JPS6297390A - Semiconductor laser element - Google Patents
Semiconductor laser elementInfo
- Publication number
- JPS6297390A JPS6297390A JP24018585A JP24018585A JPS6297390A JP S6297390 A JPS6297390 A JP S6297390A JP 24018585 A JP24018585 A JP 24018585A JP 24018585 A JP24018585 A JP 24018585A JP S6297390 A JPS6297390 A JP S6297390A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- irregular surface
- refractive index
- semiconductor laser
- directly
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Semiconductor Lasers (AREA)
Abstract
Description
【発明の詳細な説明】
〈産業上の利用分野〉
本発明は、分子線エピタキシー法により作製可能な屈折
率導波型の半導体レーザ素子に関する。DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to an index-guided semiconductor laser device that can be manufactured by molecular beam epitaxy.
〈従来技術とその問題点〉
近年、コンパクト・ディスク・プレーヤやビデオ・ディ
スク・プレーヤなど半導体レーザの応用分野は著しい発
展を遂げつつあり、信号光源として半導体レーザの需要
は急激な増加をみせている。<Prior art and its problems> In recent years, the application fields of semiconductor lasers such as compact disc players and video disc players have been making remarkable progress, and the demand for semiconductor lasers as signal light sources is rapidly increasing. .
このような応用機器に対して、半導体レーザは信頼性の
確保とともに光学特性の安定化が重要な課題であるが、
特に光学特性の安定化に関しては、光導波機構として屈
折率導波機構を設けることにより、非常に安定なものが
得られている。このような屈折率導波型の半導体レーザ
の代表的なものとしてBH(Burried−Hete
rostructure)レーザ、C8P (Chan
nel!ed−8ubstratePraner)
レーザ、VS I S (V−hannej’edSu
bstrate Inner 5tripe )レ
ーザなどが提案され、実用化されている。しかし、この
ような屈折率導波型の半導体レーザの大部分は結晶成長
法として液相成長法を用い、その液相成長法の特性を有
効に利用したものであり、液相成長法か有する欠点即ち
薄い層の制御が困難で均一性が悪くまたその結果として
歩留りが悪くなるなどの阻害要因を克服するこkは困難
である。For such applied equipment, semiconductor lasers have important issues of ensuring reliability and stabilizing optical characteristics.
In particular, with regard to stabilization of optical properties, extremely stable properties have been obtained by providing a refractive index waveguide mechanism as the optical waveguide mechanism. A typical type of index-guided semiconductor laser is BH (Burried-Hete).
rostructure) laser, C8P (Chan
nel! ed-8ubstrate Planer)
Laser, VS I S (V-hannej'edSu
(bstrate inner 5tripe) lasers have been proposed and put into practical use. However, most of these index-guided semiconductor lasers use liquid phase growth as a crystal growth method, and effectively utilize the characteristics of the liquid phase growth method. It is difficult to overcome drawbacks such as difficult control of thin layers, poor uniformity, and consequent poor yields.
一方、上述のような液相成長法の有する欠点に対し、高
度の薄層制御性を有し、かつ同時に良好な均一性が期待
される成長法として、分子線エピタキシー(MBE)法
が注目されている。しかし、このMBE法は、その成長
機構が液相成長法とは異なるため、半導体レーザの素子
構造としては液相成長法で開発された屈折率導波型の素
子構造を適用することができない。On the other hand, molecular beam epitaxy (MBE) is attracting attention as a growth method that has a high degree of thin layer controllability and is expected to have good uniformity, in view of the drawbacks of the liquid phase growth method as described above. ing. However, since the growth mechanism of the MBE method is different from that of the liquid phase growth method, the refractive index waveguide type device structure developed by the liquid phase growth method cannot be applied as the element structure of a semiconductor laser.
〈発明の概要〉
本発明は、上述の問題点に鑑み、MBE法により作製可
能な屈折率導波機構を有する半導体レーザ素子を提供す
ることを目的とするものである。。<Summary of the Invention> In view of the above-mentioned problems, an object of the present invention is to provide a semiconductor laser device having a refractive index waveguide mechanism that can be manufactured by the MBE method. .
本発明の創作に際してMBE法を用いた結晶成長に関す
る詳細な実験を行なった結果、ストライプ状の溝を有す
る基板上に超格子構造を成長形成した場合には、第2図
に示すように、基板lに形成された溝2の溝幅Wがある
程度狭い特に5oooi以下であればこの基板l上に成
長される超格子構造は溝形状の凹凸を打ち消す傾向を示
し、成長される超格子構造の著しい平坦化か生じること
を見い出した。本発明は、この現象を半導体レーザ素子
における屈折率導波機構の形成に利用したものである。As a result of conducting detailed experiments on crystal growth using the MBE method when creating the present invention, we found that when a superlattice structure is grown on a substrate having striped grooves, the substrate has a structure as shown in FIG. If the groove width W of the groove 2 formed on the substrate l is narrow to some extent, especially less than 5oooi, the superlattice structure grown on this substrate l tends to cancel out the unevenness of the groove shape, and the superlattice structure grown on the substrate l shows a tendency to cancel out the unevenness of the groove shape. It was found that flattening occurs. The present invention utilizes this phenomenon to form a refractive index waveguide mechanism in a semiconductor laser device.
〈実施例〉
第1図は本発明の1実施例を模式的に示す半導体レーザ
素子の断面構成図である。<Example> FIG. 1 is a cross-sectional configuration diagram of a semiconductor laser device schematically showing an example of the present invention.
n−GaAs基板1の成長面にはエツチング等の微細加
工技術によって幅1500Xのストライプ状溝が300
0Xのピッチで横方向に約2.ttmにわたって平行に
配列形成されておシ、周期的な凹凸面2を呈している。On the growth surface of the n-GaAs substrate 1, 300 striped grooves with a width of 1500× are formed using microfabrication techniques such as etching.
Approximately 2. They are arranged in parallel over the ttm and exhibit periodic uneven surfaces 2.
この凹凸面2を含むGaAs基板1上に1.5層1mの
厚さのn −A lo、3Gao、、 A sから成る
第1クラッド層3がMBE法によシ積層されている。On the GaAs substrate 1 including the uneven surface 2, a first cladding layer 3 consisting of 1.5 layers and 1 m thick of n-A lo, 3 Gao, . . . As is laminated by the MBE method.
MBE法で成長させた場合、GaAs基板l基板酸され
ている凹凸面2はそのままの形が第1クラッド層3にも
受は継がれ、従って第1クラッド層3はGaAs基板l
基板酸面2直上の面領域が凹凸状界面15となりその両
外方の界面は平坦状界面16となる。第1クラッド層3
上には引き続いて光ガイド層4が積層されている。この
光ガイド層4はMBE法により厚さ約30人のA l
o、x G d 0.I As層6を交互に多数積1層
して成る超格子構造で構成され、全体の厚さは約2oo
oiに設定されている。このように光ガイド層4を超格
子構造とすることにより、第1クラッド層3界面に存在
している凹凸状界面15の凹凸形状が超格子構造で打ち
消され、第1図中に部分拡大図として示すように結果的
に光ガイド層4の厚さは第1クラッド層3の凹凸状界面
15領域で溝のない部分が薄く、溝の部分が厚くなる。When grown by the MBE method, the uneven surface 2 of the GaAs substrate 1 is carried over to the first cladding layer 3, and therefore the first cladding layer 3 is formed on the GaAs substrate 1.
The surface region immediately above the substrate acid surface 2 becomes an uneven interface 15, and the interfaces on both sides thereof become a flat interface 16. First cladding layer 3
A light guide layer 4 is subsequently laminated thereon. This light guide layer 4 is made by MBE to a thickness of approximately 30 mm.
o, x G d 0. It is composed of a superlattice structure consisting of a large number of IAs layers 6 stacked alternately, and the total thickness is about 2oo.
It is set to oi. By making the light guide layer 4 have a superlattice structure in this way, the uneven shape of the uneven interface 15 existing at the interface of the first cladding layer 3 is canceled out by the superlattice structure, and as shown in FIG. As shown in , the thickness of the light guide layer 4 is thinner in the region of the uneven interface 15 of the first cladding layer 3 where there are no grooves, and thicker in the grooved portion.
このように厚さ分布の付与された領域を有する光ガイド
層4上に引き続いてGaAsから成る活性層7 、pA
l!o、3sGao、6sASから成る第2クラッド層
8 、p−GaAsから成るキャップ層9を順次成長形
成する、以上の成長をMBE法によシ連続して行なった
後、MBE装置より取り出してキャップ層9上にCVD
法によシ5i02膜10を厚さ3oooX程度被着し、
フォトリングラフィ法により、このSiO2膜lOの凹
凸面2直上領域を3)tmの幅でストライプ状に除去し
、電流通路を形成する。次に5i02膜2及びキャップ
層9上にP−電極11 、GaAs基板1の裏面にn−
電極12を蒸着法により形成した後、舅開法により個々
の半導体レーザ素子とする。An active layer 7 made of GaAs, pA
l! A second cladding layer 8 made of p-GaAs, 3sGaAs, and 6sAS is sequentially grown. After the above growth is performed successively by the MBE method, the cap layer is removed from the MBE apparatus. CVD on 9
A 5i02 film 10 is deposited to a thickness of about 300X according to the method,
By photolithography, the region directly above the uneven surface 2 of this SiO2 film 1O is removed in a stripe shape with a width of 3) tm to form a current path. Next, a P- electrode 11 is placed on the 5i02 film 2 and the cap layer 9, and an n- electrode is placed on the back surface of the GaAs substrate 1.
After forming the electrode 12 by a vapor deposition method, it is made into individual semiconductor laser elements by a sleeve opening method.
上記構造とすることによシ、GaAs基板1に形成され
た凹凸面2の直上の光ガイド層4において層厚が周期的
に変動することとなるが、溝のピッチがaoooiで非
常に小さいため、発振波長域の光に対しては、その平均
的な厚さがその部分での光ガイド層厚ということになる
。従って凹凸面2の直上の光ガイド層4の平均的な厚さ
はその両外方の平担面を呈する領域の光ガイド層4より
も厚くなるため、活性層7に平行方向の屈折率分布は凹
凸面2の直上の部分で大きく、その両側で小さくなる。By adopting the above structure, the layer thickness in the light guide layer 4 directly above the uneven surface 2 formed on the GaAs substrate 1 changes periodically, but since the pitch of the grooves is aooooi and is very small. For light in the oscillation wavelength range, the average thickness is the thickness of the light guide layer at that portion. Therefore, the average thickness of the light guide layer 4 directly above the uneven surface 2 is thicker than that of the light guide layer 4 in the region exhibiting a flat surface on both sides, so that the refractive index distribution in the direction parallel to the active layer 7 is is large immediately above the uneven surface 2 and becomes small on both sides thereof.
これによって活性層7内に屈折率導波路が形成されるこ
ととなる。As a result, a refractive index waveguide is formed within the active layer 7.
さらに、この構造においては、光ガイド層4か超格子構
造を有しているため、この光ガイド層4を構成する各半
導体層即ち上述の実施例においてはGaAs層6とAr
GaAs 5の厚さを適当な値に選ぶことによシ、凹凸
面2直上の光ガイド層4とその両側の光ガイド層4とで
層厚さに起因する等価的な禁制帯幅を、光ガイド層4の
凹凸面2直上で小さく、光ガイド層4の凹凸面以外の外
方で大きくすることが可能であり、これによりキャリア
を有効に、凹凸面2の直上の活性層7領域に閉じ込める
ことが可能となる。Furthermore, in this structure, since the optical guide layer 4 has a superlattice structure, each of the semiconductor layers constituting the optical guide layer 4, that is, the GaAs layer 6 and the Ar
By selecting the thickness of GaAs 5 to an appropriate value, the equivalent forbidden band width caused by the layer thickness of the light guide layer 4 directly above the uneven surface 2 and the light guide layers 4 on both sides thereof can be It is possible to be small directly above the uneven surface 2 of the guide layer 4 and to be large outside the uneven surface of the optical guide layer 4, thereby effectively confining carriers in the active layer 7 region directly above the uneven surface 2. becomes possible.
以上の効果によシ、上述の実施例の半導体レーザ素子に
おいてはしきい値電流15mAで光出力10mW以上ま
で安定な基本横モードでのレーザ発振が得られた。As a result of the above-mentioned effects, stable laser oscillation in the fundamental transverse mode was obtained with a threshold current of 15 mA and an optical output of 10 mW or more in the semiconductor laser device of the above-described example.
〈発明の効果〉
本発明によれば、MBE法を用いて仮しきい値電流で屈
折率導波機構を有する半導体レーザ素子を歩留りよく、
しかも1回のMBE成長によシ作製することができる。<Effects of the Invention> According to the present invention, a semiconductor laser device having a refractive index waveguide mechanism can be manufactured with a high yield using a temporary threshold current using the MBE method.
Moreover, it can be produced by one MBE growth.
第1図は本発明の1実施例を示す半導体レーザキシャル
成長させる場合のストライプ状溝幅と超格子層に吸収さ
れる溝形状の関係を示す説明図である。
l・・・GaAs基板、 2・・・凹凸面、
3・・・第1クラッド層、 4・・・光ガイド層、
5・・・AI!GaAa層、 6−GaAs層
、 7・・・活性層、 8・・・第2クラッド層、
9・・キャップ層、 10・・・5i02膜、
11・・・P−電極、12・・n−電極。FIG. 1 is an explanatory diagram showing the relationship between the striped groove width and the groove shape absorbed by the superlattice layer in the case of semiconductor laser axial growth according to an embodiment of the present invention. l...GaAs substrate, 2... uneven surface,
3... First cladding layer, 4... Light guide layer,
5...AI! GaAa layer, 6-GaAs layer, 7... active layer, 8... second cladding layer,
9... Cap layer, 10... 5i02 film,
11...P-electrode, 12...n-electrode.
Claims (1)
を部分的に有する基板上に光ガイド層を介して活性層と
クラッド層を順次堆積して成る半導体レーザ素子におい
て、前記光ガイド層は組成の異なる2種以上の半導体層
を交互に積層して成る超格子構造を有し、前記凹凸面に
対応する領域で該超格子構造に層厚分布が付与され、前
記光ガイド層の層厚分布が付与された領域とそれ以外の
領域とに対応して前記活性層の屈折率が異なることを特
徴とする半導体レーザ素子。1. In a semiconductor laser device in which an active layer and a cladding layer are sequentially deposited via a light guide layer on a substrate partially having an uneven surface in which a plurality of parallel striped grooves are formed, the light guide layer has a superlattice structure formed by alternately stacking two or more types of semiconductor layers having different compositions, and a layer thickness distribution is imparted to the superlattice structure in the region corresponding to the uneven surface, and the layer of the light guide layer A semiconductor laser device characterized in that the refractive index of the active layer differs depending on a region provided with a thickness distribution and a region other than the region.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24018585A JPS6297390A (en) | 1985-10-23 | 1985-10-23 | Semiconductor laser element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24018585A JPS6297390A (en) | 1985-10-23 | 1985-10-23 | Semiconductor laser element |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6297390A true JPS6297390A (en) | 1987-05-06 |
Family
ID=17055727
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP24018585A Pending JPS6297390A (en) | 1985-10-23 | 1985-10-23 | Semiconductor laser element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6297390A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0340481A (en) * | 1989-07-07 | 1991-02-21 | Hikari Keisoku Gijutsu Kaihatsu Kk | Semiconductor laser |
-
1985
- 1985-10-23 JP JP24018585A patent/JPS6297390A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0340481A (en) * | 1989-07-07 | 1991-02-21 | Hikari Keisoku Gijutsu Kaihatsu Kk | Semiconductor laser |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6124838B2 (en) | ||
JPH11163464A (en) | Distribution feedback type semiconductor laser | |
JPS61190994A (en) | Semiconductor laser element | |
JPS6297390A (en) | Semiconductor laser element | |
JPS6346590B2 (en) | ||
JPH07106703A (en) | Semiconductor laser and its producing method | |
JPH0671121B2 (en) | Semiconductor laser device | |
JP2755357B2 (en) | Semiconductor laser device | |
JPS59127892A (en) | Semiconductor laser and manufacture thereof | |
JP2912717B2 (en) | Semiconductor laser device | |
JPH02180085A (en) | Semiconductor laser element and manufacture thereof | |
JPS61236187A (en) | Semiconductor laser device and its manufacture | |
JPS60152086A (en) | Semiconductor laser device | |
JP2626570B2 (en) | Method for manufacturing semiconductor laser device | |
JPS6332979A (en) | Semiconductor laser | |
JPH01132191A (en) | Semiconductor laser element | |
JP2908124B2 (en) | Semiconductor laser device and method of manufacturing the same | |
JPH0728093B2 (en) | Semiconductor laser device | |
JPH03288489A (en) | Distribution feedback semiconductor laser device | |
JP2763781B2 (en) | Semiconductor laser device and method of manufacturing the same | |
JP4024319B2 (en) | Semiconductor light emitting device | |
JPS59171187A (en) | Semiconductor laser device | |
JPH0728094B2 (en) | Semiconductor laser device | |
JPH0472787A (en) | Semiconductor laser | |
JPH0537070A (en) | Manufacture of distributed feedback type semiconductor laser element |