JP2806533B2 - Semiconductor laser device - Google Patents

Semiconductor laser device

Info

Publication number
JP2806533B2
JP2806533B2 JP63267765A JP26776588A JP2806533B2 JP 2806533 B2 JP2806533 B2 JP 2806533B2 JP 63267765 A JP63267765 A JP 63267765A JP 26776588 A JP26776588 A JP 26776588A JP 2806533 B2 JP2806533 B2 JP 2806533B2
Authority
JP
Japan
Prior art keywords
layer
diffraction grating
type
semiconductor laser
forming layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63267765A
Other languages
Japanese (ja)
Other versions
JPH02114589A (en
Inventor
千登勢 坂根
治久 瀧口
裕章 工藤
聰 菅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP63267765A priority Critical patent/JP2806533B2/en
Publication of JPH02114589A publication Critical patent/JPH02114589A/en
Application granted granted Critical
Publication of JP2806533B2 publication Critical patent/JP2806533B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/2205Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/223Buried stripe structure
    • H01S5/2231Buried stripe structure with inner confining structure only between the active layer and the upper electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/24Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a grooved structure, e.g. V-grooved, crescent active layer in groove, VSIS laser

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は回折格子を有する半導体レーザ素子に関し,
特に,単一縦モードで660〜890nmの短波長にてレーザ発
振し得る分布帰還(Distributed Feedback:DFB)型半導
体レーザ素子または分布ブラッグ反射(Distributed Br
agg Reflector)型半導体レーザ素子に関する。
Description: TECHNICAL FIELD The present invention relates to a semiconductor laser device having a diffraction grating,
In particular, a distributed feedback (DFB) type semiconductor laser device capable of lasing at a short wavelength of 660 to 890 nm in a single longitudinal mode, or a distributed Bragg reflection (Distributed Br)
agg reflector) type semiconductor laser device.

(従来の技術) 光ファイバを利用した光情報伝送システムや光計測シ
ステムの光源として半導体レーザを利用する場合には,
半導体レーザが単一縦モードで発振する動作特性を有し
ていることが,光ファイバとの結合に際して該光ファイ
バからの反射光による雑音の低減させることができ,望
ましい。半導体レーザでは,共振器の反射鏡を,分光器
と同様の原理の回折格子で構成すれは,単一縦モード発
振が得られる。このような半導体レーザとしては,活性
領域あるいは活性領域に近接して周期的な凹凸状の回折
格子を形成した分布帰還(DFB)型半導体レーザ,およ
び分布ブラック反射(DBR)型半導体レーザが知られて
いる。
(Prior art) When a semiconductor laser is used as a light source of an optical information transmission system or an optical measurement system using an optical fiber,
It is desirable that the semiconductor laser has an operating characteristic of oscillating in a single longitudinal mode because noise due to reflected light from the optical fiber can be reduced when coupling with the optical fiber. In a semiconductor laser, a single longitudinal mode oscillation can be obtained if the reflection mirror of the resonator is constituted by a diffraction grating having the same principle as that of the spectroscope. As such semiconductor lasers, there are known a distributed feedback (DFB) type semiconductor laser in which an active region or a periodic uneven diffraction grating is formed near the active region, and a distributed black reflection (DBR) type semiconductor laser. ing.

特に660〜890nmの短波長のレーザ光を発振するDFB型
半導体レーザは,従来,AlGaAs系材料を中心として,MBE
法(分子線エピタキシ法),MOCVD法(有機金属分解気相
成長法),LPE法(液相エピタシキ法),あるいはLPE法
とMDCVD法の併用により製造されている。
In particular, DFB type semiconductor lasers that oscillate laser light with a short wavelength of 660 to 890 nm have been used in MBEs, mainly for AlGaAs-based materials.
It is manufactured by the method (molecular beam epitaxy), MOCVD (metal organic chemical vapor deposition), LPE (liquid phase epitaxy), or a combination of LPE and MDCVD.

