JPS6292388A - Semiconductor laser element - Google Patents

Semiconductor laser element

Info

Publication number
JPS6292388A
JPS6292388A JP60233049A JP23304985A JPS6292388A JP S6292388 A JPS6292388 A JP S6292388A JP 60233049 A JP60233049 A JP 60233049A JP 23304985 A JP23304985 A JP 23304985A JP S6292388 A JPS6292388 A JP S6292388A
Authority
JP
Japan
Prior art keywords
layer
semiconductor laser
gaas
refractive index
diffraction grating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60233049A
Other languages
Japanese (ja)
Inventor
Naohiro Suyama
尚宏 須山
Toshiro Hayakawa
利郎 早川
Kousei Takahashi
向星 高橋
Masafumi Kondo
雅文 近藤
Saburo Yamamoto
三郎 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP60233049A priority Critical patent/JPS6292388A/en
Publication of JPS6292388A publication Critical patent/JPS6292388A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To stabilize the longitudinal mode of a GaAlAs/GaAs group semiconductor laser element by forming superlattice structure onto a substrate. to which a diffraction grating is shaped, under constant conditions and continuously forming an active layer to the superlattice structure. CONSTITUTION:A first clad layer 2, an optical guide layer 3 having a superlattice structure consisting of at least two semiconductor films having different compositions, a GaAs active layer 4, a second clad layer 5 and a cap layer 6 are successively formed onto an N-GaAs substrate 1 to which a diffraction grating 20 is shaped where nc<ng<na holds in the equivalent refractive index ng of the layer 3, the refractive index nc of the layer 2 and the refractive index nq of the layer 4. An insulating layer 7 is formed onto the layer 6, and the layer 7 is removed in a striped manner in order to limit a light- emitting region. Electrodes 8, 9 are shaped, thus acquiring a semiconductor laser element.

Description

【発明の詳細な説明】 く技術分野〉 本発明は分子線エピタキシー(MBE)法を用いて製作
可能な縦モード安定化機構を有する半導体レーザ索子の
構造に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention relates to the structure of a semiconductor laser probe having a longitudinal mode stabilization mechanism that can be manufactured using molecular beam epitaxy (MBE).

〈従来の技術〉 近年、コンパクト・ディスク・プレーヤーやビデオ・デ
ィスク・プレーヤー、光ディスク・ファイル等半導体レ
ーザ索子の応用分野が急速に広がっている。これらの応
用機器がその高い性能および機能を発揮するため、半導
体レーザ素子は安定な光学特性を確保ずろ必要があり、
そのため、これらの機器に適用される半導体レーザ素子
は屈折率導波機構を備えている。実際、この屈折率導波
機構により′F導体レーザ素子の描モードは高度に安定
化され、ト記応I17機器lこ対してj、:1−f−分
な特性を有ずろに至っている。しかし、他の応用機器、
たとえば、レ ザ・ビーム・プリンターやレーザ応用計
測機器などでは、半導体レーザ素子の横モードばかりで
はなく、その縦モードについても高い安定性を要求する
ものが少なくない。この縦モード安定化に対しては、従
来より、DFB、DBRと呼ばれる分布帰還型の構造が
提案されており、InGaAsP/TnP系では光通信
用としてさかんに研究がなされている。
<Prior Art> In recent years, the fields of application of semiconductor laser probes, such as compact disc players, video disc players, and optical disc files, have been rapidly expanding. In order for these applied devices to demonstrate their high performance and functionality, semiconductor laser devices must ensure stable optical properties.
Therefore, semiconductor laser elements applied to these devices are equipped with a refractive index waveguide mechanism. In fact, due to this refractive index waveguide mechanism, the drawing mode of the F conductor laser element is highly stabilized, and it has reached the point where it has characteristics similar to j, :1-f- compared to the 17th device. However, other applied equipment,
For example, many laser beam printers and laser-applied measuring instruments require high stability not only in the transverse mode of the semiconductor laser element but also in its longitudinal mode. Distributed feedback structures called DFB and DBR have been proposed for stabilizing the longitudinal mode, and intensive research is being conducted on InGaAsP/TnP systems for use in optical communications.

