JPS61239686A - Semiconductor laser device and manufacture thereof - Google Patents

Semiconductor laser device and manufacture thereof

Info

Publication number
JPS61239686A
JPS61239686A JP8006285A JP8006285A JPS61239686A JP S61239686 A JPS61239686 A JP S61239686A JP 8006285 A JP8006285 A JP 8006285A JP 8006285 A JP8006285 A JP 8006285A JP S61239686 A JPS61239686 A JP S61239686A
Authority
JP
Japan
Prior art keywords
layer
quantum well
regions
semiconductor
laser device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8006285A
Other languages
Japanese (ja)
Inventor
Shigeru Semura
滋 瀬村
Takaro Kuroda
崇郎 黒田
Tsuneaki Oota
太田 恒明
Hisao Nakajima
尚男 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP8006285A priority Critical patent/JPS61239686A/en
Publication of JPS61239686A publication Critical patent/JPS61239686A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To stabilize an oscillation wavelength, and to obtain a large optical output by arranging a plurality of light-emitting regions having quantum well type structure in series and constituting a residual region by a semiconductor having the man composition of two kinds of compound semiconductors organizing the same structure. CONSTITUTION:A P-type semiconductor layer 2 is formed onto a P-type semiconductor 1 as a lower clad layer. An active layer 4 is shaped onto the layer 2. A plurality of striped light-emitting regions 8a, 8b having quantum well type structure are disposed in series with the direction of a laser resonator at the center of the layer 4 at regular intervals 6b. The left and right both regions 6a of the regions 8a, 8b and the interval 6b are constituted by a semiconductor having the mean composition of two kinds of compound semiconductors organizing quantum well type structure. Consequently, the forbidden band width of the regions is made larger than that of the light-emitting regions, and a refractive index thereof is made smaller than those of the light-emitting regions. An N-type semiconductor layer 3 is formed onto the layer 4 as an upper clad layer. According to such formation, an oscillation wavelength is stabilized, and a large optical output is acquired by small modulation currents.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は量子井戸型構造を活性層とした半導体レーザ
装置において、複数の発光領域を共振器方向に直列に配
置した半導体レーザ装置及びその製造方法に関するもの
である。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a semiconductor laser device having a quantum well structure as an active layer, in which a plurality of light emitting regions are arranged in series in the cavity direction, and its manufacture. It is about the method.

(従来の技術) 従来、横単−モード発振の半導体レーザ装置は活性領域
の周囲が禁制帯幅の大きな半導体によって囲まれた埋込
み形へテロ構造がとられている。この埋込み形へテロ構
造のレーザ装置は2回の液相成長法とメサエッチングを
用いて製造されている。即ち、第1回目の液相成長でダ
ブルへテロ構造結晶が作られ、この結晶を化学エツチン
グでメサ・ストライプ状にした後、第2回目の液相成長
によシこのメサ・ストライプが禁制帯幅の大きい半導体
によって埋込まれる。
(Prior Art) Conventionally, a semiconductor laser device for transverse single mode oscillation has a buried heterostructure in which an active region is surrounded by a semiconductor having a large forbidden band width. This buried heterostructure laser device is manufactured using two liquid phase growth methods and mesa etching. That is, a double heterostructure crystal is created in the first liquid phase growth, and this crystal is chemically etched into a mesa/stripe shape, and then the mesa/stripe becomes a forbidden zone in the second liquid phase growth. Embedded by a wide semiconductor.

:’ + 、−’+         −3−4゛1t ■ ・このように従来の埋込み形へテロ構造レーザ装上記に
鑑み、本出願人は量子井戸型構造の活性層の上下を量子
井戸型を構成している二種の半導体の平均組成よシも大
きな組成を有する半導体で構成し、活性層の左右は量子
井戸型構造に亜鉛を拡散して量子井戸型構造の平均組成
の半導体で構成する半導体レーザ装置を提案した。
:' + , -'+ -3-4゛1t ■ ・Thus, in view of the above, the applicant constructed a quantum well type structure above and below the active layer of the quantum well type structure. The average composition of the two types of semiconductors is larger than the average composition of the two types of semiconductors, and zinc is diffused into a quantum well structure on the left and right sides of the active layer. A laser device was proposed.