AlGaAs/GaAs系材料を用いた780mm以下の短波長レーザ
光を発振するDFB型半導体レーザ素子の一例を第4図に
示す。該DFB型半導体レーザはp型GaAs基板41にn型GaA
s電流阻止相42を積層した後に,横モード制御と電流閉
じ込めのために,V溝をその底部がp型GaAs基板41に達す
るように形成する。次いで,該V溝内およびn型GaAsク
ラッド層42上にp型AlGaAsクラッド層43を表面が平坦に
なるように成長させた後,該p型AlGaAsクラッド層43上
に,p型AlGaAs活性層44,n型AlGaAsキャリアバリア層45,
およびn型AlGaAs光ガイド層46を順次積層し,該n型Al
GaAs光ガイド層46表面に,二光束干渉露光法等により凹
凸状の回折格子を形成する。そして,該n型AlGaAs光ガ
イド層46の回折格子上に,n型AlGaAsクラッド層47および
n型GaAsキャップ層48を順次積層する。その後,n型GaAs
キャップ層48上にn側のオートミック電極51を配設する
と共に,p型GaAs基板41にp側のオーミック電極52を配設
することにより,DFB型半導体レーザ素子が得られる。
FIG. 4 shows an example of a DFB semiconductor laser device that oscillates short-wavelength laser light of 780 mm or less using an AlGaAs / GaAs material. The DFB type semiconductor laser has an n-type GaAs substrate on a p-type GaAs substrate 41.
After stacking the s current blocking phase 42, a V-groove is formed so that its bottom reaches the p-type GaAs substrate 41 for transverse mode control and current confinement. Next, a p-type AlGaAs cladding layer 43 is grown in the V-groove and on the n-type GaAs cladding layer 42 so that the surface becomes flat, and then a p-type AlGaAs active layer 44 is formed on the p-type AlGaAs cladding layer 43. , n-type AlGaAs carrier barrier layer 45,
And an n-type AlGaAs optical guide layer 46 are sequentially laminated, and the n-type AlGaAs
An uneven diffraction grating is formed on the surface of the GaAs light guide layer 46 by a two-beam interference exposure method or the like. Then, an n-type AlGaAs cladding layer 47 and an n-type GaAs cap layer 48 are sequentially laminated on the diffraction grating of the n-type AlGaAs optical guide layer 46. After that, n-type GaAs
By arranging the n-side automic electrode 51 on the cap layer 48 and arranging the p-side ohmic electrode 52 on the p-type GaAs substrate 41, a DFB semiconductor laser device can be obtained.

このような構造のDFB型半導体レーザ素子は,AlGaAs光
ガイド層46上に回折格子を形成し,その回折格子上にAl
GaAsクラッド層47を積層している。しかし,AlGaAs光ガ
イド層46のように,Alを成分として含む結晶は空気中で
容易に酸化し瞬時に酸化膜を形成する性質を有する。こ
のため,AlGaAs光ガイド層46上に回折格子を形成する
と,該回折格子上に酸化膜が形成され,該AlGaAs光ガイ
ド層46上にAlGaAsクラッド層47を成長させることは容易
ではない。従って,AlGaAs/GaAs系材料を用いて回折格子
を有する発振波長が780mm以下の半導体レーザ素子は,
製造が容易ではない。
In the DFB semiconductor laser device having such a structure, a diffraction grating is formed on the AlGaAs light guide layer 46, and the Al grating is formed on the diffraction grating.
A GaAs cladding layer 47 is laminated. However, a crystal containing Al as a component, such as the AlGaAs light guide layer 46, has the property of being easily oxidized in air and instantaneously forming an oxide film. Therefore, when a diffraction grating is formed on the AlGaAs light guide layer 46, an oxide film is formed on the diffraction grating, and it is not easy to grow the AlGaAs cladding layer 47 on the AlGaAs light guide layer 46. Therefore, a semiconductor laser device with a diffraction grating using an AlGaAs / GaAs material and having an oscillation wavelength of 780 mm or less is required.
Not easy to manufacture.

回折格子の形成層として,AlGaAs結晶に替えてInGaAsP
結晶を用いたDFB型半導体レーザ素子も開発されてい
る。該DFB半導体レーザ素子は,第5図に示すように,
第4図に示したDFB型半導体レーザのn型AlGaAsキャリ
アバリア層45およびn型AlGaAs光ガイド層46に替えて,I
nGaAsP回折格子形成層53およびn型AlGaAsクラッド層54
がp型AlGaAs活性層44とn型AlGaAsクラッド層47との間
に順次積層されている。そして,該InGaAsP回折格子形
成層53表面に凹凸状の回折格子が形成されている。その
他の構成は第4図に示すDFB型半導体レーザ素子と同様
であるので,同一構成部分に第4図と同符号を付して説
明を省略する。
InGaAsP is used instead of AlGaAs crystal as the diffraction grating formation layer.
DFB semiconductor laser devices using crystals have also been developed. The DFB semiconductor laser device is, as shown in FIG.
Instead of the n-type AlGaAs carrier barrier layer 45 and the n-type AlGaAs optical guide layer 46 of the DFB semiconductor laser shown in FIG.
nGaAsP diffraction grating forming layer 53 and n-type AlGaAs cladding layer 54
Are sequentially laminated between the p-type AlGaAs active layer 44 and the n-type AlGaAs cladding layer 47. An uneven diffraction grating is formed on the surface of the InGaAsP diffraction grating forming layer 53. Other configurations are the same as those of the DFB semiconductor laser device shown in FIG. 4, and therefore, the same components are denoted by the same reference numerals as in FIG. 4 and description thereof is omitted.

このような構成のDFB型半導体レーザ素子は,回折格
子がInGaAsP回折格子形成層53に形成されるため,n型AlG
aAsクラッド層54が該InGaAsP回折格子形成層53上に容易
に成長させることができる。
In the DFB semiconductor laser device having such a configuration, since the diffraction grating is formed on the InGaAsP diffraction grating forming layer 53, the n-type AlG
The aAs cladding layer 54 can be easily grown on the InGaAsP diffraction grating forming layer 53.