しかし、GaA、i:As/GaAs系の材料ではA、
9を含む領域の表面が酸化しやすく、そのため、回折格
子形成のための中断により、回折格子を形成したGaA
4As上への再成長が困難であるという問題があり、実
用化には至っていない。
However, in GaA, i:As/GaAs materials, A,
The surface of the region containing 9 is easily oxidized, and therefore, the GaA that formed the diffraction grating is interrupted for the formation of the diffraction grating.
There is a problem that regrowth on 4As is difficult, so it has not been put into practical use.

すなわち、分布帰還型の半導体レーザ索子を作製するた
めには、通常、たとえば液相成長法を用い、第1クラッ
ド層の成長後、その結晶表面に分布帰還機構を作りつけ
るための回折格子を形成して、再び、光ガイド層、活性
層、第2クラッド層を成長するか、あるいは第1クラッ
ド層、活性層、光ガイド層まで成長の後、回折格子を形
成して再び第2クラッド層を成長するなど、回折格子形
成のため、結晶成長の中断が必要であり、このため回折
格子を形成した層上への再成長が困難となり、このこと
がGaA、9As/GaAs系において分布帰還型の半
導体レーザ素子が実用化されていない大きな理由の1つ
である。
That is, in order to fabricate a distributed feedback type semiconductor laser probe, for example, a liquid phase growth method is usually used, and after the first cladding layer is grown, a diffraction grating for creating a distributed feedback mechanism is formed on the crystal surface. The first cladding layer, the active layer, and the second cladding layer are grown again, or after the first cladding layer, the active layer, and the second cladding layer are grown, a diffraction grating is formed and the second cladding layer is grown again. In order to form a diffraction grating, it is necessary to interrupt the crystal growth, such as growing a diffraction grating, and this makes it difficult to re-grow the layer on which the diffraction grating was formed. This is one of the major reasons why semiconductor laser devices have not been put into practical use.

〈発明の目的〉 本発明は、上述の事情に鑑み、結晶成長法として分子線
エピタキシー法を用いて、分布帰還型による縦モードの
安定化がなされたGaA克As/GaAs系半導体レー
ザ素子を提供することを目的とするものである。
<Object of the Invention> In view of the above-mentioned circumstances, the present invention provides a GaAs/GaAs semiconductor laser device in which the longitudinal mode is stabilized by a distributed feedback type using molecular beam epitaxy as a crystal growth method. The purpose is to

〈発明の構成〉 本発明者等は種々の実験により、分子線エピタキシー法
においては、回折格子を形成した基板上にある条件のも
とて超格子構造を形成したときに、適切な厚さの超格子
を成長した後ではその表面では回折格子は消滅し、はと
んど平坦な表面が得られることを見い出した。
<Structure of the Invention> Through various experiments, the present inventors have found that in the molecular beam epitaxy method, when a superlattice structure is formed under certain conditions on a substrate on which a diffraction grating is formed, an appropriate thickness can be obtained. We found that after growing a superlattice, the diffraction grating disappears on its surface, resulting in an almost flat surface.

本発明はこの現象を利用しており、本発明の半導体レー
ザ素子はGaAlAs/GaAs系で、回折格子を形成
した半導体基板上に順次第1クラッド層、光ガイド層、
活性層、第2クラッド層を分子線エピタキシー法で積層
し、かつ、前記光ガイド層を異なる組成を有する少なく
とも2つの半導体膜から成る超格子構造により構成し、
前記光ガイド層の等価的な屈折率および前記第1クラッ
ド層、前記活性層の屈折率をそれぞれn2. nc、 
naとするとき、nc<ng<naであるようにしたこ
とを特徴としている。
The present invention utilizes this phenomenon, and the semiconductor laser device of the present invention is a GaAlAs/GaAs-based semiconductor laser device, which is formed by sequentially forming a cladding layer, a light guide layer, and a light guide layer on a semiconductor substrate on which a diffraction grating is formed.
The active layer and the second cladding layer are laminated by a molecular beam epitaxy method, and the optical guide layer is configured with a superlattice structure consisting of at least two semiconductor films having different compositions,
The equivalent refractive index of the light guide layer and the refractive indexes of the first cladding layer and the active layer are respectively n2. nc,
It is characterized in that, when na, nc<ng<na.

こうすることにより、半導体層の成長の中断がないため
、GaA/As/GaAs系においても縦モードの安定
した分布帰還型の半導体レーザ索子が 。
By doing this, there is no interruption in the growth of the semiconductor layer, so even in the GaA/As/GaAs system, a distributed feedback type semiconductor laser probe with a stable longitudinal mode can be obtained.

