。5tct4とH2との流量比は投入する
高周波電力に依存するが、0.05W/cm”の高周波
電力と5ict4/H2= 1〜2の流量比のときに垂
直方向の無定形シリコン膜厚はほぼ零になる。この条件
を用いてプラズマ放tk起こすとトレンチの側壁から堆
積した無定形シリコン17はトレンチをほぼ平坦にそし
て完全に充填することができ、しかも他の領域には全く
堆積されない。この状態を第1図(b)に示す。広い素
子分離領域上のシリコン窒化膜13ヲ通常の写真蝕刻技
術を用いて除去し、熱酸化を施すと広い分離領域上と充
填されたトレンチ上とに約5ooo Xのシリコン酸化
膜18が形成されフィールド酸化膜となる。トレンチ側
壁にはシリコン窒化膜16が被覆されているので、フィ
ールド酸化膜にはバーズ・ピークが生じない。こうして
第1図(e)の構造が得られる。次にシリコン窒化膜1
3と熱酸化膜12全全面的に除去し、改めてダート酸化
膜19ヲ形成した後、通常の多結晶シリコンダートプロ
セスを用いてnチャネルMO8FET ’に製造すると
第1図(d)の構造となる。ここに多結晶シリコンゲー
ト電極上20、砒素イオン注入によるソース・ドレイン
拡散領域を21、層間絶縁膜?22、コンタクト穴ヲ2
3、アルミニウム配線電極上24で示す。このようにし
て得られたMOSデバイスは良好な特性を示すことが電
気的な測定より確かめらnた。
400X thermal oxide film 12 and i on p-type silicon substrate 11
After forming a silicon nitride film 13 of 000X and forming a resist pattern for forming a trench isolation region, the silicon nitride film, silicon oxide film, and substrate silicon are vertically etched using reactive ion etching technology using the resist as one mask. Etching. In this way, a trench 14 having a depth of approximately 5 mm is formed. After completely removing the resist film,
15 thermal oxide film 1000X and 16 silicon nitride film 5
00 and increase the pressure to 3-5P.
Set to a. The flow rate ratio between 5tct4 and H2 depends on the input high frequency power, but when the high frequency power is 0.05 W/cm'' and the flow rate ratio is 5ict4/H2 = 1 to 2, the amorphous silicon film thickness in the vertical direction is approximately When plasma emission tk is generated using these conditions, the amorphous silicon 17 deposited from the sidewalls of the trench can fill the trench almost flatly and completely, and is not deposited in other areas at all. The state is shown in Fig. 1(b).When the silicon nitride film 13 on the wide isolation region is removed using ordinary photolithography and thermal oxidation is applied, the silicon nitride film 13 on the wide isolation region and the filled trench is removed. A silicon oxide film 18 with a thickness of about 500X is formed and becomes a field oxide film.Since the trench sidewall is coated with the silicon nitride film 16, no bird's peak occurs in the field oxide film. ) structure is obtained.Next, silicon nitride film 1
After removing the thermal oxide film 12 from the entire surface and forming a dirt oxide film 19 again, an n-channel MO8FET' is manufactured using a normal polycrystalline silicon dirt process, resulting in the structure shown in FIG. 1(d). . Here, there is a polycrystalline silicon gate electrode 20, a source/drain diffusion region 21 formed by arsenic ion implantation, and an interlayer insulating film? 22. Contact hole 2
3. Shown as 24 on aluminum wiring electrode. It was confirmed through electrical measurements that the MOS device thus obtained exhibited good characteristics.

本実施例では5tcz4とH2との混合系を用いたが、
S + H4とat2との混合系を用いても同様の効果
全書ることかできる。
In this example, a mixed system of 5tcz4 and H2 was used, but
A similar effect can also be obtained using a mixed system of S + H4 and at2.

〔発明の効果〕〔Effect of the invention〕

このように、本発明は段差被俊性の良いプラズマCVD
と垂直エツチング可能な反応性イオンエツチングとを組
合わせ友ものであるので、アスRクト此の大きなトレン
チにおいても同様に平坦に埋込むことができる。また、
本発明のプラズマ放電に用いられる高周波電力はバイア
ススパッタ時に投入さnる高周波電力の約10分の1以
下であるためイオン衝撃による素子への損傷は極めて小
さく、実質上問題にならない。
In this way, the present invention utilizes plasma CVD with good step resistance.
Since this method is a combination of etching and reactive ion etching that allows vertical etching, it is possible to fill trenches evenly even in large trenches. Also,
Since the high frequency power used in the plasma discharge of the present invention is about one-tenth or less of the high frequency power input during bias sputtering, damage to the element due to ion bombardment is extremely small and does not pose a substantial problem.

また本発明は従来方法に較べて2つの大きな利点を有す
る。第1はプロセス許容度が大きいことである。すなわ
ち、側壁堆積によってトレンチを丁度充填でき九時間を
2倍程反越えても充填さnた堆積物の形状は不変である
ので、ウニノ1内の均一性が非常に良好である。従来の
エッチバック工程はトレンチの充#j4膜厚に敏感であ
る几めウェハ内の均一性が低い。第2はトレンチ上に充
填さn丸物質は水素全20〜30%含有する低密度無定
形シリコンであるため、表面酸化時に水素が放出されて
熱酸化膜の体積膨張が少ない。このためシリコン基板上
の素子活性領域への応力が小さく素子の特性が向上する
。従来多結晶シリコンを充填した場合40001以上の
熱酸化膜は基板に応力を発生させ、積層欠陥を生じてい
た。
The present invention also has two major advantages over conventional methods. The first is high process tolerance. In other words, the shape of the filled deposit remains unchanged even after the trench is exactly filled by sidewall deposition, and the shape of the filled deposit remains unchanged even after about twice as much time as 9 hours, so that the uniformity within the trench 1 is very good. Conventional etch-back processes are sensitive to trench filling and film thickness, resulting in poor uniformity within the wafer. Second, since the n-circle material filled on the trench is low-density amorphous silicon containing 20 to 30% hydrogen, hydrogen is released during surface oxidation and the volume expansion of the thermal oxide film is small. Therefore, the stress on the element active region on the silicon substrate is reduced and the characteristics of the element are improved. Conventionally, when filled with polycrystalline silicon, a thermal oxide film of 40001 or more causes stress in the substrate and causes stacking faults.

本発明では高周波電力、放電圧力、ガスの種類、混会比
などのパラメータを独立に変化させることができるため
条件の最適化は容易知見つけることができるうえ、横方
向の堆積速度も10〜100100n’)捷で自由に可
変できる利点がある。
In the present invention, parameters such as high frequency power, discharge pressure, type of gas, and mixing ratio can be changed independently, so optimization of conditions can be easily found, and the lateral deposition rate can also be adjusted from 10 to 100100 nm. ') It has the advantage of being freely variable.

さらに本発明は室温から300℃の範囲で実施できるの
で、S1以外の半導体、例えばGaAsなとの■−■化
合物を用いた半導体装置の配線にも適用できることは明
らかである。
Furthermore, since the present invention can be carried out at temperatures ranging from room temperature to 300 DEG C., it is obvious that it can be applied to wiring of semiconductor devices using semiconductors other than S1, such as 1-2 compounds such as GaAs.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(aドd)はトレンチ分離を有したnチャネルM
O6FET を実施例とした製造工程を工程順に示す模
式的断面図、第2図は5tcz4とH2混合系における
H2濃度とシリコン堆積速度との関係を示しfc原理的
なグラフ、第3図(at、(bL(clは第2図中のエ
ツチング領域Aとバランス領域Bと膜堆積領域Cに相当
する]々ターン形状を示す模式的断面図をそれぞれ示す
。 11.101・・・シリコン基板、12.15.102
・・・シリコン熱酸化膜、13.16・・・シリコン窒
化膜、14・・・シリコン基板のトレンチ、103・・
・シリコン酸化膜の開口部、104・・・シリコン基板
のエツチング面、17,105・・・側壁部に堆積した
無定形シリコン、106・・・全面に堆積した無定形シ
リコン、18・・・フィールド酸化膜、19・・・ゲー
ト酸化膜、20・・・多結晶シリコンゲート電極、21
・・・ソース・ドレイン拡散領域、22・・・層間絶縁
膜、23・・・コンタクト穴、24・・・アルミニウム
配線電極。
Figure 1 (a and d) shows an n-channel M with trench isolation.
A schematic cross-sectional view showing the manufacturing process in order of steps using O6FET as an example. Figure 2 shows the relationship between H2 concentration and silicon deposition rate in a 5tcz4 and H2 mixed system. Figure 3 shows the fc principle graph. (bL (cl corresponds to the etching region A, balance region B, and film deposition region C in FIG. 2)) Each shows a schematic cross-sectional view showing a turn shape. 11.101...Silicon substrate; 12. 15.102
...Silicon thermal oxide film, 13.16...Silicon nitride film, 14...Silicon substrate trench, 103...
- Opening of silicon oxide film, 104... Etched surface of silicon substrate, 17, 105... Amorphous silicon deposited on side wall portion, 106... Amorphous silicon deposited on the entire surface, 18... Field Oxide film, 19... Gate oxide film, 20... Polycrystalline silicon gate electrode, 21
... Source/drain diffusion region, 22... Interlayer insulating film, 23... Contact hole, 24... Aluminum wiring electrode.

Claims (1)

【特許請求の範囲】[Claims] (1)トレンチ分離によって半導体装置の素子分離領域
を形成する方法において、平行平板型プラズマエッチン
グ装置内に堆積すべき元素を含むハロゲン化化合物ある
いは水素化化合物の気体と、ハロゲンガスあるいは水素
ガスとを少くとも加えた混合気体を導入し、前記堆積す
べき元素からなる薄膜の堆積速度と前記堆積膜を垂直に
エッチングする速度とを等しくする条件の下でプラズマ
放電を行い、トレンチへのみ前記堆積物を埋込むことを
特徴とする素子分離方法。
(1) In a method of forming an element isolation region of a semiconductor device by trench isolation, a gas of a halogenated compound or a hydride compound containing the element to be deposited and a halogen gas or hydrogen gas are mixed in a parallel plate plasma etching apparatus. A gas mixture added at least is introduced, and plasma discharge is performed under conditions that equalize the deposition rate of the thin film of the element to be deposited and the rate of vertical etching of the deposited film, thereby depositing the deposit only in the trench. An element isolation method characterized by embedding.
JP23575785A 1985-10-21 1985-10-21 Element isolation Granted JPS6294955A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23575785A JPS6294955A (en) 1985-10-21 1985-10-21 Element isolation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23575785A JPS6294955A (en) 1985-10-21 1985-10-21 Element isolation

Publications (2)

Publication Number Publication Date
JPS6294955A true JPS6294955A (en) 1987-05-01
JPH0531825B2 JPH0531825B2 (en) 1993-05-13

Family

ID=16990781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23575785A Granted JPS6294955A (en) 1985-10-21 1985-10-21 Element isolation

Country Status (1)

Country Link
JP (1) JPS6294955A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105431376A (en) * 2013-07-26 2016-03-23 3M创新有限公司 Method of making a nanostructure and nanostructured articles

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5513904A (en) * 1978-07-17 1980-01-31 Hitachi Ltd Semiconductor device and its manufacturing method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5513904A (en) * 1978-07-17 1980-01-31 Hitachi Ltd Semiconductor device and its manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105431376A (en) * 2013-07-26 2016-03-23 3M创新有限公司 Method of making a nanostructure and nanostructured articles

Also Published As

Publication number Publication date
JPH0531825B2 (en) 1993-05-13

Similar Documents

Publication Publication Date Title
US5578524A (en) Fabrication process of a semiconductor device with a wiring structure
JP3278562B2 (en) Method for manufacturing semiconductor device
JPH0744175B2 (en) Etching method
JPH02304947A (en) Manufacture of semicowductor device
US20030087512A1 (en) Method of manufacturing a semiconductor device
TWI819802B (en) Formation of bottom isolation
JPH10308360A (en) Manufacture of semiconductor device
US6441444B1 (en) Semiconductor device having a nitride barrier for preventing formation of structural defects
CA1208805A (en) Vertically isolated complementary transistors
US5183781A (en) Method of manufacturing semiconductor device
JPH08330423A (en) Manufacture of semiconductor device
US6720233B2 (en) Process for producing trench insulation in a substrate
JP2003508909A (en) Method for forming conductive silicide layer on silicon substrate and method for forming conductive silicide contact
US6673695B1 (en) STI scheme to prevent fox recess during pre-CMP HF dip
JPS6294955A (en) Element isolation
JP2002033381A (en) Formation method of element isolation insulating film and manufacturing method of semiconductor device
KR100524802B1 (en) Semiconductor device having contact plug formed using double selective epitaxial growth and method for fabrication of the same
KR100505629B1 (en) Method for filling a trench
JPH07135247A (en) Manufacture of semiconductor device
JPH1167890A (en) Manufacture of semiconductor device
JPH01129439A (en) Manufacture of semiconductor device
JP3191477B2 (en) Wiring structure and method of manufacturing the same
KR20020010816A (en) Method of forming contact in semiconductor device
JPH01173714A (en) Method of forming bridge contact
KR100348313B1 (en) Method for fabricating semiconductor device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term