(発明が解決しようとする課題) このようなInGaAsP回折格子形成層53を有するDFB型半
導体レーザ素子では,回折格子が形成された該InGaAsP
回折格子形成層53上にn型AlGaAsクラッド層54を積層す
ると,メルトバックにより,該InGaAsP回折格子形成層5
3の回折格子が侵蝕されるおそれがある。例えば,該InG
aAsP回折格子形成層53上に形成された回折格子が矩形波
形状であれば,メルトバックにより矩形の波形の角部が
侵蝕されて丸くなり,さらにメルトバクにより該波形が
侵蝕されると,三角波形形状になってしまう。このた
め,得られるDFB形半導体レーザでは,単一縦モード発
振が得られにくく,光ファイバとの結合効率が著しく低
下する。
(Problems to be Solved by the Invention) In a DFB semiconductor laser device having such an InGaAsP diffraction grating forming layer 53, the InGaAsP diffraction grating-formed InGaAsP
When an n-type AlGaAs cladding layer 54 is laminated on the diffraction grating forming layer 53, the InGaAsP diffraction grating forming layer 5 is melt-backed.
The diffraction grating 3 may be eroded. For example, the InG
If the diffraction grating formed on the aP diffraction grating formation layer 53 has a rectangular waveform, the corners of the rectangular waveform are eroded by meltback and rounded, and when the waveform is eroded by the melt back, a triangular waveform is formed. It becomes a shape. For this reason, in the obtained DFB semiconductor laser, it is difficult to obtain single longitudinal mode oscillation, and the coupling efficiency with the optical fiber is significantly reduced.

該DFB形半導体レーザでは,InGaAsP回折格子形成層53
に,実際に,ピッチ2500Å,高さ800Åの回折格子を形
成して,該InGaAsP回折格子形成層53上にAlGaAsクラッ
ド層54を成長させると,回折格子の高さは600Å程度に
減少し,回折格子の容積も,AlGaAsクラッド層54の積層
前と比べて30〜40%減少することが判明している。
In the DFB semiconductor laser, the InGaAsP diffraction grating forming layer 53 is used.
When a diffraction grating having a pitch of 2500 mm and a height of 800 mm is actually formed and an AlGaAs cladding layer 54 is grown on the InGaAsP diffraction grating forming layer 53, the height of the diffraction grating is reduced to about 600 mm. It has been found that the volume of the lattice is also reduced by 30 to 40% as compared to before the AlGaAs cladding layer 54 is laminated.

本発明は上記従来の問題を解決するものであり,その
目的は,半導体積層時における回折格子の形状保存性に
優れており,従って,確実に単一縦モード発振が得られ
て光ファイバ等の光学系との結合効率に優れた半導体レ
ーザ素子を提供することにある。
The present invention has been made to solve the above-mentioned conventional problems, and an object of the present invention is to excel in the preservation of the shape of a diffraction grating when laminating semiconductors. An object of the present invention is to provide a semiconductor laser device having excellent coupling efficiency with an optical system.

(課題を解決するための手段) 本発明の半導体レーザ素子は,レーザが発振される活
性層と積層状態になっており,Alを組成物として含まな
い半導体化合物にて構成された回折格子形成層と,該回
折格子形成層上に,前記活性層の活性領域に対応したス
トライプ領域が形成されるように積層されており,Alを
組成物として含む半導体化合物にて構成されたチャネル
形成層と,前記回折格子形成層上のストライプ領域に設
けられた回折格子と,該回折格子上に積層された半導体
化合物層とを具備してなり,そのことにより上記目的が
達成される。
(Means for Solving the Problems) A semiconductor laser device according to the present invention has a diffraction grating forming layer formed of a semiconductor compound which does not contain Al as a composition and is laminated with an active layer in which a laser is oscillated. A channel forming layer formed on the diffraction grating forming layer so as to form a stripe region corresponding to an active region of the active layer, the channel forming layer including a semiconductor compound containing Al as a composition; It comprises a diffraction grating provided in a stripe region on the diffraction grating forming layer, and a semiconductor compound layer laminated on the diffraction grating, thereby achieving the above object.

(実施例) 以下に本発明を実施例について説明する。(Example) Hereinafter, the present invention will be described with reference to examples.