容易に得られる。easily obtained.

〈実施例〉 第1図に、本発明の一実施例を模式的に示す。<Example> FIG. 1 schematically shows an embodiment of the present invention.

回折格子が形成されたn−GaAs基板I上にn−Ga
   A4  As第1クラッド層2、Gag、70.
7  0.3 A克。、3AsとGaAsとから成る超格子構造を有す
る光ガイド層3、GaAs活性層4、p−Ga0.65
AZo、35AS第2クラッド層5、p−GaAsキャ
ップ層6が順次形成されている。前記光ガイド層3の等
価的な屈折率および前記第1クラッド層2、前記活性層
4の屈折率をそれぞれng、 nc、 n。
n-GaAs substrate I on which a diffraction grating is formed
A4 As first cladding layer 2, Gag, 70.
7 0.3 A. , a light guide layer 3 having a superlattice structure composed of 3As and GaAs, a GaAs active layer 4, p-Ga0.65
A second cladding layer 5 of AZo, 35AS, and a p-GaAs cap layer 6 are formed in this order. The equivalent refractive index of the light guide layer 3 and the refractive indices of the first cladding layer 2 and the active layer 4 are ng, nc, and n, respectively.

とするとき、nc<ng<naであるようにしている。When nc<ng<na.

こうすることにより、光は損失なく有効に導波される。By doing so, the light is effectively guided without loss.

p−GaAsキャップ層6上には、絶縁層として5iO
p層7が化学的気相析出法(CVD法)により形成され
ており、発光領域を限定するため、このS I Ox層
7は、3μm幅でストライプ状に除去されている。さら
に、電極としてn−GaAs基板1側にはAuGa/N
i電極8がp−GaAsキャップ層6側には、AuZn
電極9が蒸着法により形成されている。
On the p-GaAs cap layer 6, 5iO is formed as an insulating layer.
The p layer 7 is formed by a chemical vapor deposition method (CVD method), and in order to limit the light emitting region, this S I Ox layer 7 is removed in a stripe shape with a width of 3 μm. Furthermore, AuGa/N is used as an electrode on the n-GaAs substrate 1 side.
The i-electrode 8 is made of AuZn on the p-GaAs cap layer 6 side.
Electrode 9 is formed by a vapor deposition method.

次に、この第1図の実施例の半導体レーザ素子について
、その作製方法を第2図(A)、(B)〜第7図(A)
、(B)を用いて述べる。
Next, the manufacturing method for the semiconductor laser device of the embodiment shown in FIG. 1 will be explained in FIGS. 2(A), (B) to 7(A).
, (B).

第2図(A)、(B)はn−GaAs基板1であり、そ
の表面には、3600人ピッチで回折格子2゜が2光束
干渉法を用いて形成されている。このn−GaAs基板
1を分子線エピタキシー装置内に導G a o 、 7
A L o 3A S第1クラッド層2を1.5μmの
厚さで形成する。このとき、その表面は基板1に形成さ
れた回折格子20がほとんどそのまま保存されており、
第3図の示すような状態となっている。次に、この第1
クラッド層2」二に、第5図に示ずG aO,7Aji
jO,3As膜21約40人と、GaAs膜22約22
約15 ガイド層3を第4図に示すように形成する。このとき回
折格子の底部と頂部では成長レートが若干界なり、約3
000人の成長の後、回折格子構造はほとんど消滅し、
第4図に示すようなほとんど平坦な表面が得られる。こ
の光ガイド層3は、第5図に示すように、GaO.7”
0.3ΔS膜21とGaAs膜22の超格子構造により
平坦化している。さらにこれに引き続いて、第6図(A
)、(B)に示すように、GaAs活性層4を700人
、p”0.65A ’0.35As第2クラッド層5を
1μm,  p−GaAsキャップ層6を5000人形
成の後、これを分子線エピタキシー装置からとり出す。
FIGS. 2A and 2B show an n-GaAs substrate 1, on the surface of which diffraction gratings 2° are formed at a pitch of 3600 by using a two-beam interferometry method. This n-GaAs substrate 1 is introduced into a molecular beam epitaxy apparatus.
A L o 3A S first cladding layer 2 is formed to have a thickness of 1.5 μm. At this time, the diffraction grating 20 formed on the substrate 1 remains almost intact on its surface.
The state is as shown in FIG. Next, this first
The cladding layer 2 is made of GaO, 7Aji (not shown in FIG. 5).
jO,3As film 21 about 40 people and GaAs film 22 about 22 people
Approximately 15 minutes guide layer 3 is formed as shown in FIG. At this time, the growth rate is slightly different at the bottom and top of the diffraction grating, about 3
After the growth of 000 people, the grating structure almost disappears,
An almost flat surface as shown in FIG. 4 is obtained. As shown in FIG. 5, this light guide layer 3 is made of GaO. 7”
Flattening is achieved due to the superlattice structure of the 0.3ΔS film 21 and the GaAs film 22. Further, following this, Figure 6 (A
), as shown in (B), after forming a GaAs active layer 4 of 700 layers, a p"0.65A '0.35As second cladding layer 5 of 1 μm, and a p-GaAs cap layer 6 of 5000 layers, Take out from the molecular beam epitaxy apparatus.