この半導体レーザ装置はエピタキシャル成長法で形成し
た多層半導体結晶成長層に不純物の拡散処理を行うのみ
で量子井戸型構造を活性層とした埋込み型ダブルへテロ
構造と同様の構成を有する半導体レーザ装置が容易に製
造できるようになった(特開昭59−21084号)。
This semiconductor laser device has a structure similar to a buried double heterostructure with a quantum well structure as an active layer, and can easily be created by simply performing an impurity diffusion process on a multilayer semiconductor crystal growth layer formed by epitaxial growth. (Japanese Unexamined Patent Publication No. 59-21084).

(発明が解決しようとする問題点) 半導体レーザ装置は温度の影響を受は易く、:発振領域
の長さ、?L:112・・・整数)よりとびとびの値と
なシ、とぶ時、即ち波長チャーピングの時雑音が生じる
。上述の量子井戸型構造を活性層とした半導体レーザ装
置は通常の半導体レーザ装置より温度依存性が少ないが
、直接変調として用いたときに波長チャーピングが生じ
ることがあり、長距離光伝送、光アナログ伝送などにお
いて、伝送特性の低下を招くことがらる。
(Problems to be solved by the invention) Semiconductor laser devices are easily affected by temperature: Length of oscillation region, ? L: 112...an integer), noise occurs when the value jumps, that is, when the wavelength chirps. Semiconductor laser devices with the above-mentioned quantum well structure as an active layer have less temperature dependence than normal semiconductor laser devices, but wavelength chirping may occur when used for direct modulation, making it difficult for long-distance optical transmission and optical In analog transmission, etc., transmission characteristics may deteriorate.

この発明の目的は温度の依存性が小さく、発振波長が安
定し、小さな変調電流で大きな先出    ′力が得ら
れる半導体レーザ装置及びその製造方法を提供すること
にある。
An object of the present invention is to provide a semiconductor laser device that has small temperature dependence, stable oscillation wavelength, and can provide a large forward output power with a small modulation current, and a method for manufacturing the same.

(問題点を解決するための手段) 上記目的を達成するため、この発明は量子井戸型構造を
活性層とする半導体レーザ装置において、上記活性層の
中央に複数の量子井戸型構造のストライプ状発光領域を
所定の間隙を保つてレーザ共振器方向に直列に配置し、
残υの領域は量子井戸型構造を構成する二種の化合物半
    □導体の平均組成の半導体で構成した半導体レ
ーザ装置を提供する。
(Means for Solving the Problems) In order to achieve the above object, the present invention provides a semiconductor laser device having a quantum well structure as an active layer, in which a plurality of stripe-shaped light emitting quantum well structures are provided in the center of the active layer. The regions are arranged in series in the direction of the laser resonator with a predetermined gap,
The remaining region υ provides a semiconductor laser device constituted by a semiconductor having an average composition of two types of compound semiconductors constituting a quantum well structure.

(作用) に発振する。各領域で発振するレーザ光の発振波長2は
前述のように2店で表わされる。発η$ 振領域が二本の場合、それぞれの発振領域の長2?L/
Ll    2nlL2 さをり、 、 L賢すれば、j、=−とス鵞= 、1r
ν1・鳳 □     が等しくなったところレーザ発振が起る。
(effect) oscillates. The oscillation wavelength 2 of the laser beam oscillated in each region is represented by two wavelengths as described above. Oscillation η$ If there are two oscillation regions, the length of each oscillation region is 2? L/
Ll 2nlL2 Saori, , L wise, j, =- and Suen = , 1r
Laser oscillation occurs when ν1 and O□ become equal.

従って発振領域が1本しかない場合に較べて自由度が少
くなるが、逆に特定の条件下でのみしか発振が起らない
ので、発振波長が安定することになる。発振領域の数が
多くなればなる程発振波長の安定性が増大することにな
り、波長チャーピングの発生が抑制される。
Therefore, the degree of freedom is reduced compared to the case where there is only one oscillation region, but on the other hand, oscillation occurs only under specific conditions, so the oscillation wavelength is stabilized. As the number of oscillation regions increases, the stability of the oscillation wavelength increases, and the occurrence of wavelength chirping is suppressed.