本発明の半導体レーザ素子は,第1図に示すように,p
型GaAs基板11上に,n型AlGaAs電流阻止層12が積層されて
いる。該n型GaAs電流阻止層12の中央部には,横モード
制御および電流閉じ込めのためのV溝がストライプ状に
設けられており,該V溝の底部はp型GaAs基板11に達し
ている。該V溝内およびn型GaAs電流阻止層12上には,p
型AlGaAsクラッド層13が積層されており,該p型AlGaAs
クラッド層13の上面は平坦になっている。該p型AlGaAs
クラッド層13上には,p型AlGaAs活性層14,ノンドープIn
1-xGaxAsyP1-y回折格子形成層15が順次積層されてい
る。該In1-xGaxAsyP1-y回折格子形成層15の前記V溝上
方である中央部のストライプ領域には,凹凸が周期的に
形成された回折格子15aが形成されている。該回折格子1
5aの幅は,前記n型GaAs電流阻止層12に形成されたV溝
の開口幅より広くなっている。
As shown in FIG. 1, the semiconductor laser device of the present invention
On an n-type GaAs substrate 11, an n-type AlGaAs current blocking layer 12 is laminated. At the center of the n-type GaAs current blocking layer 12, a V-shaped groove for lateral mode control and current confinement is provided in a stripe shape, and the bottom of the V-shaped groove reaches the p-type GaAs substrate 11. In the V-groove and on the n-type GaAs current blocking layer 12, p
AlGaAs cladding layer 13 is laminated, and the p-type AlGaAs
The upper surface of the cladding layer 13 is flat. The p-type AlGaAs
On the cladding layer 13, a p-type AlGaAs active layer 14, undoped In
1-x Ga x As y P 1-y diffraction grating forming layers 15 are sequentially laminated. In the In 1-x G a x As y P 1-y diffraction grating forming layer 15, a diffraction grating 15 a in which irregularities are periodically formed is formed in a central stripe region above the V groove. The diffraction grating 1
The width of 5a is wider than the opening width of the V-groove formed in the n-type GaAs current blocking layer 12.

該In1-xGaxAsyP1-y回折格子形成層15の回折格子15aが
形成された中央部分を除く各側部上には,n型AlzGa1-zAs
チャネル形成層16が積層されており,該n型AlzGa1-zAs
チャネル形成層16にも凹凸が周期的に形成された回折格
子16aが形成されている。該n型AlzGa1-zAsチャネル形
成層16上の回折格子16a上およびIn1-xGaxAsyP1-y回折格
子形成層15の回折格子15a上にはn型AlwGa1-wAsクラッ
ド層17が積層されている。該n型AlwGa1-wAsクラッド層
17の上面は平坦になっており,該n型AlwGa1-wAsクラッ
ド層17上に,n型GaAsキャップ層18が積層されている。
On each side of the In 1-x Ga x As y P 1-y diffraction grating forming layer 15 except for the central portion where the diffraction grating 15a is formed, an n-type Al z Ga 1-z As
A channel forming layer 16 is laminated, and the n-type Al z Ga 1-z As
The channel formation layer 16 is also provided with a diffraction grating 16a in which irregularities are periodically formed. On the diffraction grating 16a on the n-type Al z Ga 1-z As channel forming layer 16 and on the diffraction grating 15a of the In 1-x Ga x As y P 1-y diffraction grating forming layer 15, n-type Al w Ga The 1-w As clad layer 17 is laminated. The n-type Al w Ga 1-w As cladding layer
The upper surface of 17 is flat, and an n-type GaAs cap layer 18 is laminated on the n-type Al w Ga 1-w As clad layer 17.

そして,該n型GaAsキャップ層18にn側のオーミック
性金属電極21が配設されており,前記p型GaAs基板11に
p側のオーミック性金属電極22が配設されている。
An n-side ohmic metal electrode 21 is provided on the n-type GaAs cap layer 18, and a p-side ohmic metal electrode 22 is provided on the p-type GaAs substrate 11.

このような構成の本発明の半導体レーザ素子は次のよ
うに製造される。
The semiconductor laser device of the present invention having such a configuration is manufactured as follows.

p型GaAs基板11上に,n型GaAs電流阻止層12を積層した
後に,横モード制御および電流閉じ込めのために,該n
型GaAsクラッド層12の中央部にV溝をその底部かp型Ga
As基板11に達するように,ストライプ状に形成する。
After laminating an n-type GaAs current blocking layer 12 on a p-type GaAs substrate 11, the n-type GaAs current blocking layer 12 is used for lateral mode control and current confinement.
A V-groove is formed in the center of the
A stripe is formed so as to reach the As substrate 11.

次いで,該V溝内およびn型GaAs電流阻止層12上にp
型AlGaAsクラッド層13を成長する。該p型AlGaAsクラッ
ド層13の上面は平坦にされる。そして,該p型AlGaAsク
ラッド層13上に,p型AlGaAs活性層14,ノンドープIn1-xGa
xAsyP1-y回折格子形成層15,n型AlzGa1-zAsチャネル形成
層16を順次積層する。
Next, the p-type is formed in the V-groove and on the n-type GaAs current blocking layer 12.
A type AlGaAs cladding layer 13 is grown. The upper surface of the p-type AlGaAs cladding layer 13 is made flat. Then, on the p-type AlGaAs cladding layer 13, a p-type AlGaAs active layer 14, a non - doped In 1-x Ga
sequentially stacked x As y P 1-y diffraction grating layer 15, n-type Al z Ga 1-z As channel forming layer 16.