このときのウェハの構造は、第6図(A)、(B)に示
すようになっている。次に、キャップ層6上にCVD法
により5jOv層7を3000人形成の後、フォトリソ
グラフィ法により3μm幅でストライプ状に除去する。
The structure of the wafer at this time is as shown in FIGS. 6(A) and 6(B). Next, 3,000 layers of 5jOv layer 7 are formed on the cap layer 6 by CVD, and then removed in stripes with a width of 3 μm by photolithography.

最後に蒸着法によりn側電極8、p側電極9を形成し、
へき開法により個々の素子に分割する。
Finally, an n-side electrode 8 and a p-side electrode 9 are formed by vapor deposition,
Divide into individual elements by cleavage method.

このようにして作製した半導体レーザ索子では、超格子
構造を有する光ガイド層3の禁制帯幅および屈折率ng
は、超格子を構成する組成の異なる2つの半導体膜21
.22の組成および膜厚の選び方によって適切な値を得
ることができる。したがって、前述の式n。< ng 
< Haを充足できる。
In the semiconductor laser probe manufactured in this way, the forbidden band width and refractive index ng of the optical guide layer 3 having a superlattice structure are
are two semiconductor films 21 with different compositions forming a superlattice.
.. Appropriate values can be obtained by selecting the composition and film thickness of 22. Therefore, the above formula n. <ng
<Ha can be satisfied.

上記実施例では、しきい値電流150mAで発振が得ら
れ、その縦モードは光出力5mW以上まで同−縦モード
を維持した。また、縦モードは温度変化に対しても極め
て安定しており、駆動電流を230mA に固定したと
き、15℃から50°Cまでモードポツプは観測されず
、この間の発振波長の変化率は0.65人/degと非
常に小さい値が得られた。
In the above example, oscillation was obtained at a threshold current of 150 mA, and the longitudinal mode was maintained at the same longitudinal mode up to an optical output of 5 mW or more. Furthermore, the longitudinal mode is extremely stable against temperature changes; when the drive current is fixed at 230 mA, no mode pops are observed from 15°C to 50°C, and the rate of change in the oscillation wavelength during this period is 0.65. A very small value of person/deg was obtained.

第8図は、本発明の別の実施例を示したもので、この実
施例では、本発明の主旨である縦モードの安定化に加え
て、第1クラッド層106と第3クラッド層108の間
に設けられたn−GaAs電流狭さく層107により、
ストライプ状に電流の狭さくを行うとともに、光吸収効
果による横モードの安定化も達成されており、これによ
り、縦モード、横モードとも極めて安定な半導体レーザ
素子が実現される。
FIG. 8 shows another embodiment of the present invention. In this embodiment, in addition to stabilizing the longitudinal mode, which is the gist of the present invention, the first cladding layer 106 and the third cladding layer 108 are With the n-GaAs current confinement layer 107 provided in between,
In addition to constricting the current in a stripe pattern, stabilization of the transverse mode is also achieved due to the light absorption effect, thereby realizing a semiconductor laser device that is extremely stable in both the longitudinal mode and the transverse mode.