また、上述のように複数の発光領域を直列に配置シたタ
ンデム型レーザ装置は先入カー先出力特性にヒステリシ
スを有し、電流−光出力特性が鋭く立上シ、立下シを示
すことが知られておシ、通常の半導体レーザ装置よシ少
ない変調電流で大きな光出力が得られることになる。
Furthermore, as mentioned above, a tandem laser device in which multiple light emitting regions are arranged in series has hysteresis in the first-input and first-output characteristics, and the current-light output characteristic may exhibit sharp rises and falls. As is known, a large optical output can be obtained with less modulation current than a normal semiconductor laser device.

(実施例) この発明を図示の一実施例に基いて説明すると、/はp
型半導体基板であって、この半導体′;1基板/の上に
は下部クラッド層として後述の活’:’門の量子井戸型
構造のストライプ状発光領域gα。
(Example) To explain this invention based on an illustrated example, / is p
type semiconductor substrate, on which a lower cladding layer is formed as a stripe-shaped light emitting region gα of a quantum well type structure, which will be described later.

jrb(図示の実施例では2本)が所定の間隙6bを一 ゛保ってレーザ共振器方向に直列に配置している。jrb (two in the illustrated embodiment) align a predetermined gap 6b. They are arranged in series in the direction of the laser resonator while maintaining

この量子井戸型構造は厚さ数10〜数100x  の組
成の異なる二種の化合物半導体極薄膜を交互に三層以上
積層して構成し、この量子井戸型構造を構成する化合物
半導体としてはGaks 、 GaAlAs。
This quantum well type structure is constructed by alternately stacking three or more ultrathin films of two types of compound semiconductors with different compositions, each having a thickness of several tens to several hundreds of times.The compound semiconductors constituting this quantum well type structure include Gaks, GaAlAs.

G(zA5P 、 G(L’n”8 + ’nG(LA
8Pなどの2元系、6元系、4元系の禁制帯幅の異なる
半導体が挙げられる。
G(zA5P, G(L'n"8 + 'nG(LA
Examples include binary, six-element, and four-element semiconductors such as 8P, which have different forbidden band widths.

発光領域は図示の実施例では2本の場合を示したが、6
本成るいはそれ以上を配列することができる。各発光領
域の長さの比は整数にならないようにする方が良い。
The illustrated embodiment shows a case where there are two light-emitting regions, but there are six light-emitting regions.
You can arrange books or more. It is preferable that the length ratio of each light emitting region is not an integer.

ストライプ状発光領域ざα、gbの左右の両領域6α、
6α及び二つの発光領域ga、tbの間隙6bには量子
井戸型構造を構成している二種の化合物半導体の平均組
成となった半導体が存在する。従って、この領域は発光
領域よシも禁制帯幅が大きくなり、屈折率は小さくなる
。この間隙6ムはきいn型半導体層3がある。上部クラ
ッド層3の下部に発光領域gα、gbが存在する上面に
はクラッド層よシも禁制帯幅の狭いストライプ状の” 
  ′n型半導体左α、Sbを設ける。
Striped light emitting region zaα, both left and right regions 6α of gb,
6α and the gap 6b between the two light emitting regions ga and tb, there exists a semiconductor having an average composition of two types of compound semiconductors constituting a quantum well structure. Therefore, in this region, the forbidden band width becomes larger than in the light emitting region, and the refractive index becomes smaller. In this gap 6mm, there is a high n-type semiconductor layer 3. On the upper surface of the upper cladding layer 3, where the light-emitting regions gα and gb are present, the cladding layer also has a narrow stripe-like forbidden band width.
'N-type semiconductor left α and Sb are provided.

上部クラッド層3上のストライプ状n型半導体Sα、s
bを設けた領域を除いて絶縁膜9で被覆する。n型半導
体Sαの上面にはn側電極IOが、n型半導体sbの上
面にはn側電極/コが独立して設けられ、半導体基板/
の底面には共通のp側電極//があシ、第1図に示すよ
うな半導体レーザ装置を構成する。
Striped n-type semiconductor Sα,s on the upper cladding layer 3
The insulating film 9 is covered except for the area where b is provided. An n-side electrode IO is independently provided on the top surface of the n-type semiconductor Sα, and an n-side electrode IO is independently provided on the top surface of the n-type semiconductor sb.
A common p-side electrode // is formed on the bottom surface of the semiconductor laser device as shown in FIG.