その後,該n型AlzGa1-zAsチャネル形成層16における
前記GaAs電流阻止層12のV溝上方域,すなわちp型AlGa
As活性層14の活性領域の上方域に,該V溝の開口幅より
も広い幅のストライプが形成されるように,ホトレジス
ト膜を塗布してストライプのパターンを形成する。そし
て,該ホトレジスト膜をマスクとして,化学エッチング
により,n型AlzGa1-zAsチャネル形成層16の中央部を,ノ
ンドープIn1-xGaxAsyP1-y回折格子形成層15に達するま
で除去してチャネルを形成する。
Thereafter, the region above the V-groove of the GaAs current blocking layer 12 in the n-type Al z Ga 1 -z As channel forming layer 16, that is, the p-type AlGa
A photoresist film is applied to form a stripe pattern in a region above the active region of the As active layer 14 so that a stripe having a width wider than the opening width of the V groove is formed. Then, the photoresist film as a mask, by chemical etching, the central portion of the n-type Al z Ga 1-z As channel forming layer 16, the undoped In 1-x Ga x As y P 1-y diffraction grating layer 15 Remove to form a channel.

次いで,n型AlzGa1-zAsチャネル形成層16上のホトレジ
スト膜を除去した後に,該n型AlzGa1-zAsチャネル形成
層16上面および露出されたノンドープIn1-xGaxAsyP1-y
回折格子形成層15上面にホトレジスト膜を塗布し,紫外
線レーザを用いた二光束干渉露光により,周期2000〜30
00Åでホトレジストの回折格子を形成し,化学エッチン
グにより,n型AlzGa1-zAsチャネル形成層16上およびノン
ドープIn1-xGaxAsyP1-x回折格子形成層15に周期的に凹
凸を形成して,回折格子16aおよび15aをそれぞれ形成す
る。その後,ホトレジスト膜を除去した後に,各回折格
子15aおよび16aに上にn型AlwGa1-wAsクラッド層17を成
長させてその上面を平坦にし,該n型AlwGa1-wAsクラッ
ド層17上にn型GaAsキャップ層18を積層する。そして,
該n型GaAsキャップ層18にn側のオーミック性金属電極
21を配設し,p型GaAs基板11上にp側のオーミック性金属
電極22を配設することにより,第1図に示すDFB型半導
体レーザ素子が得られる。
Then, n-type Al z Ga 1-z As after removing the photoresist film on the channel forming layer 16, the n-type Al z Ga 1-z As channel forming layer 16 top surface and exposed undoped In 1-x Ga x As y P 1-y
A photoresist film is applied on the upper surface of the diffraction grating forming layer 15, and a two-beam interference exposure using an ultraviolet laser is performed, and a period of 2000 to 30 is applied.
A photoresist diffraction grating is formed at 00 °, and periodic etching is performed on the n-type Al z Ga 1-z As channel formation layer 16 and the non - doped In 1-x Ga x As y P 1-x diffraction grating formation layer 15 by chemical etching. The diffraction gratings 16a and 15a are respectively formed by forming irregularities on the substrate. Then, after removing the photoresist film, an n-type Al w Ga 1-w As clad layer 17 is grown on each of the diffraction gratings 15a and 16a to flatten its upper surface, and the n-type Al w Ga 1-w As An n-type GaAs cap layer 18 is laminated on the cladding layer 17. And
An n-side ohmic metal electrode is formed on the n-type GaAs cap layer 18.
By arranging the p-side ohmic metal electrode 22 on the p-type GaAs substrate 11, the DFB semiconductor laser device shown in FIG. 1 is obtained.