なお、第8図においては、101はn−電極、+02は
n−GaAs基板、103は第1クラッド層、104は
超格子光ガイド層、105は活性層、109(よp−キ
ャップ層、110はp−電極である。
In FIG. 8, 101 is an n-electrode, +02 is an n-GaAs substrate, 103 is a first cladding layer, 104 is a superlattice optical guide layer, 105 is an active layer, 109 is a p-cap layer, 110 is the p-electrode.

〈発明の効果〉 以上より明らかなように、本発明によれば、縦モードが
安定であり、かつ、回折格子の形成に際して成長を中断
する必要がなく、また、活性層が超格子層に連続して形
成されていることにより、超格子バッファ層としての効
果が得られ、高品質な結晶層群からなる発光領域から成
る半導体レーザ素子が得られる。
<Effects of the Invention> As is clear from the above, according to the present invention, the longitudinal mode is stable, there is no need to interrupt growth when forming a diffraction grating, and the active layer is continuous with the superlattice layer. By being formed as a superlattice buffer layer, it is possible to obtain an effect as a superlattice buffer layer, and to obtain a semiconductor laser device having a light emitting region made of a group of high-quality crystal layers.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の1実施例の模式図、第2図(A)。 (B)は回折格子を形成した基板の側面図と正面図、第
3図(A)、(B)は第1クラッド層を成長した状態の
側面図と正面図、第4図(A)、(B)は光ガイド層ま
で成長した状態の側面図と正面図、第5図は光ガイド層
の構造模式図、第6図(A)、(B)はキャップ層まで
成長した状態の側面図と正面図、第7図(A)、(B)
は素子化が終了した状態の側面図と正面図、第8図は本
発明の別の実施例の模式%式% 3・・・光ガイド層、    4・・・GaAs活性層
、5 ・・’ I)  Gao.65A zO.35A
s第2クラッド層、6・・・p−GaAsキャップ層、 101−n−電極、   102− n−GaAs基板
、103・・・第1クラッド層、104・・・超格子光
ガイド層、105・・・活性層、    106・第2
クラッド層、107−GaAs電流狭さく層、 108・・・第3クラッド層、109・・p−ギャップ
層、110p−電極。 特 許 出 願 人  シャープ株式会社代 理 人 
弁理士 前出 葆 外2名菓 1 図 ○ 第ミヌ(A) 雰′7 丁(A) り67”J(B)
FIG. 1 is a schematic diagram of one embodiment of the present invention, and FIG. 2 (A). (B) is a side view and front view of the substrate on which the diffraction grating is formed, Figures 3 (A) and (B) are side views and front views of the state where the first cladding layer has been grown, Figure 4 (A), (B) is a side view and a front view of the state in which the light guide layer has grown, FIG. 5 is a schematic structural diagram of the light guide layer, and FIGS. 6 (A) and (B) are side views of the state in which it has grown to the cap layer. and front view, Fig. 7 (A), (B)
8 is a side view and a front view of a state in which device formation is completed, and FIG. 8 is a schematic % formula of another embodiment of the present invention. 3...Light guide layer, 4...GaAs active layer, 5...' I) Gao. 65A zO. 35A
s second cladding layer, 6... p-GaAs cap layer, 101-n-electrode, 102- n-GaAs substrate, 103... first cladding layer, 104... superlattice optical guide layer, 105.・Active layer, 106・2nd
Cladding layer, 107-GaAs current confinement layer, 108...Third cladding layer, 109...p-gap layer, 110p-electrode. Patent applicant: Sharp Corporation Agent
Patent attorney Previously mentioned 2 famous confections 1 Fig.

Claims (2)

