JPS6293970A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS6293970A
JPS6293970A JP60234817A JP23481785A JPS6293970A JP S6293970 A JPS6293970 A JP S6293970A JP 60234817 A JP60234817 A JP 60234817A JP 23481785 A JP23481785 A JP 23481785A JP S6293970 A JPS6293970 A JP S6293970A
Authority
JP
Japan
Prior art keywords
wiring layer
electrode wiring
contact
region
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60234817A
Other languages
Japanese (ja)
Other versions
JPH0255953B2 (en
Inventor
Hirobumi Mishiro
三代 博文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60234817A priority Critical patent/JPS6293970A/en
Publication of JPS6293970A publication Critical patent/JPS6293970A/en
Publication of JPH0255953B2 publication Critical patent/JPH0255953B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42372Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out
    • H01L29/4238Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out characterised by the surface lay-out
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41758Source or drain electrodes for field effect devices for lateral devices with structured layout for source or drain region, i.e. the source or drain region having cellular, interdigitated or ring structure or being curved or angular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To prevent current from being concentrated to specific parts and suppress electromigration by a method wherein protruded parts of a source electrode wiring layer and a drain electrode wiring layer, whose base parts are enlarged, gear into each other and a gate electrode wiring layer is formed into zigzag shape. CONSTITUTION:A source electrode wiring layer 68 and a drain electrode wiring layer 70 are formed on a field insulating film 66 formed on a semiconductor substrate 52. A plurality of protruded parts 68a and 70a of the wiring layers 68 and 70, whose base parts are enlarged, gear into each other. A gate electrode wiring layer 56 is formed into zigzag shape. Current is applied to respective contacts 72 from an electric source pad through the wiring layer 68. At that time, larger current is applied to the wider base parts of the protruded part 68a than to the tip part. Therefore, the current is not concentrated and creation of electromigration phenomenon is avoided. The current applied to the contacts 72 flows from source regions 62 to the protruded parts 70a of the wiring layer 70 through drain regions 64 and is discharged into an output pads. Again at that time, larger current is applied to the base part of the protruded part 70a.

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の技術分野] 本発明は半導体装置に係り、特にいわゆるくし形構造の
絶縁ゲート電界効果l・ランジスタを右する半導体装置
に関する。 〔発明の技術的背景とその問題点〕 従来のCMO8半導体装置における電極取り出し部にJ
3けるPチャンネルの出力バツフ?トランジ支夕を第3
図、第4図に示す。半導体基板2上にはゲート絶縁膜4
を介してゲート電極配線層6が形成されている。ゲート
電極配線層6の平面形状は第3図に承りように手直ライ
ン状であり、かつジクリ゛り形状をしている。グー1〜
電極配線層6はコンタクト8を介して配線層10に接続
されている。グー1〜絶縁膜4をマスクとした不純物領
域12.1/1が半導体基板2表面に形成され、不純物
領域12.14下の半導体基板2表面はチャネル領域と
なっている。 半導体基板2上のフィールド絶縁膜16を介してソース
電極配線層18およびドレイン電極配線h’j 20が
形成されている。ソース電極配ti2層18およびドレ
イン電極配線層20は共にくし形彫状をしており、その
くし形彫状部分が互いに噛み合うように対置されている
1、ソース電極配線層18は電8≦1パッド(図示甘ず
)に接続されており、ドレイン電1fi Fti! F
i1層20は出力パッド(図示せず)に接続されている
。ソース電極配線層18はコンタクト22を介して不純
物領域12に接続されている。トレイン電極配線層20
はコンタクト24を介して不純物領1i!14に接続さ
れている。 かかる従来の半導体装置においては、電流は電源バッド
からソース電極配線層18に流れ込み、ソース電極配線
層18のくし形の凸形状部18aの各コンタクト22に
流れ込む。コンタクト22に流れ込んだ電流は不純物領
hi12から、ゲート電極配線層6下のチャネルを通っ
て周囲の不純物領域14に流れ込み、コンタクト24か
らドレイン電極配線層20のくし形の凸形状部20aに
流れ出?J′。流れ出した電流は凸形状部20aを流れ
、トレイン電極配線層20から出力パッドに流れ出ず。 従来の半導体装置では電流がこのように流れるため、ソ
ース電極配線層18の電源パッドに近い領域のコンタク
ト22およびドレイン電極配置層20の出力パッドに近
い領域のコンタク1−24には大きな電流が集中し、エ
レクトロマイグレーション現象が発生づ−るという問題
があった。、電極配線FJ18,20の厚さは配線部分
よりコンタクト部分の段差部分が特に薄くなっているた
め、大きな電界が集中すると、その薄い部分でアルミニ
ウムのマイグレーション現象(電子の移動)が起こリコ
ンタクト部22.24と電極配線層18゜20とが電気
的に分離された断線状態となる。 ひとつのコンタクトの抵抗が大きくなったり、断線した
すすると、その分の電流が他のコンタク1〜に流れ、そ
のコンタクトb不良状態となる。そして時間とともに出
ノj電流が減少し最終的には完全断線状態になってしま
う。 このように配線層のアルミニウムのエレク1−[1マイ
グレーシ1ン現象は大電流が流れる電極取り出し部にお
いて信頼性上大きな問題ど1.1っていた。 かかるアルミニウムのエレクI−ロマイグレーシ=lン