該DFB型半導体レーザ素子は,四元層であるIn1-xGaxA
syP1-x回折格子形成層15の混晶比が,0.68≦x≦1,0.34
≦y≦1,y=2.04x−1.04を満足するように設定される。
また,該In1-xGaxAsyP1-y回折格子形成層15上の各側部
上に積層されるn型AlzGa1-zAsチャネル形成層16の混晶
比は,0≦z≦0.5の範囲で設定される。このように,In
1-xGaxAsyP1-y回折格子形成層15およびn型AlzGa1-zAs
チャネル形成層16の混晶比を設定すれば,該In1-xGaxAs
yP1-y回折格子形成層15上にn型AlzGa1-zAsチャネル形
成層16を積層して,該n型AlzGa1-zAsチャネル形成層16
の中央部にストライプ状のチャネルを該In1-xGaxAsyP
1-y回折格子形成層15に達するまで形成した際に,該Alz
Ga1-zAsチャネル形成層16上面は,Alを含んでいるため
に,表面に酸化膜が形成される。そのため,そのチャネ
ル内および該AlzGa1-zAsチャネル形成層16上にn型AlwG
a1-wAsクラッド層17を液相エピタキシ法で成長させる
と,該AlzGa1-zAsチャネル形成層16上に成長される結晶
は,表面酸化膜の影響で,成長開始時の成長速度が遅く
なる。その結果,液相エピタキシ法においてチャネル内
のIn1-xGaxAsyP1-y回折格子形成層15上に成長される結
晶の溶液は,過飽和状態になりやすく,その結晶の成長
速度は速くなり,In1-xGaxAsyP1-y回折格子形成層15に形
成された凹凸状の回折格子はメルトバックにより侵蝕さ
れず,その形状が確実に保持される。
The DFB type semiconductor laser device has a quaternary layer of In 1-x Ga x A
The mixed crystal ratio of the s y P 1-x diffraction grating forming layer 15 is 0.68 ≦ x ≦ 1,0.34
It is set so as to satisfy ≦ y ≦ 1, y = 2.04x−1.04.
Further, the mixed crystal ratio of the In 1-x Ga x As y P 1-y n -type are stacked on each side of the diffraction grating layer 15 Al z Ga 1-z As channel forming layer 16, 0 It is set in the range of ≦ z ≦ 0.5. Thus, In
1-x Ga x As y P 1-y diffraction grating forming layer 15 and n-type Al z Ga 1-z As
If the mixed crystal ratio of the channel forming layer 16 is set, the In 1-x Ga x As
by laminating the n-type Al z Ga 1-z As channel forming layer 16 on the y P 1-y diffraction grating layer 15, the n-type Al z Ga 1-z As channel forming layer 16
The striped channel in the central portion of the In 1-x Ga x As y P
When formed to reach the 1-y diffraction grating forming layer 15, the Al z
Since the upper surface of the Ga 1-z As channel forming layer 16 contains Al, an oxide film is formed on the surface. Therefore, the n-type Al w G is formed in the channel and on the Al z Ga 1 -z As channel forming layer 16.
When the a 1-w As clad layer 17 is grown by liquid phase epitaxy, the crystal grown on the Al z Ga 1-z As channel forming layer 16 is grown at the start of growth due to the influence of the surface oxide film. Speed slows down. As a result, a solution of growth is the crystal on the In 1-x Ga x As y P 1-y diffraction grating layer 15 in the channel in the liquid phase epitaxy method, tends supersaturated, the growth rate of the crystal is faster, in 1-x Ga x as y P 1-y diffraction grating layer 15 uneven diffraction grating formed in is not eroded by the melt-back, the shape is reliably maintained.

各回折格子15aおよび16a上に積層されるn型AlwGa1-w
Asクラッド層17の混晶比は,該AlwGa1-wAsクラッド層17
がIn1-xGaxAsyP1-y回折格子形成層15よりも高い屈折率
となるように設定される。従って,回折格子16aが形成
されるn型AlzGa1-zAsチャネル形成層16と同じ混晶比で
あってもよい。
N-type Al w Ga 1-w laminated on each of the diffraction gratings 15a and 16a
The mixed crystal ratio of the As clad layer 17 depends on the Al w Ga 1-w As clad layer 17.
There is set to be higher refractive index than the In 1-x Ga x As y P 1-y diffraction grating layer 15. Therefore, the mixed crystal ratio may be the same as that of the n-type Al z Ga 1 -z As channel forming layer 16 on which the diffraction grating 16a is formed.

なお,上記実施例では,n型AlzGa1-zAsチャネル形成層
16のチャネル内におけるIn1-xGaxAsyP1-y回折格子形成
層15上面,および該n型AlzGa1-zAsチャネル形成層16の
チャネル外上面との両方に回折格子を形成する構成とし
たが,p型AlGaAs活性層14の活性領域に対応したチャネル
内のIn1-xGaxAsyP1-y回折格子形成層15にのみ回折格子
を形成する構成であってもよい。
In the above embodiment, the n-type Al z Ga 1-z As channel forming layer
A diffraction grating is formed on both the upper surface of the In 1-x Ga x As y P 1-y diffraction grating forming layer 15 and the outer surface of the n-type Al z Ga 1-z As channel forming layer 16 in the 16 channels. it is configured to form, in a configuration in which only a diffraction grating is formed on the in 1-x Ga x as y P 1-y diffraction grating layer 15 in the channel corresponding to the active region of the p-type AlGaAs active layer 14 Is also good.

また,回折格子形成層15としては,該回折格子形成層
15上に形成されたチャネル内に積層される結晶の溶液が
成長時に過飽和状態となるものであればよく,例えばGa
Asであってもよい。
In addition, as the diffraction grating forming layer 15, the diffraction grating forming layer
It is only necessary that the solution of the crystal stacked in the channel formed on the substrate 15 be in a supersaturated state during growth.
As may be used.

ピッチ2500Å,高さ800Åの矩形波形状の回折格子15a
を形成して本実施例の半導体レーザ素子を製造したとこ
ろ,該回折格子15aはメルトバックされることがなく,
その高さも800Åに保持されていた。
A diffraction grating 15a in the form of a rectangular wave with a pitch of 2500 mm and a height of 800 mm
Was formed to manufacture the semiconductor laser device of this embodiment, the diffraction grating 15a was not melted back,
Its height was also kept at 800 cm.