【特許請求の範囲】[Claims] (1)半導体基板上に少なくとも第1クラッド層、光ガ
イド層、活性層、第2クラッド層が分子線エピタキシー
法により順次堆積されて成るGaAlAs/GaAs系
半導体レーザ素子であって、前記半導体基板には回折格
子が形成され、かつ、前記光ガイド層が異なる組成を有
する少なくとも2つの半導体膜から成る超格子構造によ
り構成され、前記光ガイド層の等価的な屈折率および前
記第1クラッド層、前記活性層の屈折率をそれぞれn_
g、n_c、n_aとするとき、 n_c<n_g<n_a であることを特徴とする半導体レーザ素子。
(1) A GaAlAs/GaAs-based semiconductor laser device in which at least a first cladding layer, an optical guide layer, an active layer, and a second cladding layer are sequentially deposited on a semiconductor substrate by molecular beam epitaxy, is formed of a superlattice structure in which a diffraction grating is formed, and the light guide layer is composed of at least two semiconductor films having different compositions, and the equivalent refractive index of the light guide layer, the first cladding layer, and the The refractive index of the active layer is n_
A semiconductor laser device characterized in that when g, n_c, and n_a, n_c<n_g<n_a.
(2)前記光ガイド層を形成している超格子構造におい
て、前記超格子構造を構成する複数の組成の異なる半導
体膜の少なくとも1つについて、その半導体膜の厚さが
100Å以下であることを特徴とする特許請求の範囲第
1項に記載の半導体レーザ素子。
(2) In the superlattice structure forming the optical guide layer, at least one of the plurality of semiconductor films having different compositions forming the superlattice structure has a thickness of 100 Å or less. A semiconductor laser device according to claim 1.
JP60233049A 1985-10-17 1985-10-17 Semiconductor laser element Pending JPS6292388A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60233049A JPS6292388A (en) 1985-10-17 1985-10-17 Semiconductor laser element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60233049A JPS6292388A (en) 1985-10-17 1985-10-17 Semiconductor laser element

Publications (1)

Publication Number Publication Date
JPS6292388A true JPS6292388A (en) 1987-04-27

Family

ID=16948995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60233049A Pending JPS6292388A (en) 1985-10-17 1985-10-17 Semiconductor laser element

Country Status (1)

Country Link
JP (1) JPS6292388A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03182724A (en) * 1989-12-08 1991-08-08 Internatl Business Mach Corp <Ibm> Light deflection element
JP2007258269A (en) * 2006-03-20 2007-10-04 Sumitomo Electric Ind Ltd Semiconductor optical element
JP2014220386A (en) * 2013-05-08 2014-11-20 富士通株式会社 Optical semiconductor device and method of manufacturing optical semiconductor device
JP2016184705A (en) * 2015-03-26 2016-10-20 富士通株式会社 Semiconductor optical element and manufacturing method of the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03182724A (en) * 1989-12-08 1991-08-08 Internatl Business Mach Corp <Ibm> Light deflection element
JP2007258269A (en) * 2006-03-20 2007-10-04 Sumitomo Electric Ind Ltd Semiconductor optical element
US7769065B2 (en) 2006-03-20 2010-08-03 Sumitomo Electric Industries Ltd. Semiconductor optical device
JP2014220386A (en) * 2013-05-08 2014-11-20 富士通株式会社 Optical semiconductor device and method of manufacturing optical semiconductor device
JP2016184705A (en) * 2015-03-26 2016-10-20 富士通株式会社 Semiconductor optical element and manufacturing method of the same

Similar Documents

Publication Publication Date Title
JPH04229689A (en) Light emitting semiconductor diode and its manufacture
JPH0656906B2 (en) Semiconductor laser device
JPS6292388A (en) Semiconductor laser element
JP2703784B2 (en) Semiconductor laser device
JPS61190994A (en) Semiconductor laser element
JPS6346590B2 (en)
JPS6273690A (en) Semiconductor laser element
JP2852663B2 (en) Semiconductor laser device and method of manufacturing the same
JPS59181587A (en) Semiconductor laser element and manufacture thereof
JP3132433B2 (en) Method for manufacturing disordered crystal structure, method for manufacturing semiconductor laser, and method for manufacturing semiconductor laser with window structure
JPH09129964A (en) Optical semiconductor device
JPH0642583B2 (en) Semiconductor laser device
JPH02252284A (en) Semiconductor laser array and manufacture thereof
JP3030932B2 (en) Manufacturing method of semiconductor fine structure
JPS6297390A (en) Semiconductor laser element
JPH04154184A (en) Semiconductor laser and manufacture thereof
JPS6332979A (en) Semiconductor laser
JPH0537070A (en) Manufacture of distributed feedback type semiconductor laser element
JPH0621579A (en) Manufacture of semiconductor laser element
JP2806533B2 (en) Semiconductor laser device
JP2810518B2 (en) Semiconductor laser device and method of manufacturing the same
JPH0228985A (en) Semiconductor laser and manufacture thereof
JPS61239686A (en) Semiconductor laser device and manufacture thereof
JPH03288489A (en) Distribution feedback semiconductor laser device
JPH0472787A (en) Semiconductor laser