この半導体レーザ装置において、n側電極10゜/2に
電子電流を、p側電極//に正孔電流を供給すると、電
流は活性層3の発光領域gα、ざbへ集中し、発振領域
gαでの発振縦モードと発振領域gbでの発振縦モード
の利得が一致した波長で光の利得が最大となシ、レーザ
発振する。
In this semiconductor laser device, when an electron current is supplied to the n-side electrode 10°/2 and a hole current is supplied to the p-side electrode //, the current is concentrated in the light emitting regions gα and zab of the active layer 3, and the oscillation region gα The optical gain is maximum at a wavelength where the gains of the oscillation longitudinal mode in the oscillation region gb and the oscillation longitudinal mode in the oscillation region gb match, and the laser oscillates.

この発光領域gα、ざbの両側面は量子井戸型構造が合
金化した不純物拡散領域で構成されているため、発光領
域よシ屈折率が小さく、また上下のクラッド層3.コも
発光領域より屈折率が小さく、従って、発振するレーザ
光は横方向に単一モードとなる。
Both sides of the light emitting regions gα and zab are composed of impurity diffusion regions in which quantum well structures are alloyed, so the refractive index is smaller than that of the light emitting regions, and the upper and lower cladding layers 3. This region also has a smaller refractive index than the light emitting region, so the oscillated laser light has a single mode in the lateral direction.

尚、下部クラッド層−と活性層lの間に光ガイド層とし
て下部クラッド層よシ屈折率の小さいp型半導体層を介
在させると、光の閉じ込めて活性層を構成する半導体よ
シ禁制帯幅の大きいp型GaAs層a層−を形成する。
If a p-type semiconductor layer with a lower refractive index than the lower cladding layer is interposed as a light guide layer between the lower cladding layer and the active layer, light will be confined and the forbidden band width of the semiconductor constituting the active layer will be reduced. A layer a of p-type GaAs with a large thickness is formed.

次いで下部り2ラド層λ上に禁制帯幅の異なる二種の化
合物半導体薄膜を数10〜数100X程度の厚さで交互
に三層以上積層し、量子井戸型構造の活性層ダを形成す
る。続いて、活性層の上に量子井戸型構造を構成する半
導体よシ禁制帝幅の大きいn型GaAs層a層3を上部
クラッド層として形成し、所謂ダブルへテロ接合構造と
する。
Next, three or more layers of two types of compound semiconductor thin films having different forbidden band widths are alternately laminated on the lower two rad layers λ to a thickness of several tens to several hundreds of times, thereby forming an active layer with a quantum well structure. . Subsequently, on the active layer, an n-type GaAs layer a layer 3, which has a large forbidden band width compared to a semiconductor and constitutes a quantum well type structure, is formed as an upper cladding layer to form a so-called double heterojunction structure.

上部クラッド層3上には次に上部クラッド層よシ禁制帯
幅の狭いn型GaAs層をオーミック電極と接続するた
めに成長形成する。必要に応じて基板結晶lと下部クラ
ッド層−との間にはp型GaAs層またはp型GcLA
IAs層をバッファ層として設けても良い。
Next, an n-type GaAs layer having a narrower forbidden band width than the upper cladding layer is grown on the upper cladding layer 3 in order to connect it to the ohmic electrode. If necessary, a p-type GaAs layer or p-type GcLA is provided between the substrate crystal l and the lower cladding layer.
The IAs layer may be provided as a buffer layer.

上述の如く多層構造が形成したら、n型aahs、りを
利用して最上層のn型GaA3層をメサ状に工域 、ツチングし、マスクと同じような形状とし、し1かる
後に上面よシ加熱した亜鉛(Zs)などのp型不純物を
少くとも活性層ダを構成している量子井戸型構造の最下
層の半導体極薄膜に達するまで拡散する。第2図におい
て不純物拡散領域は斜線で示す。この不純物の深さ方向
と横方向の拡散の制御は不純物の拡散温度と拡散時間に
よシ行う。この上うに不純物の拡散によシ活性層″不純
物拡散領域は量子井戸型を構成し?     ニー、。
Once the multilayer structure is formed as described above, the top three n-type GaA layers are etched into a mesa shape using n-type aahs and glue to form a shape similar to a mask. A heated p-type impurity such as zinc (Zs) is diffused until it reaches at least the very thin semiconductor film at the bottom of the quantum well structure forming the active layer. In FIG. 2, impurity diffusion regions are indicated by diagonal lines. The depth and lateral diffusion of impurities is controlled by the impurity diffusion temperature and diffusion time. Furthermore, due to the diffusion of impurities, the active layer's impurity diffusion region constitutes a quantum well type.

いる二つの化合物半導体が合金化し、不純動弁    
 、。
The two compound semiconductors are alloyed and an impure valve train is formed.
,.

拡散領域、即ち、n型GaAs層Sα、Sbの下部のス
トライプ状発光領域Ia、Jrl)よシも禁制帯幅は大
きくなシ、屈折率は小さくなる。
In the striped light emitting regions Ia and Jrl below the diffusion regions, that is, the n-type GaAs layers Sα and Sb, the forbidden band width is large and the refractive index is small.

次にマスクを除き、不純物拡散領域上を絶縁膜9で被膜
する。n型GαA8層sa、rbの上よりそれぞれ、A
uGeNi合金/θ、/2を蒸着してn側電極とする。
Next, the mask is removed and the impurity diffusion region is covered with an insulating film 9. From above the n-type GαA 8 layers sa and rb, A
A uGeNi alloy /θ, /2 is deposited to form an n-side electrode.

また、基板/の裏面を研磨した後Crku合金//を蒸
着してp側電極とする。最後に形成した多層構造体の両
端面を骨間して、半導1゛か:; 、・型半導体層とし、その上に上記と逆の電導型の打込
んで、活性層にn型不純物拡散領域を形成するようにし
ても、上記と同様の機能を備えた1    半導体レー
ザ装置を構成することができる。
Further, after polishing the back surface of the substrate, a Crku alloy is deposited to form a p-side electrode. Finally, both end faces of the multilayer structure formed are placed between the bones to form a semiconductor layer of 1゜ or - type semiconductor layer, and on top of that, an n-type impurity is implanted into the active layer by implanting a conductivity type opposite to that described above. Even if a diffusion region is formed, a semiconductor laser device having the same functions as those described above can be constructed.

次にこの発明の実施例を述べる。Next, embodiments of this invention will be described.

有機洗浄及び化学エツチングを施したp型GαA、基板
結晶の上に分子線エピタキシ法を用いて、下部クラッド
層としてp型G(z(1,5Alo、Bi12層を1.
5μmの厚さで成長させ、次いでその上に活性層として
100A厚のGaAs層と7OA厚のG(LIl、7A
I0.8A8層を交互に合計10層形成し、続いて上部
クラッド層として1.5μm厚のn型Gα。、6A1g
、5A8層及び0.5μm厚のn型aahs層を結晶成
長した。この多層構造体の上面にシリコンナイトライド
を被着した後に、中央同軸線に幅約4μm、長さ50μ
mと250μmの二つのストライプ状領域を5μmの間
隙を保ってフォトリングラフィによ多形成した。
Using a molecular beam epitaxy method on a p-type GaA substrate crystal that has been subjected to organic cleaning and chemical etching, a p-type G(z(1,5Alo, Bi12 layer) is formed as a lower cladding layer.
A 100A thick GaAs layer and a 7OA thick G(LIl, 7A
A total of 10 layers of 8 I0.8A layers were formed alternately, followed by a 1.5 μm thick n-type Gα layer as an upper cladding layer. , 6A1g
, 5A8 layers and a 0.5 μm thick n-type AAHS layer were crystal grown. After coating silicon nitride on the top surface of this multilayer structure, the central coaxial line has a width of about 4 μm and a length of 50 μm.
Two stripe-like regions of 250 .mu.m and 250 .mu.m were formed by photolithography with a gap of 5 .mu.m maintained.

このシリコンナイトライドの二つのストライプ状領域を
マスクと−して用いて最上層のn型GaAs層をメサエ
ッチングし、続いて600℃に加熱した溶融亜鉛を最上
層よシ活性層の最下層に達するまで拡散した。活性層で
の亜鉛の非拡散領域の幅は横方向の拡散が存在するため
マスク幅よシ狭く約2.5μmであった。次に最上層の
n型Gα〜層の亜鉛が拡散された部分をサイドエッチ 
   、。
Using these two striped regions of silicon nitride as a mask, the top n-type GaAs layer was mesa-etched, and then molten zinc heated to 600°C was applied from the top layer to the bottom of the active layer. It spread until it reached The width of the non-diffusion region of zinc in the active layer was narrower than the mask width and was approximately 2.5 μm due to the presence of lateral diffusion. Next, side-etch the part where zinc is diffused in the top n-type Gα ~ layer.
,.

ングで除去し、陽極酸化法により、露出してい一/3− るn型Gakl)、s層の上に酸化膜を形成させ、マス
クとしていたシリコンナイトライドを除去し、二本の直
線状のn型GaAs層を除いて絶縁膜重被覆し、次にそ
れぞれのn型GcLA8層上にhwaeNt合金を蒸着
してn側電極とした。またp型Gaks基板の底面は研
磨してCrkuを蒸着し、p側電極とし、両端面を骨間
し、切断して長さ約!100μm1幅約400μmの半
導体レーザ装置が得られた。
Then, an oxide film was formed on the exposed one-third of the n-type Gakl layer and the s layer using an anodic oxidation method, and the silicon nitride used as a mask was removed, and two straight lines were formed. The n-type GaAs layer was removed and an insulating film was overcoated, and then a hwaeNt alloy was deposited on each of the n-type GcLA8 layers to form an n-side electrode. In addition, the bottom surface of the p-type Gaks substrate was polished and Crku was deposited on it to form a p-side electrode, and both end surfaces were made into a bone and cut to a length of about 100 yen. A semiconductor laser device with a width of 100 μm and a width of about 400 μm was obtained.

長い方の発光領域には20mAの電流を供給し、短かい
方の発光領域には変調電流を供給し、次第に増加させて
45mAを越えたときにレーザ発振がおきた。また供給
電流が557FLA以下になると発振は止シ、ヒステリ
シスを示した。発振波長は25℃で8340 Aの単−
縦モード、温度依存性は0.7A/lでDFB  (分
布帰還)レーザ並みの低(発明の効果) との発明による半導体装置は上述の説明で明−/グー らかなように、膜厚制御性の良い分子線エピタキシャル
成長性成るいは気相エピタキシャル成長法を用いた多層
構造体の結晶成長工程とフォトリングラフィによるマス
クの形成と、難かしいマスク合せの技術を必要としない
自己整合(セルファライン)方式による不純物拡散工程
の極めて簡単な方法により複数のストライプ状量子井戸
型構造の発光領域を直列に配置した夕    、:・膚 ンデム型の埋め込みレーザ装置が得られ、発振    
゛波長が安定し・/J゛さ7変調電流で大きな光出力 
   ;を得られるので、長距離光伝送用、アナログ光
伝送用のレーザ光源として用いられ、貢献することが期
待でKる。
A current of 20 mA was supplied to the longer light emitting region, and a modulation current was supplied to the shorter light emitting region, and when the current was gradually increased and exceeded 45 mA, laser oscillation occurred. Moreover, when the supply current became 557FLA or less, oscillation stopped and hysteresis was exhibited. The oscillation wavelength is 8340 A at 25°C.
The semiconductor device according to the invention has a longitudinal mode temperature dependence of 0.7 A/l, which is as low as that of a DFB (distributed feedback) laser (effect of the invention). A crystal growth process for multilayer structures using molecular beam epitaxial growth or vapor phase epitaxial growth with good properties, mask formation using photolithography, and self-alignment (Selfline) that does not require difficult mask alignment techniques. By using an extremely simple impurity diffusion process, a laser diode type buried laser device was obtained in which multiple light-emitting regions with a striped quantum well structure were arranged in series, and oscillation was achieved.
゛Stable wavelength//J゛Large optical output with 7 modulation currents
; is expected to be used as a laser light source for long-distance optical transmission and analog optical transmission.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明による半導体レーザ装置の    。 、′、1 一実施例を示す一部を切欠した斜視図、第2図は上記半
導体レーザ装置の製造過程の状態を示    ンし、多
層構造体に不純物を拡散した状態を示す−/S− 上部クラッド層、ダ・・・活性層、Sα、sb・・・n
型半導体、6α、bb・・・活性層の不純物拡散領域、
ざα。
FIG. 1 shows a semiconductor laser device according to the present invention. , ', 1 A partially cutaway perspective view showing one embodiment, FIG. 2 shows the state of the manufacturing process of the above semiconductor laser device, and shows the state in which impurities are diffused into the multilayer structure -/S- Upper cladding layer, da...active layer, Sα, sb...n
type semiconductor, 6α, bb... impurity diffusion region of active layer,
Zaα.

Claims (2)

【特許請求の範囲】[Claims] (1)量子井戸型構造を活性層とする半導体レーザ装置
において、上記活性層の中央に複数の量子井戸型構造の
ストライプ状発光領域を所定の間隙を保つてレーザ共振
器方向に直列に配置し、残りの領域は量子井戸型構造を
構成する二種の化合物半導体の平均組成の半導体で構成
したことを特徴とする半導体レーザ装置。
(1) In a semiconductor laser device having a quantum well structure as an active layer, a plurality of striped light emitting regions having a quantum well structure are arranged in series in the laser cavity direction with a predetermined gap maintained in the center of the active layer. A semiconductor laser device characterized in that the remaining region is composed of a semiconductor having an average composition of two types of compound semiconductors constituting a quantum well structure.
(2)半導体基板上に下部クラッド層、量子井戸型構造
の活性層、上部クラッド層を順次結晶成長させ、形成し
た多層構造体の上面に複数のストライプ状のマスクを所
定の間隙を保つて共振器方向に直列に形成し、不純物を
多層構造体の上面より少くとも量子井戸型構造の最下層
に達するまで拡散し、形成した複数のストライプ状不純
物非拡散領域にはそれぞれ電極を蒸着したことを特徴と
する半導体レーザ装置の製造方法。
(2) A lower cladding layer, an active layer with a quantum well structure, and an upper cladding layer are sequentially crystal-grown on a semiconductor substrate, and a plurality of striped masks are placed on the top surface of the formed multilayer structure with a predetermined gap maintained for resonance. The impurity is diffused from the top surface of the multilayer structure until it reaches at least the bottom layer of the quantum well structure, and an electrode is deposited on each of the formed striped impurity non-diffused regions. A method for manufacturing a featured semiconductor laser device.
JP8006285A 1985-04-17 1985-04-17 Semiconductor laser device and manufacture thereof Pending JPS61239686A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8006285A JPS61239686A (en) 1985-04-17 1985-04-17 Semiconductor laser device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8006285A JPS61239686A (en) 1985-04-17 1985-04-17 Semiconductor laser device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS61239686A true JPS61239686A (en) 1986-10-24

Family

ID=13707742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8006285A Pending JPS61239686A (en) 1985-04-17 1985-04-17 Semiconductor laser device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS61239686A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4985992A (en) * 1972-12-22 1974-08-17

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4985992A (en) * 1972-12-22 1974-08-17

Similar Documents

Publication Publication Date Title
US6707071B2 (en) Semiconductor light-emitting device
JPH07235732A (en) Semiconductor laser
JP2000312054A (en) Semiconductor element and manufacture thereof
US20090168827A1 (en) Nitride semiconductor laser chip and method of fabricating same
JP2914093B2 (en) Semiconductor laser
US20060086941A1 (en) Superluminescent diode including active layer formed of various sized quantum dots and method of manufacturing the same
JPH0243351B2 (en)
JPH06302908A (en) Semiconductor laser
JP2882335B2 (en) Optical semiconductor device and method for manufacturing the same
JPS61168981A (en) Semiconductor laser device
JP2894186B2 (en) Optical semiconductor device
JP2879875B2 (en) Semiconductor laser device and method of manufacturing the same
JPS61239686A (en) Semiconductor laser device and manufacture thereof
JP3679010B2 (en) Semiconductor laser and manufacturing method thereof
JP3084264B2 (en) Semiconductor laser device
JP4048695B2 (en) Manufacturing method of semiconductor mixed crystal layer, semiconductor device and semiconductor light emitting device
JP2000208872A (en) Semiconductor element and its manufacture
JPS59181587A (en) Semiconductor laser element and manufacture thereof
JP2699662B2 (en) Semiconductor laser and manufacturing method thereof
JPH0832171A (en) Semiconductor laser
JPH0766992B2 (en) AlGaInP semiconductor laser and manufacturing method thereof
JP2911087B2 (en) Semiconductor light emitting device and method of manufacturing the same
JPH0443690A (en) Semiconductor laser element
JPS61236186A (en) Semiconductor laser device
JPS6129183A (en) Semiconductor laser