第2図は本発明の半導体レーザ素子の他の実施例であ
る。本実施例では,第1図に示すDFB型半導体レーザ素
子のp型AlGaAs活性層14とIn1-xGaxAsyP1-y回折格子形
成層15との間に,n型AlGaAsキャリアバリア層31が介装さ
れている。その他の構成は第1図に示す半導体レーザ素
子と同様であるので同一構成部分に同符号を付して説明
を省略する。
FIG. 2 shows another embodiment of the semiconductor laser device of the present invention. In this embodiment, between the p-type AlGaAs active layer 14 and the In 1-x Ga x As y P 1-y diffraction grating layer 15 of the DFB semiconductor laser device shown in FIG. 1, n-type AlGaAs carrier barrier Layer 31 is interposed. Other configurations are the same as those of the semiconductor laser device shown in FIG. 1, and the same components are denoted by the same reference numerals and description thereof will be omitted.

本実施例ではキャリアバリア層31がp型AlGaAs活性層
14上に積層されているため,該p型AlGaAs活性層14のA1
混晶比を増加させることができ,より短波長帯でのレー
ザー発振が可能となる。また,この場合は,InGaAsP回折
格子形成層15が光ガイド層となるため回折格子の結合効
率を向上させることができる。
In this embodiment, the carrier barrier layer 31 is a p-type AlGaAs active layer.
A1 of the p-type AlGaAs active layer 14
The mixed crystal ratio can be increased, and laser oscillation in a shorter wavelength band becomes possible. Also, in this case, the coupling efficiency of the diffraction grating can be improved because the InGaAsP diffraction grating forming layer 15 becomes the light guide layer.

本実施例では,回折格子上に積層されるn型AlwGa1-w
Asクラッド層17がInGaAsP回折格子形成層15よりも低屈
折率となるように設定されることが好ましい。
In this embodiment, the n-type Al w Ga 1-w
It is preferable that the As cladding layer 17 be set to have a lower refractive index than the InGaAsP diffraction grating forming layer 15.

第3図に本発明の半導体レーザ素子のさらに他の実施
例を示す。本実施例では,InGaAsP回折格子形成層15上の
チャネル内にのみ,n型AlGaAsクラッド層17を成長させた
ものであり,該チャネル外のn型AlGaAsチャネル形成層
16上にはn型AlGaAsクラッド層17が積層されていない。
そして,該チャネル内にn型AlGaAsクラッド層17が該チ
ャネルより延出するように積層され,該n型AlGaAsクラ
ッド層17にn側のオーミック性金属極21が配設されてい
る。その他構成は第1図に示す半導体レーザ素子と同様
であるので同一構成部分に同一符号を付して説明を省略
する。
FIG. 3 shows still another embodiment of the semiconductor laser device of the present invention. In this embodiment, the n-type AlGaAs cladding layer 17 is grown only in the channel on the InGaAsP diffraction grating forming layer 15, and the n-type AlGaAs channel forming layer outside the channel is grown.
The n-type AlGaAs cladding layer 17 is not laminated on 16.
Then, an n-type AlGaAs cladding layer 17 is laminated in the channel so as to extend from the channel, and an n-side ohmic metal electrode 21 is disposed on the n-type AlGaAs cladding layer 17. Other configurations are the same as those of the semiconductor laser device shown in FIG. 1, and the same components are denoted by the same reference numerals and description thereof will be omitted.

本実施例でも,InGaAsP回折格子形成層15に形成された
回折素子15aは,該回折格子15a上に積層されるn型AlGa
Asクラッド層17によりメルトバックされず所定形状を保
持する。しかも,n型AlGaAsクラッド層17にのみ電流が注
入されるため,p型AlGaAs活性層14内での横方向の電流閉
じ込め性が良好である。
Also in this embodiment, the diffraction element 15a formed on the InGaAsP diffraction grating forming layer 15 is an n-type AlGa layer stacked on the diffraction grating 15a.
The predetermined shape is maintained without being melted back by the As cladding layer 17. In addition, since current is injected only into the n-type AlGaAs cladding layer 17, lateral current confinement in the p-type AlGaAs active layer 14 is good.

(発明の効果) 本発明の半導体レーザ素子は,このように回折格子上
に半導体化合物が過飽和状態の溶液にて高速に成長され
るため,該回折格子がメルトバックにより侵蝕されるお
それがなく,確実に単一縦モードが得られ,光ファイバ
等の光学系との結合効率に優れている。
(Effect of the Invention) In the semiconductor laser device of the present invention, since the semiconductor compound is grown on the diffraction grating at a high speed in a solution in a supersaturated state, there is no possibility that the diffraction grating is eroded by meltback. A single longitudinal mode is reliably obtained, and the coupling efficiency with an optical system such as an optical fiber is excellent.