現象を防止するためには、ソース電極配線層18および
ドレイン電極配線層20の凸形状部18a、20aを十
分な電流を流すことができるにうに幅広にしなくてはな
らない。幅広に覆ればそれだ
[Technical Field of the Invention] The present invention relates to a semiconductor device, and more particularly to a semiconductor device including a so-called comb-shaped insulated gate field effect transistor. [Technical background of the invention and its problems] J
3rd P channel output buffer? 3rd transition support
It is shown in Fig. 4. A gate insulating film 4 is formed on the semiconductor substrate 2.
A gate electrode wiring layer 6 is formed through the gate electrode wiring layer 6. As shown in FIG. 3, the planar shape of the gate electrode wiring layer 6 is a straight line shape and a rectangular shape. Goo 1~
The electrode wiring layer 6 is connected to the wiring layer 10 via contacts 8. Impurity regions 12.1/1 are formed on the surface of the semiconductor substrate 2 using the insulating films 1 to 4 as masks, and the surface of the semiconductor substrate 2 below the impurity regions 12.14 serves as a channel region. A source electrode wiring layer 18 and a drain electrode wiring h'j 20 are formed on the semiconductor substrate 2 with a field insulating film 16 interposed therebetween. The source electrode wiring layer 18 and the drain electrode wiring layer 20 both have a comb-shaped shape, and are opposed to each other so that the comb-shaped portions interlock with each other. It is connected to the pad (not shown), and the drain voltage is 1fi Fti! F
The i1 layer 20 is connected to an output pad (not shown). Source electrode wiring layer 18 is connected to impurity region 12 via contact 22 . Train electrode wiring layer 20
through the contact 24 to the impurity region 1i! 14. In such a conventional semiconductor device, current flows from the power supply pad into the source electrode wiring layer 18 and into each contact 22 of the comb-shaped convex portion 18a of the source electrode wiring layer 18. The current flowing into the contact 22 flows from the impurity region hi12 through the channel under the gate electrode wiring layer 6 into the surrounding impurity region 14, and flows out from the contact 24 into the comb-shaped convex portion 20a of the drain electrode wiring layer 20? J′. The current flowing out flows through the convex portion 20a and does not flow out from the train electrode wiring layer 20 to the output pad. In conventional semiconductor devices, current flows in this way, so a large current is concentrated in the contacts 22 in the region of the source electrode wiring layer 18 near the power supply pad and in the contacts 1-24 in the region of the drain electrode arrangement layer 20 near the output pad. However, there was a problem in that electromigration phenomenon occurred. The thickness of the electrode wiring FJ18, 20 is particularly thinner at the step part of the contact part than the wiring part, so when a large electric field is concentrated, aluminum migration phenomenon (electron movement) occurs in the thin part and the recontact part 22, 24 and the electrode wiring layer 18.degree. 20 are electrically separated, resulting in a disconnected state. If the resistance of one contact becomes large or the contact becomes disconnected, the corresponding current flows to the other contacts 1 to 1, resulting in the contact b being in a defective state. Then, the output current decreases over time, and eventually the wire becomes completely disconnected. As described above, the electromagnetic migration phenomenon of the aluminum of the wiring layer has caused a serious problem in terms of reliability at the electrode lead-out portion through which a large current flows. In order to prevent such aluminum electromigrain phenomenon, the convex portions 18a and 20a of the source electrode wiring layer 18 and the drain electrode wiring layer 20 are made wide enough to allow a sufficient current to flow. Must-have. That's it if you cover it wide.

【)出力バッファの両トラ
ンジスタのエリア面積が増大し、チップリーイズが大き
くなり、ロス1−アップになるという問題があった。 〔発明の目的〕 本発明は上記事情を元売してなされな乙ので、デツプサ
イズを大きくすることなく特定部分に電流が集中せずア
ルミニウムのエレク:〜1−】マイグレーシー1ンを抑
制し、寿命の良い信頼性ある半導体装置を提供づること
を目的とする。 〔発明の概要〕 」二記目的を達成するために本発明による半導体装置は
、ソース電極配線層およびドレイン電極配線層の凸形状
部の基部を拡大し、噛み台ねりことにより、全体のデツ
プサイズを大きくすることなく、大ぎな電流が流れる部
分の電極配線層を幅広にしたことを特徴と1゛る。 またゲート電極配線層により分離された不純物領域の各
島状領域は、ソース電極配線層およびドレイン電極配線
層が接続されたコンタクト近傍の部分が幅広であること
が望ましい。 また」ンタク1−はソース電極配線層およびドレイン電
極配線層の凸形状部の基部に近くなるほど人さく形成さ
れることが望ましい。 さらに、ゲート電極配線層はジグザグ形状をしており、
このジグザグ形状は、ゲート電極配線層下のヂPネルγ
1域により分画1された!;、)状領域の面積がソース
およびドレイン電極配s!2層の凸形状部の基部に近く
イ1ろ稈人さく 1JるJ、うに変化りるピッチで形成
され℃いることが望ましい。 〔発明の実施例〕 本発明の一実施例によるCMO3′V導体装置のPチャ
ンネル出力バラツノ・1−ランジスタを第1図、第2図
に承り。なお、nチャンネルの出力バッフ71−ノンジ
スタtま第1図、第2図と対称的な+i4成であるため
図示を省略した。例えばN型の半導体基板52 J=に
は、例えば窒化膜からくべろグーl−絶縁膜54を介し
C例えばポリシリコンからなるゲート電極配線層56が
形成されている。グー1へ電極配線層556の平面形状
は第1図に示J J、・)に従来と同様に垂直ライン状
−C・あり、ジグザグ形状をし曲がり角が鈍角になって
いるため、グー1〜電極配線層56が1iil−面積に
、13いて長くて・き、電流をより多く取る事ができる
。複数のゲル1〜電(+配線層56は]ンタクト58を
介して配線層60に接続され−Cいる。 また半導体基板52表面にはp型の不純物領域62.6
4が形成されている。この不純物領域62.64はグー
1へ絶縁膜5)4のパターンをマスクとして自己整合的
に形成されており、ゲート絶縁膜54モの半導体基板5
2の表面はp f−trネル領域どなっている。すなわ
ちゲート絶縁膜54下のpヂャネル領域により島状の不
純物領域62゜64に分離されたことになる。不純物領
域62はトレイン領域となり、不純1カ領Vi64はソ
ース領域となる。 半導体基板52上のフィールド絶縁膜6Gを介してソー
ス電極配線層68 J5 J、びドレイン電極配線層7
0が形成されている。ソース?r2棒配線層68および
ドレイン電極配線層70は共に基部が拡大した複数の凸
形状部68a、70aを有してよ5つ、これら凸形状部
68aと凸形状部70aがHいに噛み合うように対置さ
れている。従来と異なり凸形状部68a、70aが基部
に近くなるほど幅広に4fつ−Cいる点に特徴がある。 従来と同様、ソース電極配線層68は電源パッド(図示
せず)に接続されこおり、ドレイン電極配線層70は出
力パッド(図示せず)に接続されている。 ソース電極配線V468は丁1ンタクト72を介してソ
ース領I11!62に接続されでいる。またドレイン電
極配線層70はコンタクト74を介してドレイン領域7
4に接続され又いる。」ンタク1−72はソース電極配
置!1lAW68の凸形状部G8aのJA 八llに近
くなるほどその平面形状が人さくaっている。 またコンタクト74−bドレイン電極配線位70の凸形
状部70aの基部に近くなろ(,1と−ぞの平面形状が
大きくなっている。 本実施例によれば、電流は電源パッドからソース電極配
線層68に流れ込み、基部が幅広の凸形状部68aに流
れ、各コンタク1−72に流れ込む。 このとき凸形状部5Qaの基部付近は先端よりも多くの
電流が流れる。これは基部付近はど多くのコンタク1−
に流れ込む電流流れ、先端付近になれば【よとんどの°
上流tより゛でにその前にあるコンタクトに流れ込んで
いるからである。本実施例ではより多くの電流が流れる
凸形状部68aの基部が幅広になっているので、従来の
J:うに電流が集中づることなく、アルミニウムのエレ
ク1〜ロマイグレーション現やの発生を防止できる。 コンタクト72に流れ込んだ電流はソース領域62から
、ゲート電極配線層56下のpチャネル領域を通って周
囲のドレイン領V1.64に流れ込む。 ドレイン領域64に流れ込んだ電流はコンタクトを介し
てトレイン電極配線層70の凸形状部70aに流れ出づ
−0流れ出した電流は凸形状部70aを流れ、ドレイン
電極配線層70から出力パッドに流れ出す。このとき凸
形状部70aの基部付近は先端よりも多くの電流が流れ
る。これは基部付近はど多くのコンタクl−から流れ出
した電流が流れるからである。木実7II!!例ではよ
り多くの’+1i流が流れる凸形状部7Qaの基部が幅
広になっているので、従来のように基部付近のコンタク
トに電流が集中することなく、アルミニウムのエレク1
〜ロマイグレーション現象の発生を防止できる。 このように本実施例では凸形状部の基部のコンタク1〜
に電流が集中づることがないのでアルミニ「クムのJレ
クトロマイグレーシ」ン現象の発生を防止できる。また
、ドレイン゛上極配線層およびソース電極配線層の凸形
状部が噛み合うような形状になっているので、凸形状部
の基部を幅広にしても全体的なチップ面積を増大さUる
ことがない。 また」ンタク1〜の平面形状も凸形状部の基部に行くほ
ど大きくなっているので、基部を幅広にしてもソース領
域とドレイン領域のコンタクト間の距離が艮くイ1らず
、これら]コンタクト間を流れる電流の抵抗を大きくす
ることがない。 本発明は上記実施例に限定されず種々の変形が可能であ
る。例えば上記実施例では凸形状部の幅が連続的に変化
するように形成されているが、幅が断続的に変化(J゛
るように階段状の平面形状にしてbよい。さらにコンタ
ク1〜の平面形状を1−記実施例のように変えることな
く、同一の大きさとしてもよい。ざらにゲート電極配線
層は従来のように直角のジグ瞥アゲ形状でもよく、また
ジグ奢アゲ形状にすることなく直線形状でもよい。 またゲート絶縁膜は窒化膜に限らず酸化膜でもよい。さ
らに上記実施例は0MO8であったが、NMO8にもP
MO8にも本発明を適用できることはいうまでもない。 〔発明の効果〕 以上の通り本発明によればチップ1ノイズを大きくする
ことなく、特定部分に電流が集中しないように構成する
ことができる。したがってアルミニウムのルクトロマイ
グレーション現象等により配線層が劣化して断線状態に
至ることなく、信頼性が向上できる。
[) There is a problem that the area of both transistors of the output buffer increases, the chip rise increases, and the loss increases by 1-up. [Object of the Invention] The present invention has been made in consideration of the above-mentioned circumstances, and therefore suppresses the migration of an aluminum electric current without increasing the depth size and preventing current from concentrating on a specific part. The purpose is to provide reliable semiconductor devices with a long life. [Summary of the Invention] In order to achieve the second object, the semiconductor device according to the present invention enlarges the bases of the convex portions of the source electrode wiring layer and the drain electrode wiring layer, and by bending the bases, the overall depth size is reduced. The feature is that the electrode wiring layer in the area where a large current flows is made wider without increasing the size. Further, it is desirable that each island region of the impurity region separated by the gate electrode wiring layer has a wide portion near the contact to which the source electrode wiring layer and the drain electrode wiring layer are connected. Further, it is preferable that the contact 1- is formed more inconspicuously as it approaches the base of the convex portion of the source electrode wiring layer and the drain electrode wiring layer. Furthermore, the gate electrode wiring layer has a zigzag shape,
This zigzag shape is caused by the dinel γ under the gate electrode wiring layer.
It was fractionated by 1 area! The area of the ;,)-shaped region is the source and drain electrode arrangement s! It is desirable that the pitch be formed near the base of the convex portion of the two layers at a pitch that changes from 1 to 1 to 1 to 1. [Embodiment of the Invention] FIGS. 1 and 2 show a P-channel output variable 1-transistor of a CMO 3'V conductor device according to an embodiment of the present invention. Note that since the n-channel output buffer 71 and the non-transistor t have a +i4 configuration symmetrical to those in FIGS. 1 and 2, illustration thereof is omitted. For example, a gate electrode wiring layer 56 made of polysilicon, for example, is formed on an N-type semiconductor substrate 52 J=, with an insulating film 54 ranging from a nitride film interposed therebetween. The planar shape of the electrode wiring layer 556 is shown in FIG. The electrode wiring layer 56 has an area of 13 mm and is long, so that a larger amount of current can be taken. A plurality of gels 1 to 56 are connected to the wiring layer 60 via contacts 58. Also, p-type impurity regions 62.6 are formed on the surface of the semiconductor substrate 52.
4 is formed. These impurity regions 62 and 64 are formed in a self-aligned manner using the pattern of the insulating film 5) 4 as a mask, and are formed on the semiconductor substrate 5 of the gate insulating film 54.
2 has a pf-tr channel region. That is, the p-channel region under the gate insulating film 54 separates the impurity regions into island-like impurity regions 62° and 64. The impurity region 62 becomes a train region, and the impurity region Vi64 becomes a source region. The source electrode wiring layer 68 J5 J and the drain electrode wiring layer 7 are formed on the semiconductor substrate 52 via the field insulating film 6G.
0 is formed. sauce? Both the r2 rod wiring layer 68 and the drain electrode wiring layer 70 have a plurality of convex portions 68a and 70a whose bases are enlarged, and these convex portions 68a and convex portions 70a engage with each other in an H-shaped manner. Opposite. Unlike the conventional structure, the convex portions 68a and 70a are 4f wide as they get closer to the base. As before, the source electrode wiring layer 68 is connected to a power supply pad (not shown), and the drain electrode wiring layer 70 is connected to an output pad (not shown). The source electrode wiring V468 is connected to the source region I11!62 via the contact 72. Further, the drain electrode wiring layer 70 is connected to the drain region 7 through a contact 74.
It is connected to 4. ”Tak 1-72 has a source electrode arrangement! The closer the convex portion G8a of 1lAW68 is to the JA8ll, the more conspicuous its planar shape becomes. In addition, the contact 74-b is located near the base of the convex portion 70a of the drain electrode wiring position 70 (the planar shape of the contacts 74-b and 1) is large. The current flows into the layer 68, flows into the convex portion 68a whose base is wide, and flows into each contact 1-72.At this time, more current flows near the base of the convex portion 5Qa than at the tip. Contact 1-
The current flowing into the
This is because it has already flowed into the contact in front of the upstream t. In this embodiment, since the base of the convex portion 68a through which more current flows is widened, the current does not concentrate as in the conventional case, and the occurrence of aluminum migration can be prevented. . The current flowing into the contact 72 flows from the source region 62 through the p-channel region under the gate electrode wiring layer 56 and into the surrounding drain region V1.64. The current flowing into the drain region 64 flows through the contact into the convex portion 70a of the train electrode wiring layer 70. The current flows through the convex portion 70a and flows out from the drain electrode wiring layer 70 to the output pad. At this time, more current flows near the base of the convex portion 70a than at the tip. This is because current flowing from many contacts l- flows near the base. Kinomi 7II! ! In the example, since the base of the convex portion 7Qa through which more '+1i current flows is wide, the current does not concentrate on the contact near the base as in the conventional case, and the aluminum electric
~The occurrence of romigration phenomenon can be prevented. In this way, in this example, the contacts 1 to 1 at the base of the convex portion are
Since the current is not concentrated on the aluminum plate, it is possible to prevent the aluminum ``Kum J Lectromigration Grain'' phenomenon from occurring. In addition, since the convex portions of the drain/upper electrode wiring layer and the source electrode wiring layer are shaped to mesh with each other, the overall chip area can be increased even if the base of the convex portion is widened. do not have. In addition, the planar shape of contact 1 becomes larger toward the base of the convex portion, so even if the base is made wider, the distance between the contacts in the source region and drain region does not change. It does not increase the resistance of the current flowing between the two. The present invention is not limited to the above embodiments, but can be modified in various ways. For example, in the above embodiment, the width of the convex portion is formed so as to change continuously, but it may be formed into a step-like planar shape so that the width changes intermittently. It is also possible to have the same size without changing the planar shape as in Embodiment 1.Roughly, the gate electrode wiring layer may have a right-angled jig-edge shape as in the conventional case, or it may have a jig-shape shape. In addition, the gate insulating film is not limited to a nitride film, but may also be an oxide film.Furthermore, although the above embodiment was 0MO8, NMO8 and P
It goes without saying that the present invention can also be applied to MO8. [Effects of the Invention] As described above, according to the present invention, it is possible to configure the device so that the current does not concentrate on a specific portion without increasing the chip 1 noise. Therefore, reliability can be improved without deteriorating the wiring layer and causing a disconnection state due to the lutromigration phenomenon of aluminum or the like.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例による半導体装置の平面図、
第2図は同半導体装置の八−直線断面図、第3図は従来
の半導体装置の平面図、第4図は同半導体装置のB−B
線断面図である。 2.52・・・半導体堰板、4,54・・・ゲート絶縁
膜、6.56・・・ゲート電極配Ft1層、8.58・
・・コンタクト、10.60・・・配線層、12.62
・・・ソース領域、14.64・・・ドレイン領域、1
6゜66・・・フィールド絶縁膜、18.68・・・ソ
ース電極配線層、18a、68a・・・凸形状部、20
゜70・・・トレイン電極配線層、20a、70a・・
・凸形状部、22.72・・・コンタクト、2C7/I
・・・コンタクト。
FIG. 1 is a plan view of a semiconductor device according to an embodiment of the present invention;
FIG. 2 is a cross-sectional view along the line 8 of the same semiconductor device, FIG. 3 is a plan view of the conventional semiconductor device, and FIG. 4 is a B-B of the same semiconductor device.
FIG. 2.52...Semiconductor dam plate, 4,54...Gate insulating film, 6.56...Gate electrode arrangement Ft1 layer, 8.58...
...Contact, 10.60...Wiring layer, 12.62
... Source region, 14.64 ... Drain region, 1
6゜66...Field insulating film, 18.68...Source electrode wiring layer, 18a, 68a...Convex shaped portion, 20
゜70...Train electrode wiring layer, 20a, 70a...
・Convex shape part, 22.72...Contact, 2C7/I
···contact.

Claims (1)

【特許請求の範囲】 1、半導体基板と、 この半導体基板上にフィールド絶縁膜を介して形成され
、基部が拡大した複数の凸形状部を有する第1の電極配
線層と、 前記半導体基板上に前記フィールド絶縁膜を介して形成
され、前記第1の電極配線層の凸形状部間の凹部にかみ
合う、基部が拡大した複数の凸形状部を有する第2の電
極配線層と、 前記半導体基板上に薄いゲート絶縁膜を介して形成され
、前記第1の電極配線層および前記第2の電極配線層の
凸形状部を横切る複数条のゲート電極配線層と、 前記第1の電極配線層および前記第2の電極配線層の凸
形状部下を含む前記半導体基板表面に形成され、前記ゲ
ート電極配線層下の前記半導体基板表面に形成されたチ
ャネル領域により複数の島状領域に分離された不純物領
域とを備え、 前記第1の電極配線層に前記不純物領域の島状領域がひ
とつおきに第1のコンタクトを介してそれぞれ接続され
、前記第2の電極配線層に前記不純物領域の残りの島状
領域が第2のコンタクトを介してそれぞれ接続されたこ
とを特徴とする半導体装置。 2、特許請求の範囲第1項記載の装置において、前記不
純物領域の各島状領域は、前記第1の電極配線層および
前記第2の電極配線層が接続された前記第1のコンタク
トおよび前記第2のコンタクト近傍の部分が幅広である
ことを特徴とする半導体装置。 3、特許請求の範囲第1項又は第2項記載の装置におい
て、前記第1のコンタクトは前記第1の電極配線層の凸
形状部の基部に近くなるほど大きく形成され、前記第2
のコンタクトは前記第2の電極配線層の凸形状部の基部
に近くなるほど大きく形成されていろことを特徴とする
半導体装置。 4.特許請求の範囲第1項乃至第3項のいずれかに記載
の装置において、前記ゲート電極配線層はジグザグ形状
をしており、このジグザグ形状は、前記チャネル領域に
より分離された島状領域の面積が前記第1及び第2の電
極配線層の凸形状部の基部に近くなる程大きくなるよう
に変化するピッチで形成されていることを特徴とする半
導体装置。
[Claims] 1. A semiconductor substrate; a first electrode wiring layer formed on the semiconductor substrate via a field insulating film and having a plurality of convex portions with enlarged bases; a second electrode wiring layer formed through the field insulating film and having a plurality of convex portions with enlarged bases that engage with recesses between the convex portions of the first electrode wiring layer; and on the semiconductor substrate. a plurality of gate electrode wiring layers formed through a thin gate insulating film and crossing the convex portions of the first electrode wiring layer and the second electrode wiring layer; an impurity region formed on the surface of the semiconductor substrate including the convex portion of the second electrode wiring layer and separated into a plurality of island-like regions by a channel region formed on the surface of the semiconductor substrate below the gate electrode wiring layer; Every other island-like region of the impurity region is connected to the first electrode wiring layer via a first contact, and the remaining island-like region of the impurity region is connected to the second electrode wiring layer. A semiconductor device characterized in that these are connected to each other via a second contact. 2. In the device according to claim 1, each island region of the impurity region is connected to the first contact to which the first electrode wiring layer and the second electrode wiring layer are connected; A semiconductor device characterized in that a portion near the second contact is wide. 3. In the device according to claim 1 or 2, the first contact is formed to be larger as it approaches the base of the convex portion of the first electrode wiring layer, and
A semiconductor device characterized in that the contact is formed larger closer to the base of the convex portion of the second electrode wiring layer. 4. In the device according to any one of claims 1 to 3, the gate electrode wiring layer has a zigzag shape, and the zigzag shape has an area of an island region separated by the channel region. is formed at a pitch that changes such that the closer to the base of the convex portion of the first and second electrode wiring layers, the larger the pitch is.
JP60234817A 1985-10-21 1985-10-21 Semiconductor device Granted JPS6293970A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60234817A JPS6293970A (en) 1985-10-21 1985-10-21 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60234817A JPS6293970A (en) 1985-10-21 1985-10-21 Semiconductor device

Publications (2)

Publication Number Publication Date
JPS6293970A true JPS6293970A (en) 1987-04-30
JPH0255953B2 JPH0255953B2 (en) 1990-11-28

Family

ID=16976847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60234817A Granted JPS6293970A (en) 1985-10-21 1985-10-21 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS6293970A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008527704A (en) * 2005-01-06 2008-07-24 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Thin film transistor array device
JP2009016686A (en) * 2007-07-06 2009-01-22 Toshiba Corp High frequency transistor
WO2009022509A1 (en) * 2007-08-10 2009-02-19 Mitsumi Electric Co., Ltd. Mos transistor and semiconductor integrated circuit device using the same
WO2010070824A1 (en) * 2008-12-19 2010-06-24 株式会社アドバンテスト Semiconductor device, method for manufacturing semiconductor device, and switch circuit

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008527704A (en) * 2005-01-06 2008-07-24 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Thin film transistor array device
JP2009016686A (en) * 2007-07-06 2009-01-22 Toshiba Corp High frequency transistor
WO2009022509A1 (en) * 2007-08-10 2009-02-19 Mitsumi Electric Co., Ltd. Mos transistor and semiconductor integrated circuit device using the same
JP2009044085A (en) * 2007-08-10 2009-02-26 Mitsumi Electric Co Ltd Mos transistor and semiconductor integrated circuit device using it
WO2010070824A1 (en) * 2008-12-19 2010-06-24 株式会社アドバンテスト Semiconductor device, method for manufacturing semiconductor device, and switch circuit
US8466566B2 (en) 2008-12-19 2013-06-18 Advantest Corporation Semiconductor device, method for manufacturing of semiconductor device, and switching circuit
TWI416704B (en) * 2008-12-19 2013-11-21 Advantest Corp Semiconductor device, production method of semiconductor device, and switch circuit
JP5656644B2 (en) * 2008-12-19 2015-01-21 株式会社アドバンテスト Semiconductor device, semiconductor device manufacturing method and switch circuit

Also Published As

Publication number Publication date
JPH0255953B2 (en) 1990-11-28

Similar Documents

Publication Publication Date Title
US11557587B2 (en) Semiconductor device and semiconductor package
US6555883B1 (en) Lateral power MOSFET for high switching speeds
US5637899A (en) Semiconductor device
JPS6286763A (en) Distributed field effect transistor structure
JPH07176693A (en) Input protective circuit
JP3774151B2 (en) Semiconductor device for ESD
JPS6293970A (en) Semiconductor device
JPH11168180A (en) Semiconductor device
JP3349029B2 (en) Semiconductor device
JP2002305300A (en) Power mos transistor
JPS62183555A (en) Semiconductor device
JPH05218438A (en) Mos transistor for electric power switching
JPH08213604A (en) Power mosfet
JP2004288873A (en) Semiconductor device
US11735655B2 (en) Semiconductor device
JP2538312B2 (en) Semiconductor integrated circuit
JPH0196966A (en) Field effect transistor
JP2973450B2 (en) Semiconductor device
JP2642000B2 (en) MOS integrated circuit device
JP3278534B2 (en) MOS gate type power semiconductor device and driving method thereof
JPH0559589B2 (en)
JPH0364931A (en) Mos type semiconductor device
JPH04186674A (en) Semiconductor device
JPH09153615A (en) High breakdown voltage semiconductor device
JP2018129544A (en) Semiconductor device