【図面の簡単な説明】[Brief description of the drawings]

第1図〜第3図はそれぞれ本発明の半導体レーザ素子の
一例を示す斜視図,第4図および第5図はそれぞれ従来
の半導体レーザ素子の一例を示す斜視図である。 11……p型GaAs基板,12……n型GaAs電流阻止層,13……
p型AlGaAsクラッド層,14……p型AlGaAs活性層,15……
In1-xGaxAsyP1-y回折格子形成層,16……AlzGa1-zAsチャ
ネル形成層,17……AlwGa1-wAsクラッド層,18……n型Ga
Asキャップ層,31……n型AlGaAsキャリアバリア層。
1 to 3 are perspective views each showing an example of a semiconductor laser device of the present invention, and FIGS. 4 and 5 are perspective views each showing an example of a conventional semiconductor laser device. 11 ... p-type GaAs substrate, 12 ... n-type GaAs current blocking layer, 13 ...
p-type AlGaAs cladding layer, 14 ... p-type AlGaAs active layer, 15 ...
In 1-x Ga x As y P 1-y diffraction grating forming layer, 16 ... Alz Ga 1-z As channel forming layer, 17 ... Al w Ga 1-w As cladding layer, 18 ... n-type Ga
As cap layer, 31 ... n-type AlGaAs carrier barrier layer.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 菅原 聰 大阪府大阪市阿倍野区長池町22番22号 シャープ株式会社内 (56)参考文献 特開 昭63−136586(JP,A) (58)調査した分野(Int.Cl.6,DB名) H01S 3/18──────────────────────────────────────────────────続 き Continuation of front page (72) Inventor Satoshi Sugawara 22-22 Nagaikecho, Abeno-ku, Osaka-shi, Osaka Inside Sharp Corporation (56) References JP-A-63-136586 (JP, A) (58) Investigated Field (Int.Cl. 6 , DB name) H01S 3/18

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】レーザが発振される活性層と積層状態にな
っており、Alを組成物として含まない半導体化合物にて
構成された回折格子形成層と, 該回折格子形成層上に,前記活性層の活性領域に対応し
たストライプ領域が形成されるように積層されており,A
lを組成物として含む半導体化合物に構成されたチャネ
ル形成層と, 前記回折格子形成層上のストライプ領域に設けられた回
折格子と, 該回折格子上に積層された半導体化合物層と を具備する半導体レーザ素子。
1. A diffraction grating forming layer formed of a semiconductor compound containing no Al as a composition and having an active layer in which a laser is oscillated, and the active layer is formed on the diffraction grating forming layer. Are stacked so that a stripe region corresponding to the active region of the layer is formed.
a semiconductor comprising: a channel forming layer formed of a semiconductor compound containing l as a composition; a diffraction grating provided in a stripe region on the diffraction grating forming layer; and a semiconductor compound layer stacked on the diffraction grating. Laser element.
JP63267765A 1988-10-24 1988-10-24 Semiconductor laser device Expired - Fee Related JP2806533B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63267765A JP2806533B2 (en) 1988-10-24 1988-10-24 Semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63267765A JP2806533B2 (en) 1988-10-24 1988-10-24 Semiconductor laser device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP7275497A Division JP2939167B2 (en) 1995-10-24 1995-10-24 Semiconductor laser device

Publications (2)

Publication Number Publication Date
JPH02114589A JPH02114589A (en) 1990-04-26
JP2806533B2 true JP2806533B2 (en) 1998-09-30

Family

ID=17449274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63267765A Expired - Fee Related JP2806533B2 (en) 1988-10-24 1988-10-24 Semiconductor laser device

Country Status (1)

Country Link
JP (1) JP2806533B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63136586A (en) * 1986-11-27 1988-06-08 Sony Corp Semiconductor laser

Also Published As

Publication number Publication date
JPH02114589A (en) 1990-04-26

Similar Documents

Publication Publication Date Title
US5926493A (en) Optical semiconductor device with diffraction grating structure
EP0472221B1 (en) Method for fabricating an optical semiconductor device
CA1275485C (en) Quantum well light emitting device with diffraction grating
US4257011A (en) Semiconductor laser device
EP0177221B1 (en) Semiconductor laser
JP2746326B2 (en) Semiconductor optical device
JPH0653619A (en) Compound semiconductor device and its manufacture
US6925103B2 (en) Gain-coupled DFB laser diode
JP2004165383A (en) Semiconductor laser device, second harmonic generator, and optical pickup apparatus
JP3548986B2 (en) Optical semiconductor device and method of manufacturing the same
JP2806533B2 (en) Semiconductor laser device
JPH0416032B2 (en)
JPH0248151B2 (en)
US6734464B2 (en) Hetero-junction laser diode
EP0306315B1 (en) A semiconductor laser device
JP2939167B2 (en) Semiconductor laser device
JP3149959B2 (en) Semiconductor laser device and driving method thereof
JP3503715B2 (en) Semiconductor laser device
JP2687891B2 (en) Tunable semiconductor laser
Honda et al. Low threshold current AlGaAs/GaAs rib-waveguide separate-confinement-heterostructure distributed-feedback lasers grown by metalorganic chemical vapor deposition
JP3040262B2 (en) Semiconductor laser device
JPH04372185A (en) Semiconductor laser
JPH02201991A (en) Diffraction grating and semiconductor laser
JP2001257421A (en) Semiconductor laser element and its manufacturing method
JP2002232070A (en) Semiconductor optical integrated element

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees